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Superfluid density in disordered pasta phases in neutron star crusts
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In the inner crust of neutron stars one expects phases in which nuclei adopt rodlike and platelike forms,
so-called pasta phases. For ordered phases, the superfluid density of nucleons is anisotropic and in this paper
we calculate the effective superfluid density of disordered pasta phases. We use an effective medium approach
which parallels that previously used for calculating the electrical conductivity of terrestrial matter. We allow for
the effect of entrainment, the fact that the current density of one species of nucleon depends on the gradient of
the phase of the condensate pair wave function not only of the same species but also of the other species. We
find that for protons, the results of the effective medium formalism can be quite different from those of simple
approximations.
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I. INTRODUCTION

The superfluid density of neutrons in the crust of the star
is an important property in models of glitches in neutron star
rotation rates, and the corresponding quantity for protons is an
important ingredient in calculations of magnetic properties.
At densities of the order of one half of nuclear saturation
density it is predicted that phases with nonspherical nuclei can
occur in the crust of neutron stars [1,2]. Whether or not such
phases have lower energy than a uniform mixture of neutrons,
protons, and electrons is still unclear, since the result depends
on the nuclear interaction employed [1,3]. Further work with
improved calculational methods and nuclear interactions is
needed to determine whether these phases are thermodynami-
cally stable.

In the crust at densities above that for neutron drip, neu-
trons and protons are predicted to be superfluid. In the phase
with round nuclei, flow of neutrons can occur over large
distances because of the neutrons outside nuclei. The protons,
however, cannot participate in bulk flows because individual
nuclei are well separated in space, and there is negligible
proton tunneling between nuclei. The phases with spherical
nuclei are predicted to have cubic symmetry, and conse-
quently the neutron superfluid density tensor is isotropic.
For the pasta phases, which have nonspherical nuclei, super-
fluid flow of protons is possible because spaghetti strands
and lasagna sheets are extended. For perfect pasta phases
with long-range spatial order, the superfluid density tensors

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

for both neutrons and protons are anisotropic, with different
values for directions parallel to and perpendicular to the sym-
metry axis of the pasta, the direction of the spaghetti strands
and the normal to the lasagna sheets.

We turn now to disordered phases. On length scales large
compared with the lattice spacing and the length scale on
which the orientation of the crystal axes changes, the effec-
tive superfluid density tensor is isotropic if the orientation
of the axes is random. The phase with spherical nuclei has
cubic symmetry. For this case, the superfluid density tensor is
isotropic and, to the extent that effects due to the boundary
between regions with different crystal orientations are negli-
gible, the effective superfluid density tensor is equal to that in
the perfectly ordered medium.

In this paper we calculate the effective superfluid density
for disordered lasagna and spaghetti phases. We adopt an
effective medium approach inspired by earlier work on the ef-
fective electrical conductivity [4–7]. Such methods have also
been applied to calculate elastic properties of polycrystals [8],
including those in neutron star crusts [9,10]. The basic idea in
these methods may be described as follows. One considers an
inclusion with anisotropic properties embedded in a homoge-
neous, isotropic medium and then demands that, on averaging
over possible orientations of the inclusion, the response of the
system is the same as that of the medium outside the inclusion.
Another way of expressing this in terms of scattering is that
the properties of the medium are chosen so that, on average,
the inclusion gives no scattering of an incident disturbance.

This article is organized as follows. Section II sets out
the basic formalism, and a number of details are described
in the Appendix. Applications are given in Sec. III, which
begins with the case of a single component and then goes on
to the two-component case with entrainment. In Sec. IV we
discuss applications of our results to the spaghetti and lasagna
phases. For protons, the superfluid density is expected to be
very anisotropic, while for neutrons it is less so. Consequently,
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we predict that the effective superfluid density of protons will
differ considerably from the results of simple approximations
but that for neutrons the difference between the various ap-
proximations will be much less. We also consider the effects
of magnetic fields on the protons. Concluding remarks are
made in Sec. V.

II. BASIC FORMALISM

Consider a perfectly ordered system with a spatially peri-
odic structure and made up of neutrons and protons (which are
both superfluid), and normal electrons. In a generalization of
the two-fluid model for liquid helium II we may write the cur-
rent density of nucleons for long-wavelength, low-frequency
phenomena in the form1

ji
α = ns,i j

αβ

m

(
∂φβ

∂x j
− qαAj

c

)
+ nn,i j

α u j . (1)

Here the Greek subscripts α and β refer to the nucleon species
(n for neutrons and p for protons), the indices i and j refer to
Cartesian coordinates, and φα is equal to one half of the phase
of the condensate pair wave function for species α averaged
over distances large compared with the lattice spacing and
other microscopic length scales but small compared with the
characteristic length scale of the phenomenon in question.
The components of the normal fluid velocity, which is the
velocity of the periodic structure of the medium, are denoted
by u j , and those of the vector potential by Aj , and qα is the
charge of species α. The quantity ns,i j

αβ is the superfluid density
tensor, and it is in general not diagonal in the species variables
because of entrainment of the two superfluids, the fact that
a gradient in the phase of one component can give rise to
a flow of the other component. The normal density tensor
is denoted by nn,i j

α . We neglect the difference between the
neutron and proton masses, and denote the nucleon mass by
m. We shall work in units in which h̄ = 1. We shall assume
that the electrons are at rest in the frame moving with the
normal velocity, but they will not enter in our subsequent
considerations.

In most of the paper we shall neglect the effects of mag-
netic fields, so we shall take the vector potential to be zero.
For small ∂φβ/∂x j and small u j , the dependence of the su-
perfluid and normal density tensors on these variables may
be neglected. However, in Sec. IV, we shall comment on the
effect of magnetic fields on the protons.

The ith component of the current density of species α is the
derivative of the energy density with respect to (∂φα/∂xi )/m.
Thus from Eq. (1) it follows that

ns,i j
αβ

m
= ∂2E

(∂φα/∂xi )(∂φβ/∂x j )
. (2)

1We shall use superscripts to denote spatial components and sub-
scripts to denote species. We do not need to take into account effects
of the curvature of space or scale transformations so we denote
both covariant and contravariant quantities by upper indices. The
superscript s denotes the superfluid density and the superscript n the
normal density.

Therefore for α = β, the superfluid density tensor is symmet-
ric in the spatial coordinates i and j. However, for α �= β it is
not necessarily symmetric and consequently the principal axes
are not orthogonal in general. We shall confine our attention
to systems in which the principal axes of the medium are, or
may be chosen to be, orthogonal. This applies to all crystal
systems apart from the triclinic and monoclinic ones and is
thus general enough to cover the cases of interest in neutron
star crusts. For the lasagna phase with uniform sheets, the
principal axes may be taken to be the normal to the sheets
and two orthogonal axes lying in the plane of the sheets.
For the spaghetti phase, one expects the rods to be arranged
in a hexagonal pattern, and thus the superfluid and normal
density tensors are isotropic in the plane perpendicular to the
strands. This is a general property of second rank tensors and
was demonstrated explicitly for the superfluid density tensor
in Ref. [11]. Sheets in the lasagna phase may be spatially
modulated in the plane of the sheets but, according to quan-
tum molecular dynamics calculations [12], the modulation has
hexagonal symmetry, and therefore also this case falls into this
class. It is simplest to work in terms of components of vectors
along the principal axes of the medium, in which case we may
write Eq. (1) in the form

jλα = nsλ
αβ

m

∂φβ

∂xλ
+ nnλ

α uλ, (3)

where λ denotes the principal axes and there is no sum over λ

on the right side of the equation.
In a system consisting of randomly oriented domains, one

expects the spatial average of the current density to be propor-
tional to the spatial average of the gradient of the phases and
to be in the same direction, and thus, omitting the magnetic
field term, one may write

〈
ji
α

〉 = ns,e
αβ

m

〈
∂φβ

∂xi

〉
+ nn,e

α ui, (4)

where the angular brackets denote a spatial average, which
we shall assume to be equivalent to an ensemble average. The
objective of this article is to calculate the spatially isotropic
quantity ns,e

αβ , the effective superfluid density tensor for the
disordered medium. The effective normal density is denoted
by nn,e

α . Under a Galilean transformation to a reference frame
moving at a velocity −�v with respect the original frame, �∇φβ

changes by m�v and the total current density of species α

changes by nα�v, where nα is the density of the species. It
therefore follows from Eq. (25) that∑

β

ns,e
αβ + nn,e

α = nα. (5)

As we demonstrate in the Appendix [see Eqs. (A11)
and (A13)], the effective superfluid density in the effective
medium approach is given by solving the matrix equation∑

λ=1,2,3

3ns,e(2ns,e + nsλ)−1(nsλ − ns,e )

≡
∑

λ=1,2,3

[I + (nsλ − ns,e )(3ns,e )−1]−1(nsλ − ns,e ) = 0,

(6)
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where the symbols n with no subscripts denote 2 × 2 matrices
in the space of nucleon species (neutrons and protons) and
I is the unit matrix. The second form in Eq. (6) exhibits
explicitly the fact that the quantity is symmetric in the species
variables. It also has the form to be expected from a multi-
ple scattering or screening problem, with the bare scattering
“potential” being proportional to nsλ − ns,e [6].

III. APPLICATIONS

We now apply our result to uniaxial systems, which have
one principal axis along the axis of the system, for which
quantities are denoted by ‖, and two principal axes perpendic-
ular to the axis of the system, for which quantities are denoted
by ⊥. Equation (6) then reduces to

ns,e(2ns,e + ns‖)−1(ns,e − ns‖)

+ 2ns,e(2ns,e + ns⊥)−1(ns,e − ns⊥) = 0. (7)

A. No entrainment

For uniform matter, the entrainment parameter ns
np is not

known very well but estimates indicate that it is less than 0.1np

[13], and we expect that the entrainment parameters in the
pasta phases will be correspondingly small. Consequently, in
calculating the pp and nn components of the effective super-
fluid density tensor, it is a good first approximation to neglect
entrainment. In that case, Eq. (7) reduces to the following two
equations:

ns,e
nn − ns‖

nn

2ns,e
nn + ns‖

nn

+ 2
ns,e

nn − ns⊥
nn

2ns,e
nn + ns⊥

nn

= 0, (8)

and

ns,e
pp − ns‖

pp

2ns,e
pp + ns‖

pp

+ 2
ns,e

pp − ns⊥
pp

2ns,e
pp + ns⊥

pp

= 0. (9)

These equations have the same form as that for the electri-
cal conductivity of polycrystals and binary metallic mixtures
[4–6], the essential reason being that the electrostatic potential
and the phase of the condensate wave function both satisfy
the Laplace equation, except at the surface of the inclusion.
Equations (8) and (9) may be written as

2ns,e
αα

2 − ns,e
ααns⊥

αα − ns‖
ααns⊥

αα = 0, (10)

for which the physically meaningful root is the positive one,

ns,e
αα =

ns⊥
αα +

√
ns⊥

αα
2 + 8ns‖

ααns⊥
αα

4
. (11)

It is interesting to compare this result with those of simpler
approaches to the problem that correspond to the Voigt and
Reuss approximations in the theory of elastic properties of
polycrystalline materials [14,15], which Hill demonstrated to
give upper and lower bounds on the elastic constants [16].
In the Voigt approach one assumes that the strain is constant
in all domains of the medium. For the superfluid density the
corresponding assumption is that the gradient of the phase is
the same in all domains, and the effective superfluid density

FIG. 1. Effective superfluid density component ns,e
αα in units of

ns⊥
αα as a function of ns‖

αα/ns⊥
αα for the lasagna phase in the absence of

entrainment. The full line is the result of the effective medium theory,
the dashed line is the Voigt approximation, and the dotted line is the
Reuss approximation.

is then given by the arithmetic mean of the superfluid density
tensor over possible orientations of the domains:

(
ns,e

αα

)
Voigt = ns‖

αα + 2ns⊥
αα

3
. (12)

This is the approximation made in the calculations of the
effective neutron superfluid density in Ref. [17]. In the Reuss
approach, the stress is assumed to be constant in all domains,
and the analogous assumption for the superfluid density is that

0 0.2 0.4 0.6 0.8 1
0.0

0.2

0.4

0.6

0.8

1.0

Effective medium

Voigt

Reuss

0.4 0.6 0.8

FIG. 2. Effective superfluid density component ns,e
αα in units of

ns‖
αα as a function of ns⊥

αα/ns‖
αα for the spaghetti phase in the absence

of entrainment. As in Fig. 1, the full line shows the result of the
effective medium theory, the dashed line the Voigt approximation,
and the dotted line the Reuss approximation.
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the superfluid current density is the same in all domains. The
effective superfluid density is the harmonic mean of the super-
fluid density tensor over possible orientations of the domains:

(
ns,e

αα

)
Reuss = 3

1/ns‖
αα + 2/ns⊥

αα

= 3ns‖
ααns⊥

αα

2ns‖
αα + ns⊥

αα

. (13)

For the lasagna phase, one expects physically that super-
fluid flow is impeded in the parallel direction, and therefore
ns⊥

αα > ns‖
αα and we may write Eq. (11) as

ns,e
αα

ns⊥
αα

=
1 +

√
1 + 8ns‖

αα/ns⊥
αα

4
, (14)

which is plotted in Fig. 1. Remarkably, even if there is no
superfluid flow perpendicular to the lasagna sheets, the pre-
dicted effective superfluid density falls to only one half of the

value it would have if the parallel and perpendicular superfluid
densities were equal.

In the case of the spaghetti phase, one expects flow to be
impeded in the perpendicular direction (ns⊥

αα < ns‖
αα), and it is

therefore convenient to write Eq. (11) in the form

ns,e
αα

ns‖
αα

=
[

1

2

ns⊥
αα

ns‖
αα

+ 1

16

(
ns⊥

αα

ns‖
αα

)2
]1/2

+ 1

4

ns⊥
αα

ns‖
αα

, (15)

which we plot in Fig. 2. For small ns⊥
αα , ns,e

αα �
√

ns⊥
ααns‖

αα/2,
which vanishes for ns⊥

αα → 0.

B. Effects of entrainment

On writing out the matrix products in Eq. (A11) explicitly,
one finds

f λ
nn = −ns,e

nn

[
nsλ

nnnsλ
pp − (

nsλ
np

)2] − 2ns,e
nn

(
ns,e

pp nsλ
nn + ns,e

np nsλ
np

) + (
ns,e

nn

)2
nsλ

pp + 3
(
ns,e

np

)2
nsλ

nn + 2ns,e
nn

[
ns,e

nn ns,e
pp − (

ns,e
np

)2]
(
nsλ

nn + 2ns,e
nn

)(
nsλ

pp + 2ns,e
pp

) − (
nsλ

np + 2ns,e
np

)2 , (16)

f λ
pp = −ns,e

pp

[
nsλ

nnnsλ
pp − (

nsλ
np

)2] − 2ns,e
pp

(
ns,e

nn nsλ
pp + ns,e

np nsλ
np

) + (
ns,e

pp

)2
nsλ

nn + 3
(
ns,e

np

)2
nsλ

pp + 2ns,e
pp

[
ns,e

nn ns,e
pp − (

ns,e
np

)2]
(
nsλ

nn + 2ns,e
nn

)(
nsλ

pp + 2ns,e
pp

) − (
nsλ

np + 2ns,e
np

)2 , (17)

and

f λ
np = −ns,e

np

[
nsλ

nnnsλ
pp − (

nsλ
np

)2] − 3ns,e
nn ns,e

pp nsλ
np + ns,e

np

(
ns,e

nn nsλ
pp + ns,e

pp nsλ
nn

) + (
ns,e

np

)2
nsλ

np + 2ns,e
np

[
ns,e

nn ns,e
pp − (

ns,e
np

)2]
(
nsλ

nn + 2ns,e
nn

)(
nsλ

pp + 2ns,e
pp

) − (
nsλ

np + 2ns,e
np

)2 . (18)

For the uniaxial case, the effective superfluid densities ne
αβ are

the solutions of the three simultaneous equations

f ‖
αβ + 2 f ⊥

αβ = 0. (19)

To leading order in nsλ
np, the nn and pp components of the ef-

fective superfluid density tensor are given by Eq. (11) with the
densities nsλ and ns,e put equal to the nn and pp components:

ns,e
nn �

ns⊥
nn +

√(
ns⊥

nn

)2 + 8ns‖
nnns⊥

nn

4
, (20)

ns,e
pp �

ns,⊥
pp +

√(
ns⊥

pp

)2 + 8ns‖
ppns⊥

pp

4
, (21)

and

ns,e
np � 3ns,e

nn ns,e
pp

�⊥ns‖
np + 2�‖ns⊥

np

�⊥�‖ + 2�‖�⊥ . (22)

Here

�λ = (
nsλ

nn + 2ns,e
nn

)(
nsλ

pp + 2ns,e
pp

)
, and (23)

�λ = −nsλ
nnnsλ

pp + nsλ
nnns,e

pp + ns,e
nn nsλ

pp + 2ns,e
nn ns,e

pp . (24)

In Eqs. (22)–(24), the ns,e
αα should be taken to be the values

(20) and (21) in the absence of entrainment. For an isotropic
inclusion, ns,e

np is equal to ns‖
np = ns⊥

np , as one would expect
physically.

Once the effective superfluid density tensor has been deter-
mined, the effective normal densities of neutrons and protons
may be found from the condition for Galilean invariance,
Eq. (5).

It is interesting to consider the case of no normal currents
(�u = 0) and no bulk flow of protons. The neutron current
density is then given by

〈
ji
n

〉 =
[

ns,e
nn −

(
ns,e

np

)2

ns,e
pp

]
〈∇ iφn〉

m
. (25)

The second term in parentheses reflects the fact that backflow
of neutrons around an inclusion results in backflow of protons.
To achieve no average proton current, a nonzero value of
〈∇ iφp〉 is required.

IV. DISCUSSION

We begin with some general remarks. Because entrainment
of the two superfluid motions, which are expressed in the
formalism via the np components of the superfluid density
tensor, is not expected to be large, we shall consider the
case when it is absent. Our calculations predict a qualitative
difference between the lasagna and spaghetti phases, since
even if the superfluid density for flow perpendicular to lasagna
sheets is zero, the effective superfluid density drops to only
one half of the value for flow in directions in the plane of
the lasagna sheets. For spaghetti, when the superfluid density
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is zero for flow perpendicular to the strands, the effective
superfluid density is zero. This difference is due to the fact
that, while the lasagna phase has two “easy” axes (those lying
in the plane of the sheets) and one “hard” axis, the spaghetti
phase has one “easy” axis (along the strands) and two “hard”
axes. We therefore conclude that for the lasagna phase, the
effective superfluid density for the disordered state will be
greater than one half of the superfluid density tensor for flow
in the plane of the sheets. However, the effective superfluid
density for the disordered spaghetti state depends more sen-
sitively on the component of the superfluid density tensor for
flow perpendicular to the strands.

Another prediction of our calculations is that for the
spaghetti phase, the situation for protons will be different from
that for neutrons. For neutrons, superfluid flow perpendicu-
lar to the strands is relatively easy because of the neutron
fluid between strands, but for protons in the perfectly ordered
spaghetti phase, flow between strands occurs by tunneling
and is consequently small. The effective proton superfluid
density of the disordered spaghetti phase is therefore sensitive
to imperfections such as bridges between adjacent strands.

To make use of the results derived above, one needs as
input the superfluid density tensors of the pasta phases. There
have been a number of calculations of these tensors for neu-
trons in phases with no spatial modulations of the spaghetti
and lasagna elements. In one class of calculations, one as-
sumes that the superfluid densities are equal to the response
of a system to an applied vector potential in the absence of
both pairing and scattering between excitations. These cal-
culations lead to values of ns‖

nn/ns⊥
nn for spaghetti in the range

0.71–0.86 [18,19]. For lasagna ns‖
nn/ns⊥

nn is found to lie in the
range 0.93–0.95. More recent calculations for lasagna based
on the Hartree-Fock method give values in approximately the
same range [20]. Time-dependent density-functional theory
has been applied to calculate neutron superfluid densities for
the lasagna phase, but only for proton fractions higher than
those expected in pasta phases in the inner crust of neutron
stars, where matter is in beta equilibrium [21].

In a second class of calculation, the problem was treated
by use of quantum hydrodynamics, in which it is assumed
implicitly that the superfluid coherence length of the neutrons
is much less than other lengths in the problem [17]. Simple
analytical results may be obtained for the lasagna phase. For a
neutron superfluid flow perpendicular to the sheets, which we
take to be in the z direction, the kinetic energy may be written
as

Ekin = 1

2

∫
V

d3r
ñn(r)

m

(
∂φ̃

∂z

)2

, (26)

since in the hydrodynamic model, the current density of neu-
trons is given by [ j̃n(r)]z = ñn(r)∂φ̃/∂z. The tilde over a
quantity indicates that it is the local value, not the coarse-
grained average, and V is the volume of the system. For
a steady flow, particle number conservation requires that
[ j̃n(r)]z is independent of z and may be written as ( jn)z and
the kinetic energy is therefore

Ekin = m

2
( jn)2

z

∫
V

d3r
1

ñn(r)
, (27)

from which one concludes that

1

ns‖
nn

=
∫

V

d3r

V

1

ñn(r)
. (28)

Thus for lasagna, the neutron superfluid density for flow per-
pendicular to the sheets is the harmonic mean of the density
of neutrons, while the mean neutron density is the arithmetic
mean of the neutron density. For the case of a sharp boundary
between the nuclear matter and the neutron matter, the result
is

ns‖
nn

nn
=

[
1 + (nn,2 − nn,1)2

nn,1nn,2
u(1 − u)

]−1

, (29)

in agreement with Ref. [17]. Here nn,2 is the density of neu-
trons in the nuclear matter regions, nn,1 is the neutron density
in the pure neutron regions, and u is the fraction of space
occupied by nuclear matter. For the pasta phases, the numeri-
cal values for ns‖

nn/nn in the hydrodynamic approximation are
found to be greater than 0.97 [11,17].

As argued in Ref. [17], the calculations that neglect pairing
and the those that make the hydrodynamic approximation
represent extreme cases, and the true value of the superfluid
density likely lies between them. That the superfluid density
for flow parallel to the axis of the lasagna phase is reduced
when pairing is taken into account is supported by the calcu-
lations of Ref. [22], which include both the periodic potential
and pairing.

With respect to disordered pasta phases, even if the
anisotropy of the neutron superfluid density tensor is as large
as predicted by the calculations neglecting pairing, our cal-
culations show that the (Voigt) approximation of taking the
effective superfluid density tensor of the disordered medium
to be the average of the superfluid density tensor over direc-
tions, which has been employed previously [17,18], is very
good; indeed, the result of the effective medium approach is
close to those of the Voigt and Reuss approximations.

The effective medium approach has been very successful
in accounting for the elastic and electrical properties of terres-
trial materials, as may be seen from, e.g., Ref. [5] for binary
metallic mixtures, but it would be useful to explore how well
it works for very anisotropic phases.

A basic assumption of the effective medium approach is
that the system may be regarded as a collection of “domains”
which are oriented randomly, a situation explored in the case
of elastic constants in the simulations of Ref. [23]. An im-
portant question is whether or not this assumption is realistic,
since it could well be that the orientation of the pasta varies
continuously in space, rather than having sharp boundaries
between regions with different orientations. It would be valu-
able to make simulations to investigate the disorder of pasta
structure that results when matter is cooled below the critical
temperature for formation of pasta structures.

In the calculations above we have largely neglected the
effects of magnetic fields. In a charged superfluid, the length
scale for variations of the magnetic field is of order the Lon-
don length, λ = (4πnpe2/mc2)−1/2, which is of order 110 fm
for a proton fraction of 5% and a density of half nuclear
saturation density. A spatially independent vector potential �A
has no physical effect, and in the formalism can be taken into
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account by shifting the proton phase by an amount e �A · �r/c.
Only the spatially dependent part of the vector potential is
physically relevant, and in order to be able to neglect this, the
size of the inclusion, which corresponds to the spatial scale
of the disorder of the orientation of the pasta elements, must
be less than the London length. This requires that the pasta be
rather highly disordered, since, e.g., for the lasagna phase the
lattice spacing is estimated to be about 44 fm [24].

Superconducting vortices in ordered pasta phases have
been discussed in Ref. [24], and the vortex energy depends on
its direction with respect to the principal axes. In disordered
phases, the properties of vortices will become independent of
direction if the length scale of the disorder becomes small
compared with the superconducting penetration depth.

V. CONCLUSION

We have developed an effective medium approach to cal-
culating the properties of disordered pasta phases that allows
for the effects of entrainment. For the lasagna phase, the
calculations predict that, with the neglect of entrainment, the
diagonal (nn and pp) components of the effective superfluid
density are greater than one half of the corresponding value
of the superfluid density tensor for flow in directions lying in
the plane of the sheets. Because flow of protons perpendicular
to the direction of the strands is suppressed in the spaghetti
phase, the pp component of the effective superfluid density
tensor can be very much less than the corresponding value of
the superfluid density tensor for flow in the direction of the
strands. However, since neutrons can move relatively easily
between strands, the reduction of the nn component of the
effective superfluid density tensor is expected to be much less.

In our calculations we have not taken into account possi-
ble effects of the interface, e.g., the existence of weak links
between neighboring regions with different orientations of
the pasta structures. Such effects are important for laboratory
superconductors because of the existence of grain boundaries
[25] but are expected to be less important in neutron star crusts
where on length scales comparable to the internucleon spacing
the structure is that of a liquid rather than a solid. One situation
in which interface effects could be important for protons is if
there is no path for percolation within the proton-rich phase.
However, for neutrons, which are present everywhere, such
effects are unlikely to be important.

To improve estimates of the effective superfluid density
of the disordered pasta phases, it is necessary to have better
values for the superfluid density tensor for the ordered phases.
One possible approach would be to extend the calculations
of Ref. [22] for fermions in a one-dimensional sinusoidal
potential to potentials that better reflect the structure of the
pasta phases.
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APPENDIX: SIMPLE DERIVATION
OF THE BASIC RESULT

Consider an inclusion consisting of the pasta phases
with superfluid density tensor ns,i j

αβ immersed in an isotropic
medium with superfluid density tensor ns,e

αβ . For simplicity, we
shall take the inclusion to be spherical, but the final results
we derive also apply for an ellipsoidal inclusion when the
principal axes of the ellipsoid coincide with the principal axes
of the superfluid density tensor; this may be demonstrated
by working in terms of ellipsoidal coordinates rather than
spherical polar coordinates, just as in the analogous prob-
lem in electrostatics [26]. In the uniform medium without
the inclusion, the current density in the presence of uniform
gradients of the phases given by ∇ iφα = ki

α may be written as
ji
α = ns,e

αβki
β/m. The inclusion induces backflow around it and

changes the current density within the inclusion. Because, by
symmetry, the current density integrated over space for �k lying
along one of the principal axes also lies in the direction of that
axis, it is convenient to work in terms of the components of
�k along the principal axes of the inclusion, which we denote
by the label λ = 1, 2, 3 and we denote the components of the
superfluid density tensor by nsλ

αβ .
We consider a spherical inclusion of a pasta phase with

superfluid density tensor ns,i j
αβ embedded in a homogeneous

medium with effective superfluid density tensor ns,e
αβ . Since the

problem we are considering is linear, we may superimpose
solutions for �k along the three principal directions of the
inclusion. In a homogeneous medium, φ = �k · �r, the wave
vector of the flow �∇φ = �k is uniform, and we shall take it
to be in the z direction. The current density is given by Eq. (1)
and therefore in regions where the superfluid density tensor is
isotropic, conservation of particle number demands that

∇ i ji
α = 0, (A1)

and thus ∇2φα = 0. We shall seek a solution of the form

φα =
{(

kλ
α + Aλ

α

)
z for r � a,

kλ
αz + Cλ

αz/r3 for r � a,
(A2)

where the origin of the coordinate system is at the center of the
inclusion, r is the radial coordinate, and z is the coordinate in
the direction of the principal axis λ. From the condition that
φα be continuous at the surface of the inclusion (r = a), it
follows that

Aλ
α = Cλ

α

a3
. (A3)

Within the inclusion, the current density is constant in space,
and thus the solution (A2) satisfies the condition for particle
conservation (A1) everywhere except at the surface of the
inclusion. To ensure conservation of particle number there,
the component of the current density, Eq. (1), normal to the
surface must be continuous, which gives

nsλ
αβ

(
kλ
β + Aλ

β

) = ns,e
αβ

(
kλ
β − 2Aλ

β

)
, (A4)

where we use the summation convention for subscripts but not
for the superscript λ. Thus in a compact matrix notation,

Aλ = (2ns,e + nsλ)−1(ns,e − nsλ)kλ, (A5)
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where Aλ and kλ are vectors and nsλ and ns,e are matrices in the
two-dimensional species space. The current density integrated
over the whole of space is given in this matrix notation by∫

V
d3r jλ(�r) = V ns,e kλ

m
+ 4πa3

3

[
nsλ Aλ

m
− (ns,e − nsλ)

kλ

m

]
,

(A6)

where V is the volume of the system. The change in the
integrated current density due to the presence of the inclusion
is therefore

�

∫
V

d3r jλ(�r) = 4πa3

3

[
nsλ Aλ

m
− (ns,e − nsλ)

kλ

m

]
(A7)

= −6Vin
s,e(2ns,e + nsλ)−1(ns,e − nsλ)

kλ

m
,

(A8)

where

Vi = 4πa3

3
(A9)

is the volume of the inclusion. While locally the current den-
sity has components in directions other than λ, the integrals
over space of these components vanish because of the dipolar
character of the flow outside the inclusion.

For �k in an arbitrary direction with respect to the principal
axes of the inclusion, the change in the integrated current
density is given by

�

∫
V

d3r �j(�r) = −6Vi

∑
λ=1,2,3

f λ
�k · �ελ

m
�ελ, (A10)

where

f λ = ns,e(2ns,e + nsλ)−1(ns,e − nsλ) (A11)

and �ελ is a unit vector in the λ direction. On averaging over
possible orientations of the principal axes of the inclusion, the
current density integrated over space is in the direction of �k
and 〈

�

∫
V

d3r �j(�r) · �k
〉

= 6Vi

m

∑
λ=1,2,3

f λ〈(�k · �ελ)2〉. (A12)

For a random orientation of the inclusion, 〈(�k · �ελ)2〉 is equal
to k2/3 and the integrated current density vanishes when∑

λ=1,2,3

f λ = 0, (A13)

which is the condition determining ns,e in the self-consistent
effective medium approach. For the two-component case, f
is a 2 × 2 symmetric matrix, and therefore this equation is
equivalent to three scalar equations.
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