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Next-to-leading order scalar contributions to μ → e conversion
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Within a class of models in which lepton flavor violation is induced dominantly by scalar particle exchanges,
we estimate the μ → e conversion rate in several nuclei. We include next-to-leading order (NLO) terms in the
one- and two-nucleon interactions in chiral effective theory, rectifying some incorrect results in the previous
literature. We provide an uncertainty budget for the conversion rates and we find that NLO contributions affect
the amplitudes at the level of 10%, which could be larger than the uncertainty on the leading order couplings,
dominated by the strange and nonstrange nucleon sigma terms. We study the implications of our results for
testing Higgs-mediated charged lepton flavor violation (CLFV) in the future by combining results from various
experimental searches, such as μ → e conversion in multiple target nuclei and μ → eγ .
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I. INTRODUCTION

Lepton flavor violating processes involving charged lep-
tons (CLFV) are among the theoretically cleanest probes of
physics beyond the standard model (BSM). The minimal
model extending the standard model with neutrino masses
predicts CLFV amplitudes proportional to �m2

ν/m2
W [1–4],

leading to branching ratios 40 orders of magnitude below
current experimental sensitivity and hence a huge discovery
window. Moreover, CLFV processes also test the origin of
flavor breaking in the lepton sector, ultimately related to the
structure of neutrino mass matrices. So far, the strongest
experimental bounds on CLFV have been given on μ →
e transitions. The current limit on the branching ratio of
μ → eγ is Bμ→eγ < 4.2 × 10−13 at 90% C.L. [5], while that
of μ → e conversion in gold is Bμ→e(Au) < 7 × 10−13 at
90% C.L. [6]. The next-generation searches aim to achieve
higher sensitivities. For example, the MEG II experiment
at the Paul Scherrer Institute (PSI) is expected to reach
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Bμ→eγ < 6 × 10−14 [7,8]. The Mu2e experiment at Fermilab
and the COherent Muon to Electron Transition (COMET) ex-
periment at Japan Proton Research Complex (J-PARC) plan to
increase their sensitivity reaches by four orders of magnitude,
i.e., to the level of Bμ→e < O(10−17) [9–11].

Compared to the nonhadronic decay μ → eγ , the process
for μ → e conversion occurs in nuclei, wherein a muon is
trapped to form a muonic atom. The μ → e conversion pro-
cess has the potential to discern signs of various BSM physics
(for early studies see Ref. [12]), since it can be generated
by not only photonic dipole operators but also nonphotonic
contact four-fermion interactions involving two leptons and
two quarks, with various Lorentz structures. Thus, estimations
of the conversion process involve multiple scales (hadronic,
nuclear, atomic) and require careful treatments. In light of the
expected improvements in experimental sensitivity, in order
to maximize the constraining power (in case of null signal) or
the model-diagnosing power (in case of discovery), accurate
theoretical predictions within various classes of models are
desirable.

The calculation of μ → e conversion rates has a long
history, starting with the pioneering work of Weinberg and
Feinberg [13], in which the electron wave function was taken
as a plane wave and muon wave function was approximated
to a constant. It was later realized that relativistic effects
can be important in medium and heavy nuclei [14], and de-
tailed calculation of the conversion rate including relativistic
lepton wave functions was performed in Refs. [15,16]. The
conversion rates in various nuclei and for dipole, scalar, and
vector operators have been calculated in [16], where the
uncertainty induced by neutron and proton densities in the
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ground state is also estimated. The discriminating power of
various interactions in μ → eγ and μ → e conversion was
further assessed in [17], where the uncertainty from scalar
form factors was also discussed. The effect of nucleon spin-
dependent operators was first discussed in Refs. [18,19] and
effective field theory studies including renormalization group
evolution, along with their phenomenological implications,
have appeared [20–22]. Very recently, a nuclear-level effective
theory for μ → e conversion was developed [23].

Among the spin-independent operators, the largest theo-
retical uncertainties arise in the scalar sector. An improved
treatment of scalar matrix elements based on SU(2) chi-
ral perturbation theory (ChPT) was introduced in Ref. [24].
More recently, in the framework of SU(2) ChPT, the impact
of next-to-leading order (NLO) nucleon interactions induced
by quark-level scalar densities was discussed in Ref. [25].
The NLO contributions involve both single-nucleon scalar
form factors and two-nucleon interactions, which were re-
duced in Ref. [25] to an effective one-nucleon interaction
by performing an average of the interaction over a Fermi
gas model. It was found that, when scalar operators are
the dominant sources for the conversion process, the NLO
interactions could bring destructive contributions relative
to LO contributions and significantly reduce the branching
ratio.

Inspired by those previous studies, we revisit the calcu-
lation of branching ratios of μ → e conversion in several
nuclei including the NLO nucleon interactions induced by
scalar quark densities. Our analysis is performed in a model-
independent way, i.e., the standard model effective field theory
(SM-EFT) [26–29], focusing on a particular class of SM-EFT
operators: photonic dipole and scalar four-fermion operators.
This setup is well motivated by BSM models with heavy
scalar particles such as the two-Higgs doublet model and
leptoquark models. As a byproduct of our analysis, we correct
two errors appearing in [25]: (1) we eliminate two unhysi-
cal contributions to the overlap integrals (denoted by τ (2,3))
and (2) we provide a corrected expression and correspond-
ing numerical result for the effective one-nucleon interaction
resulting from the average over the Fermi gas model. We
also develop a new method to include the momentum de-
pendence of the scalar form factor in the overlap integrals.
With these results at hand, we assess the NLO contributions
to the conversion process and discuss the current hadronic
and nuclear uncertainties. We discuss the prediction of this
scalar-dominance model for the ratio of μ → eγ over μ →
e conversion in 27Al and for the ratio of conversion rates
in different target nuclei. Finally, we apply the analysis
to a simple model in which CLFV is mediated by CLFV
Yukawa couplings of the SM Higgs, which realizes the current
setup.

The paper is organized as follows. In Sec. II we set up
the EFT framework, starting from quark-level interactions and
matching to nucleon-level interactions. In Sec. III we present
the results for the overlap integrals and the μ → e conversion
rate, including NLO chiral effects. In Sec. IV we discuss the
implication for scalar-mediated CLFV first in the EFT setup
and subsequently in a model with “minimal” Higgs-mediated
CLFV, i.e., an extension of the standard model in which the

only new interactions are CLFV Yukawa couplings of the
Higgs to leptons. We present our conclusions in Sec. V and
relegate some technical details to the Appendices.

II. EFFECTIVE INTERACTIONS: FROM
QUARKS TO NUCLEONS

We assume in this work that the BSM physics responsible
for CLFV originates at energies above the electroweak scale.
In this case contributions from any BSM physics are captured
by effective operators expressed in terms of SM fields, with
appropriate couplings that contain information about the un-
derlying model; this is the SM-EFT framework. We restrict
our attention to a particular class of SM-EFT operators medi-
ating CLFV transitions, namely the ones mediated by heavy
scalar particles, including the SM Higgs itself. As our goal
is to assess the uncertainties in scalar-mediated CLFV, we
take as starting point below the electroweak scale the follow-
ing effective Lagrangian (for a complete set of operators see
Refs. [16,17]):

Leff = − 1

�2

∑
α=L,R

[
CDα mμ ēσλνPαμ Fλν

+
∑

q=u,d,s,c,b,t

C(q)
Sα GF mμmq q̄q ēPαμ

+ CGα GF mμαs Ga
λνGa λν ēPαμ + H.c.

]
, (1)

where Fμν is the field strength of the photon, PL,R = (1 ∓
γ5)/2 are the chirality projectors, � represents the new
physics scale, and the Wilson coefficients CDα , C(q)

Sα are di-
mensionless.

With this normalization, the chirality flip in lepton and
quark bilinears is accompanied by a muon or a quark mass
insertion, respectively.1 This choice comes without loss of
generality and simplifies many intermediate steps in the anal-
ysis. Finally, the factors of mq and αs multiplying the quark
scalar bilinears and the gluonic operator ensure that the
corresponding Wilson coefficients do not run under QCD
renormalization. After integrating out the heavy quarks, at the
GeV scale the effective Lagrangian takes the form of Eq. (1),
with q = u, d, s and [30]

CGα → CGα − 1/(12π )
∑

Q=c,b,t

C(Q)
Sα . (2)

The scalar quark operators in Eq. (1) induce single- and
multi-nucleon momentum-dependent operators at low-energy,
which eventually lead to nuclear transitions. The form of one-
and two-nucleon operators has been derived to NLO in both
SU(3) ChPT [31] and SU(2) ChPT [24,25,32,33], and we will
work here in the SU(2) case. Making the identifications (recall
α ∈ {L, R} is a chirality label for the lepton bilinear appearing

1The scalar interactions have an additional factor GF mμmq com-
pared to the definition in [25].
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in the scalar operators)

〈N (k′)|C(u)
Sα muūu + C(d )

Sα md d̄d |N (k)〉 → N̄ ′ J (1)
ud,α

(q) N, (3a)

〈N (k′
1)N (k′

2)|C(u)
Sα muūu + C(d )

Sα md d̄d |N (k1)N (k2)〉 → N̄ ′
1N̄ ′

2 J (2)
ud,α

(q1, q2) N1N2, (3b)

〈N (k′)|C(s)
Sα mss̄s |N (k)〉 → N̄ ′ J (1)

s,α (q) N, (3c)

〈N (k′)|CGααsG
a
λνGa λν |N (k)〉 → N̄ ′ J (1)

G,α (q) N, (3d)

〈N (k′
1)N (k′

2)|CGααsG
a
λνGa λν |N (k1)N (k2)〉 → N̄ ′

1N̄ ′
2 J (2)

G,α (q1, q2) N1N2, (3e)

where q = k′ − k, qi = k′
i − ki and N denotes the nonrelativistic spinors for the nucleon doublet, one finds that the hadronic

currents are expressed by the Wilson coefficients in Eqs. (1), (2), and (5) and hadronic parameters in Eq. (8) [24,32,33]:

J (1)
ud,α

(q) =
[
σπN − 3m3

πg2
A

64π f 2
π

F
(
q2/m2

π

)]
C(0)

Sα − δmN

4
τ3 C(1)

Sα , (4a)

J (2)
ud,α

(q1, q2) = −g2
Am2

π

4 f 2
π

σ1 · q1 σ2 · q2(
q2

1 + m2
π

)(
q2

2 + m2
π

)τ1 · τ2 C(0)
Sα , (4b)

J (1)
s,α (q) = (σs − σ̇sq2)C(s)

Sα , (4c)

J (1)
G,α (q) = −8π

9
CGα

(
mN −

[
σπN − 3m3

πg2
A

64π f 2
π

F
(
q2/m2

π

)]+ δmN

2
τ3 − (σs − σ̇sq2),

)
(4d)

J (2)
G,α (q1, q2) = −8π

9
CGα

g2
Am2

π

4 f 2
π

σ1 · q1 σ2 · q2(
q2

1 + m2
π

)(
q2

2 + m2
π

)τ1 · τ2. (4e)

The isoscalar and isovector combinations of scalar Wilson
coefficients are given by

C(0)
Sα = C(u)

Sα (1 − ε) + C(d )
Sα (1 + ε)

2
, (5a)

C(1)
Sα = C(u)

Sα

(
1 − 1

ε

)
+ C(d )

Sα

(
1 + 1

ε

)
. (5b)

The single-nucleon scalar form factor is given by

F (x) = 2 + x√
x

arccot

(
2√
x

)
− 1 (6)

	 5

12
x − 7

240
x2 + · · · . (7)

We note that the first order Taylor expansion provides a
representation of the full expression accurate to 2% for
x � 1 and to 5% for 1 < x � 2. This means that it is
quite safe to use the linear term in our nuclear analysis. In
Appendix A, we show how the momentum-transfer expansion
corresponds to derivative operators acting on nucleon density
functions.

The hadronic scalar current defined in this way carries un-
certainties due to both input parameters and higher order terms
in the chiral expansion. Higher order terms in the momentum-
independent part of the current are effectively resummed by
using the physical values of σπN , σs, and δmN . The hadronic

inputs entering Eqs. (4) are defined as

σπN = 1

2
〈N | (mu + md )(ūu + d̄d ) |N〉, (8a)

σs = 〈N | mss̄s |N〉, (8b)

ε = md − mu

md + mu
, (8c)

δmN = (mn − mp)strong. (8d)

For the sigma term, we use as baseline input the analysis
of the Roy-Steiner equations of Ref. [34], namely σπN =
59.1(3.5) MeV. This value is in tension with the (currently)
more uncertain lattice QCD calculations (see [35] and ref-
erences therein) which indicate σπN = 65(13) MeV (with
dynamical charm quark [36]) and σπN = 40(4) MeV (no
dynamical charm quark [37–39]). However, the recent lat-
tice QCD analysis of Ref. [40] suggests that inclusion of
excited state effects reconciles the tension, so we shall use
the input from Ref. [34]. For the strange sigma term we
use the lattice QCD average [35] σs = 41(9)MeV (with dy-
namical charm [41]), while for the slope we will take σ̇s =
0.3(2) GeV−1 [42]. For the strong-isospin contribution to the
nucleon mass splitting we take the lattice QCD determination
δmN = 2.32(17) MeV from Ref. [43], consistent with the
earlier lattice calculation of Ref. [44]. Finally, we take ε =
0.365(23) from the Flavour Lattice Averaging Group (FLAG)
average [35].

Higher chiral orders in the momentum dependence of the
single-nucleon form factor are expected to be sizable. In fact,
a comparison of the NLO heavy baryon ChPT prediction [45]

055504-3



VINCENZO CIRIGLIANO et al. PHYSICAL REVIEW C 105, 055504 (2022)

with a recent dispersive determination [42] indicates that the
NLO result accounts for about 60% of the dispersive result.

Finally, note that the one- and two-nucleon amplitudes
μN (k) → eN (k′) and μN (k1)N (k2) → eN (k′

1)N (k′
2) take

the form

A(1) = −GF mμ

�2

∑
α=L,R

N̄ ′J (1)
α N 〈ēPαμ〉, (9a)

A(2) = −GF mμ

�2

∑
α=L,R

N̄ ′
1N̄ ′

2J (2)
α N1N2 〈ēPαμ〉, (9b)

where 〈ēPαμ〉 denotes the leptonic amplitude, and the phys-
ically relevant combinations of hadronic scalar currents
are

J (1)
α = J (1)

ud,α
+ J (1)

s,α + J (1)
G,α, (10a)

J (2)
α = J (2)

ud,α
+ J (2)

G,α, (10b)

which take the form

J (1)
α (q) =

[
σπN − 3m3

πg2
A

64π f 2
π

F
(
q2/m2

π

)](
C(0)

Sα + 8π

9
CGα

)
− δmN

4
τ3

(
C(1)

Sα + 16π

9
CGα

)

+ (σs − σ̇sq2)

(
C(s)

Sα + 8π

9
CGα

)
− 8π

9
CGαmN , (11a)

J (2)
α (q1, q2) = −g2

Am2
π

4 f 2
π

σ1 · q1 σ2 · q2(
q2

1 + m2
π

)(
q2

2 + m2
π

)τ1 · τ2

(
C(0)

Sα + 8π

9
CGα

)
. (11b)

If the gluonic operator is sourced only by integrating out the
heavy quarks, one has the relation

8π

9
CGα = − 2

27

∑
Q=c,b,t

C(Q)
Sα . (12)

The NLO two-nucleon contribution can be reduced to
an effective single-nucleon operator by averaging the two-
nucleon operator over a Fermi gas model of the target nucleus.
In this approximation, the effect of J (2)

α is captured by the shift

σπN → σπN − 3g2
Am2

πkF

64π f 2
π

f SI
eff (13)

in the first term in J (1)
α in Eq. (11a), where kF is the Fermi

momentum in the target nucleus and f SI
eff is the effective

single-nucleon coupling resulting from averaging over the
Fermi gas model. Although this procedure was carried out in
[25], an error in that calculation resulted in incorrect results
for the effective single-nucleon form factors f SI (q̄, k̄) and
f SD(q̄, k̄) which propagated to all values obtained from these
form factors. In Appendix C, we present the corrected expres-
sions. The corrections significantly affect the values obtained
after momentum-averaging, reducing the overall magnitudes
by roughly a factor of 2 and leading to f SI

eff = 0.43+0.03
−0.22 and

f SD
eff = 0.43+0.03

−0.22.
As discussed in Ref.[25], the effective coupling f SI

eff ob-
tained through the Fermi gas average is likely an overestimate
of the underlying two-nucleon contribution. This expectation
is based on a study of nuclear anapole moments [47] where,
in addition to the Fermi gas average, nuclear shell model
wave functions were used to directly evaluate a variety of
two-nucleon currents—none of them the operator of present
concern—in the nuclei 133Cs and 205Tl. Across all the cur-
rents tested, the Fermi gas average tended to overestimate the
two-nucleon contribution by 2–3 times compared to the shell
model.

To verify that this behavior persists in the present case, we
evaluated the two-nucleon operator using shell model wave

functions for two of our nuclei of interest, 27Al and 48Ti.
Details of this calculation are presented in Appendix B. Fully
correlated shell model wave functions were generated for 27Al
and 48Ti using the configuration-interaction code BIGSTICK

[48,49] and the USDB 1d5/2–2s1/2–1d3/2 [50] and GXPF1
1 f7/2–2p3/2–2p1/2–1 f5/2 [51] interactions, respectively. Har-
monic oscillator bases with oscillator parameters b of 1.84
and 1.99 fm for Al and Ti, respectively, were employed in
the calculations.

The effective one-body couplings which reproduce the
shell model results are given in Table I. We find that the Fermi
gas average estimate is ≈2–3 times larger than the shell model

TABLE I. Input parameters and resulting values of the effective
one-body operator coupling parameter f SI

eff for the four nuclei of inter-
est: qT is the magnitude of the three-momentum transfer, computed
via Eq. (C6), kF is the nuclear Fermi momentum obtained by linear
interpolation in A between the values measured in [46], Rp (Rn) and
a are the parameters of the proton (neutron) density profile, f SI

eff,FGA

is the value of the spin-independent form factor obtained via the
Fermi gas average, and f SI

eff,NSM is the value implied by the nuclear
shell model calculation (without additional correlation function). The
upper uncertainty of f SI

eff,FGA is due to the error incurred in the mo-
mentum average over k̄ and the uncertainty in the Fermi momentum
(±5 MeV) whereas the lower uncertainty reflects the expectation that
the FGA result tends to overestimate the strength of the operator by
roughly a factor of 2. See discussion in Appendices B and C for more
details.

27
13Al 48

22 Ti 197
79 Au 208

82 Pb

qT (MeV) 104.97 104.27 95.61 95.10
kF (MeV) 238 255 265 265
Rp (fm) 3.05 3.843 6.55 6.624
Rn (fm) 3.18 ± 0.19 3.843 6.83 ± 0.1 6.93 ± 0.09

a (fm) 0.535 0.588 0.522 0.549
f SI
eff,FGA 0.43+0.03

−0.22 0.49+0.03
−0.25 0.55+0.03

−0.28 0.55+0.03
−0.28

f SI
eff,NSM 0.18 0.18
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estimate, in good agreement with the anapole study. Although
we did not carry out the shell model calculation for the heavy
nuclei 197Au and 208Pb, given that the anapole study observed
the overestimation in 205Tl, it is likely that a similar result
would be found for 197Au and 208Pb in our case.

The shell model results may still represent an overestima-
tion of the two-nucleon contribution. The shell model wave
functions that we employ are constructed in very soft Hilbert
spaces which lack the high-momentum modes necessary to
properly resolve the strong repulsion of two nucleons at short
distance. We find that the two-nucleon operator is sensitive to
the short-range nucleon-nucleon physics. Introducing an ad
hoc short-range correlation function [52] in the shell model
calculation further reduces the estimated strength of the two-
nucleon operator by ≈50%. For this reason, the value of f SI

eff
obtained from the shell model calculation can likely be con-
sidered as an upper limit on the strength of the two-nucleon
contribution. A complete treatment involving the introduction
of effective operators and wave function renormalization to
account for the truncated shell model space is beyond the
scope of this paper.

III. TRANSITION RATE INCLUDING NLO CORRECTIONS

The rate of the coherent μ → e conversion process de-
pends on the behavior of the bound muon and outgoing
electron. The lepton wave functions are obtained by solving
the Dirac equation [15,16,53,54],

W ψ =
[
−iγ5σr

(
∂r + 1

r
− β

r
K

)
+ V (r) + mβ

]
ψ, (14)

with

γ5 =
(

0 1
1 0

)
, β =

(
1 0
0 −1

)
, (15)

σr =
(

σ · r̂ 0
0 σ · r̂

)
, (16)

K =
(

σ · l + 1 0
0 −(σ · l + 1)

)
. (17)

Here, the energy, potential, and mass of the leptons are given
by W, V (r), and m. σ are the Pauli matrices, r̂ is a unit vector
in the radial direction, and l is the orbital angular momentum
defined by l = −ir × ∇. We define the wave functions as

ψ =
(

gκ (r)χμ
κ (θ, φ)

i fκ (r)χμ
−κ (θ, φ)

)
, (18)

where μ and κ represent the eigenvalues of the z component of
the total angular momentum Jz and K , respectively. The two-
component spinors χμ

κ are the spin-angular functions, with the
properties

(σ · l + 1)χμ
κ = −κχμ

κ , (19)

Jzχ
μ
κ = μχμ

κ , (20)∫ 1

−1
d cos θ

∫ 2π

0
dφ χμ†

κ χ
μ′
κ ′ = δμμ′

δκκ ′ . (21)

TABLE II. Capture rate for 27
13Al, 48

22Ti, 197
79 Au, and 208

82 Pb. The unit
is neV.

27
13Al 48

22Ti 197
79 Au 208

82 Pb

�capt (neV) 0.463 1.705 8.603 8.853

The initial muon state corresponds to the ground state of the
muonic atom, implying κμ = −1 . On the other hand, the
outgoing electron has two states of κe = ±1. Normalization
of the bound muon state is defined by∫

d3x ψ (μ)†
κ,μ (x)ψ (μ)

κ ′μ′ (x) = δμμ′δκκ ′ . (22)

Neglecting nuclear recoil, the final state electron carries en-
ergy W = mμ − Bμ, where Bμ is the binding energy of the 1s
muonic atom. Its wave function is normalized as∫

d3x ψ (e)†
κ,μ (x)ψ (e)

κ ′μ′ (x) = 2πδ(W − W ′)δμμ′δκκ ′ . (23)

Inserting the expressions of the wave functions into the the
spherical polar form of the Dirac equation, one can obtain

d

dr

(
g
f

)
=
( − κ+1

r W − V (r) + m
−[W − V (r) − m] κ−1

r

)(
g
f

)
.

(24)

Utilizing the shoot-and-match procedure [55], we solve these
coupled equations numerically.

For μ → e conversion, the branching ratio is defined by
the conversion-to-capture ratio

Bμ→e ≡ �conv(μ− + (A, Z ) → e− + (A, Z ))
�capt(μ− + (A, Z ) → νμ + (A, Z − 1))

, (25)

where A and Z are mass and atomic numbers, respectively.
The standard muon capture rates �capt ≡ κcaptm5

μ/v4 for the
nuclei of interest are listed in Table II. Taking into account all
the spin configurations of the initial muon and final electron
states, one can express the branching ratio as

Bμ→e =
( v

�

)4 1

κcapt
(|τ (+1)|2 + |τ (−1)|2), (26)

in terms of dimensionless overlap integrals

τ (−1) = (CDL + CDR)τ (−1)
D + τ

(−1)
S , (27)

τ (+1) = (CDL − CDR)τ (+1)
D − τ

(+1)
S , (28)

where the upper index indicates the quantum number κe. The
overlap integrals for the dipole operator are given by

τ
(−1)
D = 1

m3/2
μ

∫
dr r2[−E (r)]

(
g(e)

−1 f (μ)
−1 + f (e)

−1 g(μ)
−1

)
, (29)

τ
(+1)
D = i

m3/2
μ

∫
dr r2[−E (r)]

(
g(e)

+1g(μ)
−1 − f (e)

+1 f (μ)
−1

)
. (30)

For the contributions from the scalar operator, we split the
overlap integrals into two contributions: momentum-transfer
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independent (τ (±1)
ρ ) and dependent (τ (±1)

f ) terms

τ
(−1)
S = 1

2
GF m2

μ

∑
N=p,n

[(
Cρ

NL + Cρ
NR

)
τ (−1)
ρN

+ (
C f

NL + C f
NR

)
τ

(−1)
fN

]
, (31a)

τ
(+1)
S = 1

2
GF m2

μ

∑
N=p,n

[(
Cρ

NL − Cρ
NR

)
τ (+1)
ρN

+ (
C f

NL − C f
NR

)
τ

(+1)
fN

]
, (31b)

where Cρ
Nα and C f

Nα correspond to the constant and momentum-dependent parts of the nucleon scalar form factor, respectively:

mμCρ
Nα =

(
σπN − 3g2

Am2
π

64π f 2
π

kF f SI
eff

)(
C(0)

Sα + 8π

9
CGα

)
∓ δmN

4

(
C(1)

Sα + 16π

9
CGα

)

+ σs

(
C(s)

Sα + 8π

9
CGα

)
− 8π

9
CGαmN , (32a)

mμC f
Nα = −3g2

Am3
π

64π f 2
π

5

12

(
C(0)

Sα + 8π

9
CGα

)
− σ̇sm

2
π

(
C(s)

Sα + 8π

9
CGα

)
. (32b)

The nucleon-level couplings Cρ, f
Nα are dimensionless, and the

minus (plus) sign in the second term of Cρ
Nα is for proton

(neutron). The dimensionless overlap integrals τ (±1)
ρN

and τ
(±1)
fN

are defined as

τ
(−1)
ρN ( fN ) = 1

m5/2
μ

∫
dr r2

(
g(e)

−1g(μ)
−1 − f (e)

−1 f (μ)
−1

)
ρN ( fN ), (33)

τ
(+1)
ρN ( fN ) = i

m5/2
μ

∫
dr r2

(
f (e)
+1 g(μ)

−1 + g(e)
+1 f (μ)

−1

)
ρN ( fN ), (34)

where ρN (r) is the nucleon density and the function fN (r) is
given by2

fN (r) = − 1

m2
π

(
∂2

∂r2
+ 2

r

∂

∂r

)
ρN (r). (35)

In our analysis, we employ the two-parameter Fermi model
for the proton and neutron densities,

ρN (r) = ρ0

1 + e(r−RN )/a
, (36)

the parameters of which are given in [56] for Al, Au, and Pb
and in [57] for Ti. We reproduce these parameters in Table I.
The nucleon density profiles for Al, Au, and Pb include a
separate determination of the neutron density from measure-
ments of pionic atoms, whereas for Ti we have only the proton
density, determined from electron scattering. In this case, we
assume Rn = Rp.

It should be noted that, assuming me = 0, one can obtain
relations between two electron states, g(e)

−1 = α f (e)
+1 and f (e)

−1 =
βg(e)

+1, with α/β = −1. We evaluate overlap integrals taking

2We have numerically checked that the fourth derivative term is
roughly two orders of magnitude smaller than the second derivative.
Therefore, we neglect higher-order derivatives in fN (r).

α = −1 and β = 1, leading to τ
(+1)
D = iτ (−1)

D and τ
(+1)
S =

−iτ (−1)
S in the massless limit.3

Table III shows the results of the dimensionless overlap in-
tegrals τ

(±1)
D , τ (±1)

ρN
, and τ

(±1)
fN

for 27
13Al, 48

22Ti, 197
79 Au, and 208

82 Pb.
We find that the values of the momentum-dependent overlap
integrals τ fN for Al and Ti are roughly a factor of 2/3 smaller
than the corresponding momentum-independent integrals τρN .
In heavier nuclei, τ fN is further suppressed relative to τρN .

In the case of nonzero CLFV couplings to u and d quarks,
we can compare the LO contributions with those from the
NLO interactions by defining the following quantities:

ILO(±)
N ≡ σπN mμ τ (±1)

ρN
, (38)

INLO(±)
N,loop ≡ −3g2

Am3
πmμ

64π f 2
π

5

12
τ

(±1)
fN

, (39)

INLO(±)
N,2N ≡ −3g2

Am2
πkF mμ

64π f 2
π

f SI
eff τ (±1)

ρN
. (40)

The resulting values for the nuclei of interest are presented
in Table IV, where input parameters such as σπN and f SI

eff
are fixed at their central values. As discussed in [25], the
NLO nucleon interactions bring negative relative contribu-
tions compared to the LO value, thereby reducing the overall
μ → e decay rate. The NLO loop contribution to the am-
plitude is less than 5% of the LO contribution, while the
two-nucleon interactions roughly amount to 10%. If we as-
sume C(1)

Sα /C(0)
Sα = O(1), then isospin-breaking terms give only

1% corrections to ILO
N since (δm/4)/σπN ≈ 0.01. This as-

sumption, however, may be violated in some underlying new
physics model.

In the case of the strange quark, the NLO correction arises
only from the momentum-dependent term, τ fN . Taking the

3The overlap integrals defined in [16] are obtained by scaling τ
(−1)
D

and τ (−1)
ρN

as

D = 4√
2

m5/2
μ τ

(−1)
D , S(N ) = 1

2
√

2
m5/2

μ τ (−1)
ρN

. (37)

055504-6



NEXT-TO-LEADING ORDER SCALAR CONTRIBUTIONS TO … PHYSICAL REVIEW C 105, 055504 (2022)

TABLE III. The dimensionless overlap integrals τ
(±1)
D , τ (±1)

ρN
, and

τ
(±1)
fN

computed for the target nuclei 27
13Al, 48

22Ti, 197
79 Au, and 208

82 Pb.

27
13Al 48

22Ti 197
79 Au 208

82 Pb

τ
(−1)
D 0.0126 0.0292 0.059 0.057

−iτ (+1)
D 0.0126 0.0293 0.059 0.057

τ (−1)
ρp

0.043 0.099 0.148 0.14

τ (−1)
ρn

0.045 0.117 0.161 0.148

τ
(−1)
fp

0.029 0.067 0.030 0.022

τ
(−1)
fn

0.030 0.079 0.007 −0.0061

−iτ (+1)
ρp

−0.043 −0.099 −0.147 −0.138

−iτ (+1)
ρn

−0.045 −0.116 −0.159 −0.147

−iτ (+1)
fp

−0.029 −0.067 −0.029 −0.022

−iτ (+1)
fn

−0.030 −0.079 −0.0067 0.0063

central value of σ̇s, we see that the NLO term could reduce the
strange-quark contribution to the CLFV amplitude by 10% in
Al and Ti, while the corrections are less than a few % in Au
and Pb. Assuming equivalent Wilson coefficients C(0)

Sα = C(s)
Sα ,

the total (LO + NLO) contribution to the CLFV amplitude
from the strange quark is reduced by ≈30% in Al and Ti and
≈20% in Au and Pb, relative to the contribution from u, d
quarks.

In contrast to the light quarks, the NLO contributions to the
gluonic coupling CGα are less than 1% relative to the leading
term which is dominated by the nucleon mass. Recalling the
relation between the heavy quark (q = c, b, t ) Wilson coef-
ficients and the gluonic coupling, Eq. (2), we find that the
prefactor of the heavy quark Wilson coefficients in Eq. (32)
is ≈20% larger than the prefactor of the isoscalar coupling

TABLE IV. The LO and NLO contributions [defined in
Eqs. (38)–(40)] in units of MeV2. The two-nucleon contribution
INLO(±)
N,2N is computed with the effective one-body operator strength

obtained via Fermi gas average, f SI
eff,FGA (see Table I).

27
13Al 48

22Ti 197
79 Au 208

82 Pb

ILO(−)
p 268.49 618.10 924.93 871.15

INLO(−)
p,loop −9.65 −22.15 −9.79 −7.23

INLO(−)
p,2N −25.2 −70.84 −123.66 −116.47

ILO(−)
n 280.16 730.48 1003.3 923.59

INLO(−)
n,loop −10.01 −26.18 −2.31 2.0

INLO(−)
n,2N −26.30 −83.72 −134.13 −123.48

−iILO(+)
p −267.22 −615.24 −918.62 −864.55

−iINLO(+)
p,loop 9.61 22.05 9.69 7.14

−iINLO(+)
p,2N 25.08 70.51 122.81 115.58

−iILO(+)
n −278.83 −727.10 −995.90 −915.92

−iINLO(+)
n,loop 9.96 26.06 2.22 −2.06

−iINLO(+)
n,2N 26.18 83.34 133.14 122.45

FIG. 1. Uncertainty budget for the overlap integrals. We show
the dependence of τ

(−1)
S /τ

(−1)
S,c in Al on each parameter σπN , σs, f SI

eff

[denoted by 2N( f SI
eff )] and one-body form factors for (u, d ) and s

[represented by 1N FF (u, d) and (s)]. Only right-handed down-type
operators are nonzero in the upper plot, while the lower plot takes
all the right-handed operators to be nonvanishing. In both cases,
the nonzero Wilson coefficients are assumed to be equal; that is,
C (d )

SR = C (s)
SR = C (b)

SR in the upper plot, and similarly in the lower plot.
τ

(−1)
S,c is obtained by taking central values of input parameters.

C(0)
Sα . Therefore in cases where the CLFV quark couplings

are independent of flavor, such as the Higgs-mediated model
considered in Sec. IV, the heavy quarks give the largest con-
tribution to the CLFV amplitude (ignoring the intrinsic gluon
coupling and the dipole contribution), though all quark flavors
contribute at a similar order.

Figure 1 explores the dependence of the ratio τ
(−1)
S /τ

(−1)
S,c

on the two input hadronic parameters σπN and σs as well as the
parameters of the NLO nucleon interactions, as discussed in
Sec. II.4 τ

(−1)
S,c is estimated by fixing all the parameters at their

central values. Each bar in the plot is obtained by varying one
parameter (indicated on the right) in the 1 σ range while the
rest of the parameters are fixed at the central values. The upper
panel presents the case with nonzero right-handed down-type
operators, while the lower panel includes all right-handed
operators.

4Since the errors in ε, δm, and kF are negligible, we do not include
them in our analysis.
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The first two bars in each panel depict the effect of varying
σπN and σs. The third bar takes into account the error of the
effective one-body coupling f SI

eff in Table I. The lower uncer-
tainty reflects the fact that the central value of f SI

eff obtained
from the Fermi gas average is likely too large by a factor
of 2. We find a corresponding increase in the value of τ

(−1)
S

by ≈1–2 % relative to τ
(−1)
S,c when f SI

eff is reduced by half.
The last two bars correspond to the NLO loop contributions,
which are denoted as 1N FF (form factor). For the light quark
contributions defined by 1N FF (u, d), we assign a 50% error
to the value of INLO

N,loop. On the other hand, 1N FF (s) represents
the variation of σ̇s.

Overall, the variation of the ratio in the lower plot is small
compared to the upper plot. This is because, as discussed in
[24], the case has two additional heavy-quark contributions,
leading to less impacts from the parameters that we currently
focus on. We find that the scalar contribution is dominantly
affected by the uncertainty in σs, which roughly amounts to
±7% (3%) for the Cd,s,b

SR (Cq=all
SR ) = 0 case. Varying all of these

parameters, we see that the deviations from the central value
of τ

(−1)
S,c are roughly ±10% and ±5% for the upper and lower

cases, respectively.
The relative importance of the NLO contributions can

depend significantly on the underlying CLFV physics. In par-
ticular, when CLFV primarily arises from light quark scalar
couplings the NLO contribution can in fact be larger than
the LO uncertainty. We illustrate this with the following two
examples:

(i) If only the two lightest quarks contribute, C(u)
Sα ≈

C(d )
Sα = O(1) and C(q=s,c,b,t )

Sα = 0, then the 1σ uncer-
tainty on the LO result for Bμ→e(Al) is ±13%,
whereas the NLO contribution reduces the LO branch-
ing ratio by roughly 25%. If the strange quark
contributes as well, C(s)

Sα = O(1), then the LO un-
certainty on Bμ→e(Al) is ±19% while the NLO
contribution is 23%. In this case, the impact of LO
strange quarks is comparable in magnitude to that of
the LO light quark uncertainties as well as the NLO
light quark contribution.

(ii) Assuming C(q)
Sα ≈ 1/yq in both cases, i.e., nonzero

C(q=u,d )
Sα and C(q=u,d,s)

Sα , we see that the negative NLO
contributions are ≈25%, which is consistently larger
than the LO uncertainties ≈ ±13%. This is because
the two light-quark contributions dominate the conver-
sion process if the scalar operators are generated with
mqC(q)

Sα = O(1).

This analysis implies two important take-home messages:
(1) the overall uncertainty is dominated by the LO amplitude,
in particular by the sigma terms; (2) the central value of
the NLO corrections could be larger than the uncertainty on
the LO term if light quarks (q = u, d) have nonzero LFV
couplings, making the analysis of NLO effects phenomeno-
logically relevant. As we find in the next section, the relative
significance of the NLO contributions can be diminished in
scenarios with large contributions from either gluonic cou-
plings generated by heavy quarks or dipole operators.

It should be noted that in our analysis we have adopted a
central value and uncertainty for the two-nucleon contribution
based on the Fermi gas model. In light of the nuclear shell
model results and their strong dependence on short-range
correlations, it is at present impossible to rigorously quantify
the uncertainty in the two-nucleon sector. Nonetheless, it is
reasonable to regard the values considered here as an upper
limit on the relative strength of the two-body contribution (and
in turn the NLO contribution).

IV. PHENOMENOLOGY IMPLICATIONS

We next discuss some phenomenological implications of
the improved analysis of transition rates.

A. Dipole-scalar dominance model

First, we consider a restricted EFT setup in which only
dipole and scalar operators are generated, assuming that the
ratio CD/CS is characterized by a real parameter r. As in
Ref. [17], we assume CDR = (r/8e)CSR with CSR = C(d )

SR =
C(s)

SR = C(b)
SR , while the rest of the operators are zero. This

scenario may be explicitly realized in some regions of the R-
parity conserving supersymmetry (SUSY) seesaw parameter
space [58] (large tan β and relatively low “heavy” Higgs sec-
tor) and within R-parity violating SUSY [59–62]. The nonzero
dipole operators generate the μ → eγ process as well, whose
branching ratio is simply expressed as

Bμ→eγ ≡ �(μ → eγ )

�(μ → eνμν̄e)
(41)

= 96π2
( v

�

)4
(|CDR|2 + |CDL|2). (42)

Figure 2 shows Bμ→e(Al)/Bμ→eγ in the upper plot and
Bμ→e(Ti)/Bμ→e(Al) in the lower plot. In this parametrization,
the dominant contribution to the μ → e conversion switches
from the scalar operator to the dipole one around r ≈ 10−6.
The band in the upper plot is obtained by taking the 1σ range
of the input parameters (σπN , σs, σ̇s, ε, δm), the uncertainty in
f SI
eff from Table I, and a 50% error in the one-body form factor.

For example, at r = 10−7 where the scalar operator dominates
Bμ→e(Al), the uncertainty in Bμ→e(Al)/Bμ→eγ corresponds
to ±20%, which can be understood from the analyses of
τ

(−1)
S /τ

(−1)
S,c in the previous section. On the other hand, taking

the ratio of the conversion processes between two nuclei, one
can see that the uncertainty becomes negligible as seen in the
lower plot. Here, we take the central values of f SI

eff for Al
and Ti, since we expect that the uncertainty in the effective
one-body coupling is correlated across all isotopes. We see
differences of a few % from the results in [17].

However, it should be noted that the ratio
Bμ→e(Ti)/Bμ→e(Al) is affected by the uncertainty in the
overlap integrals due to the neutron densities. As given in
Table I, the uncertainty in the neutron density parameter Rn

determined from pionic atom experiments is roughly 6% in
27Al. This propagates to a 5% error in the neutron overlap
integrals for Al. For Ti, in the absence of a direct measurement
of the neutron density, we employ the same density profile
as the measured proton density in Ti. Therefore one would
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FIG. 2. Ratios Bμ→e(Al)/Bμ→eγ (top) and Bμ→e(Ti)/Bμ→e(Al)
(bottom) against the parameter r = (8e)CDR/C (q=d,s,b)

SR .

expect a significantly larger uncertainty on the Ti overlap
integrals stemming from the neutron density; for example, in
the nearby nucleus 56Fe—for which a measurement of the
neutron density is available—the difference between using
a neutron density measured in pionic atoms compared to
assuming identical density profiles for protons and neutrons
results in ≈7% change in the neutron overlap integrals.
Accounting for this discrepancy, as well as the uncertainty
in the neutron profile parameters, we assume an 8% error
on the Ti neutron overlap integrals below in Eq. (46).
None of these overlap integral uncertainties are reflected in
Figure 2, although we expect these errors to be relevant in the
scalar-dominated region where r � 10−5.

B. CLFV Yukawa couplings

Finally, we apply our analysis to the Higgs-mediated
CLFV model, where the following Yukawa interactions gen-
erate μ → e transitions:

L = −YeμēPRμh − Yμeμ̄PReh + H.c. (43)

These Yukawa interactions induce μ → eγ at one- and two-
loop level as discussed in [63].5 On the other hand, the scalar
operators arise from a tree-level process mediated by the

5For the two-loop contributions, we follow the expressions in
[64,65].

FIG. 3. Current and prospective limits on Yeμ and Yμe in
the CLFV Yukawa model. The gray line is the upper limit
from Bμ→e(Au) < 7 × 10−13, and the orange region is excluded
by Bμ→eγ < 4.2 × 10−13. The expected sensitivities at the next-
generation experiments are depicted by the black dashed line for
Bμ→e(Al) < 8 × 10−17 and the gray dash-dotted line for Bμ→eγ <

6 × 10−14, showing the future discovery window.

Higgs particle. The Wilson coefficients are given by

1

�2
GF mμvC(q)

SR = − 1

m2
h

Yeμ, (44)

1

�2
GF mμvC(q)

SL = − 1

m2
h

Yμe, (45)

where the Higgs vacuum expectation value v = 246 GeV and
the Higgs mass mh = 125 GeV. Note that C(q)

Sα in this model
becomes independent of the label q. Having the parametriza-
tion of CD = r/(8e)CS that we employ in the previous section,
we obtain r = 3.4 × 10−6 in this model.

Figure 3 depicts bounds on the CLFV Yukawa couplings
Yeμ and Yμe. The gray line represents the upper limit on
the two couplings from Bμ→e(Au) < 7 × 10−13. The bound
originating from μ → eγ is presented by the orange region,
which corresponds to Yeμ,Yμe � 10−6. As shown by the black
dashed line, the next-generation μ → e experiments will pro-
vide a sensitivity to Yeμ and Yμe that is stronger than MEG
II [7] and ten times stronger than current limits.6 The uncer-
tainty resulting from the hadronic input parameters and NLO
interactions is not visible on the scale of the plot.

6To illustrate our point, here we take Bμ→e(Al) < 8 × 10−17 for
Mu2e, based on Ref. [66], which is slightly weaker than the COMET
expected 90% CL upper limit 2.6 × 10−17 [11].
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The plurality of probes, namely μ → eγ and μ → e
conversion in possibly more than one target nucleus, pro-
vides an opportunity to test underlying new physics CLFV
mechanisms. The minimal Higgs-mediated CLFV scenario
considered here produces at low-energy a specific combi-
nation of scalar and dipole operators, which leads to the
following pattern of branching ratios:7

Bμ→e(Al)/Bμ→eγ = (8.7 ± 0.3) × 10−3, (46a)

Bμ→e(Ti)/Bμ→e(Al) = 1.5 ± 0.1. (46b)

Here, we assign a 5(8)% error to neutron overlap integrals
τρn and τ fn in Al (Ti). While the dominant uncertainty in
Bμ→e(Al)/Bμ→eγ arises from hadronic input parameters, the
ratio Bμ→e(Ti)/Bμ→e(Al) is primarily affected by the uncer-
tainties in neutron densities of Al and Ti whereas those of
the hadronic parameters are negligible. Our predictions with
quantified uncertainties offer a clean path towards testing the
Higgs-mediated CLFV scenario, in case of discovery in the
next-generation experiments.

V. CONCLUSIONS

In this paper we have studied μ → e conversion in nuclei
within a class of models in which lepton flavor violation is
induced dominantly by the exchange of scalar particles, such
as the SM Higgs. We have estimated the μ → e conversion
rate in several nuclei of experimental interest, including NLO
effects in the one- and two-nucleon interactions in chiral ef-
fective theory. The one-nucleon effects involve the momentum
dependent scalar form factor, and we have developed an effi-
cient method to take into account the momentum dependence
in the overlap integrals. The two-nucleon terms are evaluated
both by reducing them to one-body terms via an average over a
Fermi gas model (as done in Ref. [25]) and within the nuclear
shell model. The two approaches provide a way to estimate the
uncertainty associated with the two-body NLO contribution.
In the process, we correct the result of Ref. [25], finding a
smaller effective one-body interaction and hence a smaller
impact on the μ → e conversion rates.

For the light-quark scalar operators, the NLO corrections
interfere destructively with the LO terms. At the amplitude
level, the NLO form-factor contribution is at the 5% level,
while the two-nucleon interactions amount to about 10%, with
a total NLO impact on the decay rates at the 20–30% level. We
provide an uncertainty budget for the conversion amplitude at
LO and NLO and find that the overall uncertainty is dominated
by the LO amplitude, in particular by the sigma terms. Impor-
tantly, we find that the central value of the NLO corrections
could be larger than the uncertainty on the LO term, making
the analysis of NLO effects phenomenologically relevant.

We studied the implications of our results for testing
scalar-mediated CLFV processes. For the phenomenologi-
cally interesting case of Higgs-mediated CLFV, in which
both scalar and dipole operators appear at low-energy, we
have shown that (i) in the next-generation experiments μ →

7The LO results are Bμ→e(Al)/Bμ→eγ = (9.0 ± 0.3) × 10−3 and
Bμ→e(Ti)/Bμ→e(Al) = 1.5 ± 0.1.

e conversion will have stronger sensitivity than μ → eγ to
the CLFV Yukawa couplings Yμe,eμ; (ii) ratios of branch-
ing ratios such as Bμ→e(Al)/Bμ→eγ and Bμ→e(Al)/Bμ→e(Ti)
can be predicted with quantified uncertainties. In particular,
Bμ→e(Al)/Bμ→eγ is affected by NLO corrections at the same
level as LO uncertainties. These ratios offer a clean path
towards testing the Higgs-mediated CLFV scenario in case of
discovery in the next-generation experiments.
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APPENDIX A: TRANSITION AMPLITUDE
IN THE PRESENCE OF MOMENTUM-DEPENDENT

ONE-BODY OPERATORS

Let us consider μ → e conversion mediated by a generic
scalar operator of the form

OL,R(x) = ē(x)PL,Rμ(x) q̄(x)q(x). (A1)

In the more commonly studied case of lepton scattering (elec-
tron or neutrino scattering), one typically uses the mode
expansion of the leptonic fields in terms of plane waves.
Later on, we will consider this case as a consistency check
on the formalism we use. However, it turns out that using
plane waves is not the most convenient choice for the problem
of μ → e conversion. In this case it is more convenient to
perform the mode expansion of the leptonic field in terms
of solutions to the Dirac equation in the Coulomb field of
the nucleus. The muon initial state corresponds to the 1s
hydrogen-like state, while the electron final state corresponds
to an outgoing wave in the continuum, with energy given by
the muon mass minus the binding energy Bμ.

The scalar Hamiltonian at low energy takes the form

ĤL,R = CL,R

∫
d3x ē(x)PL,Rμ(x) Ŝ(x), (A2)

where CL,R ≡ 1/�2
L,R are dimensionful Wilson coefficients

and Ŝ(x) is the hadronic realization of the quark scalar density.
In chiral EFT this operator contains terms like N̄N , π+π−,
etc. Its matrix element between free nucleon states takes the
form

〈p f | Ŝ(x) |pi〉 = eix·(p f −pi ) gS ((p f − pi )
2), (A3)
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where gS (q2) is the nucleon scalar form factor (for simplicity
we do not display isospin indices here and throughout the
discussion). In the regime we are working, we could further
Taylor expand the scalar form factor as follows:

gS (q2) = g0 + g2q2 + g4(q2)2 + · · · . (A4)

Ultimately, we wish to have a nonrelativistic realization
of the scalar density operator, to be inserted between nuclear
many-body wave functions. We denote this object by ˆ̂S(x) and
we determine its form by requiring that the matrix elements
within free one-nucleon states are the same in the two repre-
sentations. Explicitly,

〈p f | Ŝ(x) |pi〉 =
∫

d3x1 eix1·(pi−p f ) ˆ̂S(x; x1). (A5)

Using Eq. (A3) and the Taylor expansion of the form factor,
one can verify that the desired coordinate-space representa-
tion of the scalar density involves the delta function and its
derivatives,

ˆ̂S(x; {x j})

=
A∑

i=1

[
g0 δ(3)(xi − x) − g2 ∇2

xi
δ(3)(xi − x) + · · · ],

(A6)

where the summation runs over nucleons.
With this result at hand, the conversion amplitude takes the

form

〈 fg| ĤL,R |μ(1s)〉 = CL,R

∫
d3x 〈e f | ē(x)PL,Rμ(x) |μ(1s)〉

× 〈�0({x j})| ˆ̂S(x; {x j}) |�0({x j})〉, (A7)

where |�0〉 is the nuclear many-body ground state wave func-
tion. The leptonic matrix element is expressed in terms of the
solutions of the Dirac equation ψ (e),(μ)(x):

〈e f | ē(x)PL,Rμ(x) |μ(1s)〉 = ψ̄ (e)(x)PL,Rψ (μ)(x). (A8)

The electron wave function has an oscillatory behavior with
frequency set by mμ − Bμ, but it is not a plane wave. For the
nuclear part of the matrix element one has

〈�0({x j})| ˆ̂S(x; {x j}) |�0({x j})〉

=
∫

d3x1 · · · d3xA �∗
0 (x1, . . . , xA) ˆ̂S(x; {x j}) �0(x1, . . . , xA),

(A9)

and using the definition of one-body density8

ρ (1)(x) =
∫

d3x2 · · · d3xA |�0(x, x2, . . . , xA)|2, (A10)

we arrive at

〈�0({x j})| ˆ̂S(x; {x j}) |�0({x j})〉
= g0 ρ (1)(x) − g2 ∇2ρ (1)(x) + g4 ∇4 ρ (1)(x) + · · · .

(A11)

8Note that with this definition the proton and neutron densities
are normalized as

∫∞
0 dr 4πr2ρp(r) = Z and

∫∞
0 dr 4πr2ρn(r) =

A − Z .

and hence

〈e f | ĤL,R |μ(1s)〉 = CL,R

∫
d3x ψ̄ (e)(x)PL,Rψ (μ)(x)

× [g0 ρ (1)(x) − g2 ∇2ρ (1)(x)

+ g4 ∇4ρ (1) + · · · ]. (A12)

This result, together with the relations
∇2ρN (r) = (1/r)∂2/∂r2[rρN (r)] and ∇4ρN (r) =
(1/r)(∂2/∂r2)2[rρN (r)], implies the form of the transition
amplitude used in Eqs. (31)–(35).

Equation (A12) involves derivatives acting on the nucleon
densities in the nuclear ground state and differs from the
standard results encountered in the analysis of lepton-nucleus
scattering. In the case of lepton scattering, the external lep-
tonic wave functions are plane waves, and the analog of
Eq. (A12) becomes (here q = p f − pi is the leptonic momen-
tum transfer)

〈p f | ĤL,R |pi〉 = CL,Rū(pe)PL,Ru(pμ)
∫

d3x eiq·x

× [g0 ρ (1)(x) − g2 ∇2ρ (1)(x)

+ g4 ∇4ρ (1) + · · · ]. (A13)

After integration by parts one recovers the familiar factorized
form

〈p f | ĤL,R |pi〉 = CL,Rū(pe)PL,Ru(pμ)

× gS (q2)
∫

d3x eiq·x ρ (1)(x). (A14)

The factorized form of (A14) does not directly apply to
μ → e conversion because the leptonic wave fuctions ψ (μ)(x)
and ψ (e)(x) are not plane waves. However, one can perform
a Fourier decomposition of ψ (μ)(x) and ψ (e)(x) and apply
(A14) to each term in the double Fourier expansion in pe and
pμ, leading to

〈e f | ĤL,R |μ(1s)〉 = CL,R

∫
dpedpμ ū(pe)PL,Ru(pμ)

× gS (pe − pμ)2
∫

d3x ei(pe−pμ )·x ρ (1)(x).

(A15)

This form is equivalent to (A12) but in practice, as long
as gS (q2) can be approximated by a few terms in its series
expansion around q2 = 0, Eq. (A12) is computationally more
convenient than (A15).

APPENDIX B: TWO-NUCLEON CONTRIBUTION

As given in Eq. (4b), the effective two-nucleon Lagrangian
obtained from heavy baryon ChPT is

J (2)
ud,α

(q1, q2) = −g2
Am2

π

4 f 2
π

ρ(k1, k′
1, k2, k′

2) τ1 · τ2 C(0)
Sα , (B1)

where we have defined the two-nucleon density

ρ(k1, k′
1, k2, k′

2) ≡ σ1 · q1σ2 · q2(
q2

1 + m2
π

)(
q2

2 + m2
π

) . (B2)
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Transforming to position space and imposing momentum conservation, q1 + q2 + q = 0, we obtain

ρ(x1, x′
1, x2, x′

2, q) =
∫

d3k1

(2π )3

d3k2

(2π )3

d3k′
1

(2π )3

d3k′
2

(2π )3
ρ(k1, k′

1, k2, k′
2) (2π )3δ(k1 + k2 − k′

1 − k′
2 − q)ei(k′

1·x′
1+k′

2·x′
2−k1·x1−k2·x2 )

= 1

8π
δ(x1 − x′

1)δ(x2 − x′
2)e−iq·R

∫ 1

0
dα ei(α−1/2)q·r−�(q,α)r

{
−iαr̂ · σ1q · σ2

+ i(1 − α)q · σ1r̂ · σ2 − 1

3
σ1 · σ2

1

r
[2 − r�(q, α)]

+ α(1 − α)
1

�(q, α)
q · σ1q · σ2 +

√
8π

15

1

r
[σ1 ⊗ σ2]2 � Y2(r̂)[1 + r�(q, α)]

}
, (B3)

where we have defined

�2(q, α) ≡ α(1 − α)q2 + m2
π , (B4)

and introduced the relative and center-of-mass coordinates

r = x1 − x2, R ≡ 1

2
(x1 + x2). (B5)

In the q → 0 limit, the Feynman parameter integral becomes trivial, �(q, α) → mπ , and the two-body charge becomes

ρ(x1, x′
1, x2, x′

2, 0) = 1

8π
δ(x1 − x′

1)δ(x2 − x′
2)

1

r

{
1

3
F1(r/mπ )σ1 · σ2 +

√
8π

15
F2(r/mπ )Y2(r̂) � [σ1 ⊗ σ2]2

}
, (B6)

where the form factors are given by

F1(x) ≡ e−x(x − 2), F2(x) ≡ e−x(x + 1). (B7)

This is a familiar result from studies of 0νββ decay (e.g.,
[67]), where the leading long-range contribution is due to
two-pion exchange. In that case, the three-momentum trans-
fer is small compared to the pion mass, and it is justified
to work in the limit q → 0. In coherent μ → e conversion
q ≈ mμ ≈ mπ , and we must work at finite q. We find that the
strength of the two-nucleon operator at q ≈ mμ is reduced by
roughly 40% relative to the q = 0 value.

The final step in our evaluation is to Fourier transform
with respect to q and then to multipole-project the resulting
two-nucleon operator. We are interested in the coherent con-
tribution, the J = 0 multipole

M(2)
J=0,M=0(qT ) =

∫
d3x j0(qT x)Y0,0(x̂)ρ(x1, x′

1, x2, x′
2, x)

= 1

4π
δ(qT − q)

∫
d�q Y0,0(q̂)

× ρ(x1, x′
1, x2, x′

2, q). (B8)

The resulting operator

O(2)(qT ) = −g2
Am2

π

4 f 2
π

M(2)
J=0,M=0(qT ) τ1 · τ2 C(0)

Sα (B9)

can be evaluated, for example, using the J = 0, T = 0 two-
body density matrix obtained from the shell model wave
function. In order to compare to the one-body average, we
equate

〈Ji||O(2)(qT)||Ji〉 = −3g2
Am2

πkF

64π f 2
π

f SI
eff 〈Ji||M0(qT)||Ji〉 , (B10)

where M0,0(q) = ∑A
i=1 j0(qri )Y0,0(r̂i ) is the standard one-

body charge multipole operator, and 〈Ji||O||Ji〉 denotes a
reduced matrix element. Note that for the purpose of ex-
tracting f SI

eff from the shell model calculation, the one-body
operator on the right-hand side of Eq. (B10) is evaluated with
the nuclear shell model density. In general, the scalar single-
nucleon density obtained from the nuclear shell model differs
from the two-parameter Fermi function obtained in electron
scattering experiments. For example in 27Al,

〈Ji||M0(qT)||Ji〉2pF = 11.63 ± 0.23, (B11)

where the uncertainty is due to the uncertainty in the neutron
density, and

〈Ji||M0(qT)||Ji〉NSM = 11.81. (B12)

APPENDIX C: EFFECTIVE ONE-BODY OPERATORS

As discussed in Sec. II and Appendix B, there is a
two-nucleon diagram that contributes to coherent μ → e con-
version at NLO. This operator may be replaced by an effective
one-body operator by averaging the two-nucleon operator
over a degenerate Fermi gas model of the target nucleus. In
general, a one-body effective operator can be obtained from a
two-body operator by performing a mean-field-like sum over
direct and exchange terms,

〈α|O(1)|β〉 ≡
∑

γ

〈αγ |O(2)|βγ 〉 − 〈αγ |O(2)|γ β〉 , (C1)

where |α〉 is a single-particle state and the sum runs over all
occupied states. In the non-relativistic Fermi gas model of
the nucleus, the single-particle states are direct products of
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FIG. 4. Left (right): Angle-averaged value of f SI ( f SD) and its constant approximation f SI
eff ( f SD

eff ) as a function of the dimensionless average
momentum k̄ for the case of 27Al.

momentum, spin, and isospin states

|α〉 = |p(α)〉 ⊗ | 1
2 ms(α)〉 ⊗ | 1

2 mt (α)〉 , (C2)

allowing the sums over the three components to be performed
independently.

The resulting spin-independent and spin-dependent one-
body effective operators depend on the magnitude of the
three-momentum transfer qT = |k f − ki|, the average nu-

cleon momentum k = 1
2 |ki + k f |, the pion mass mπ , and the

nuclear Fermi momentum kF . Introducing the dimensionless
variables

q̄ = qT

kF
, k̄ = k

kF
, m̄ = mπ

kF
, (C3)

the resulting spin-independent and spin-dependent form fac-
tors are

f SI (q̄, k̄) = 2

π

∫ 1/2

−1/2
dβ

{
2

(
1 + −β k̄ · q̄ + β2q̄2

k̄2 − 2β k̄ · q̄ + β2q̄2

)

−
⎛
⎝4

(
1
4 − β2

)
q̄2 + 3m̄2√(

1
4 − β2

)
q̄2 + m̄2

⎞
⎠
⎡
⎣arctan

⎛
⎝1 +

√
k̄2 − 2β k̄ · q̄ + β2q̄2√(
1
4 − β2

)
q̄2 + m̄2

⎞
⎠+ arctan

⎛
⎝1 −

√
k̄2 − 2β k̄ · q̄ + β2q̄2√(
1
4 − β2

)
q̄2 + m̄2

⎞
⎠
⎤
⎦

+ 1

2
√

k̄2 − 2β k̄ · q̄ + β2q̄2

[
1 + 2m̄2 +

(
3

4
− 4β2

)
q̄2 − k̄2 + 2β k̄ · q̄

+β

(
1 + 1

4 q̄2 + m̄2 + k̄2− 2β k̄ · q̄
)
(k̄ · q̄ − βq̄2)

k̄2− 2β k̄ · q̄ + β2q̄2

]
ln

(
1 + 2

√
k̄2 − 2β k̄ · q̄ + β2q̄2 + k̄2 − 2β k̄ · q̄ + 1

4 q̄2 + m̄2

1 − 2
√

k̄2 − 2β k̄ · q̄ + β2q̄2 + k̄2 − 2β k̄ · q̄ + 1
4 q̄2 + m̄2

)}
,

(C4)

f SD(q̄, k̄) = − 2

π

∫ 1/2

−1/2
dβ

1√
k̄2 − 2β k̄ · q̄ + β2q̄2

[
1√

k̄2 − 2β k̄ · q̄ + β2q̄2

−1 + m̄2 + k̄2 − 2β k̄ · q̄ + 1
4 q̄2

4(k̄2 − 2β k̄ · q̄ + β2q̄2)
ln

(
1 + 2

√
k̄2 − 2β k̄ · q̄ + β2q̄2 + k̄2 − 2β k̄ · q̄ + 1

4 q̄2 + m̄2

1 − 2
√

k̄2 − 2β k̄ · q̄ + β2q̄2 + k̄2 − 2β k̄ · q̄ + 1
4 q̄2 + m̄2

)]
. (C5)

These functions depend not only on the magnitude of the
dimensionless momentum transfer q̄ and average momentum
k̄, but on their relative angle. Fortunately, for the physically
relevant values of these momenta, f SI and f SD do not vary
significantly over the range of possible angular values. There-
fore we may replace each function by its angular average. The
angle-averaged functions then depend only on the magnitude
of the momentum transfer q̄ and the average momentum k̄.
For a given nucleus, the three-momentum transfer in coherent

μ → e conversion satisfies

q2
T 	 MT

mμ + MT

[(
mμ − Ebind

μ

)2 − m2
e

]
, (C6)

where MT is the mass of the target nucleus and Ebind
μ is the

(positive) binding energy of the captured muon. Fixing the
value of qT for a given nucleus, f SI and f SD become func-
tions of the dimensionless average nucleon momentum k̄, as
shown in Fig. 4. In order to recover a local one-body effective
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operator, we replace these slowly varying functions of k̄ by
a constant, weighting our average by the single-nucleon mo-
mentum probability distribution. The resulting momentum-

averaged values f SI
eff and f SD

eff are shown in Fig. 4. Table I re-
ports the values of f SI

eff for the four nuclei of interest as well as
the physical parameter values employed in each calculation.
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