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Causality and stability analysis of first-order field redefinition in relativistic
hydrodynamics from kinetic theory
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In this work, the causality and stability of a first-order relativistic dissipative hydrodynamic theory, that rede-
fines the hydrodynamic fields from a first principles microscopic estimation, are analyzed. A generic approach of
gradient expansion for solving the relativistic transport equation is adopted using the Chapman-Enskog iterative
method. Next, the momentum dependent relaxation time approximation is employed to quantify the collision
term for analytical estimation of the field correction coefficients from kinetic theory. In the linear regime, in
the local rest frame the dispersion relations are observed to produce a causal propagating mode. However, the
acausality and instability reappear when a boosted background is considered for linear analysis. These facts point
out relevant aspects regarding the methodology of extracting the causal and stable first-order hydrodynamics
from kinetic theory and indicate the appropriate approach to construct a valid first-order theory with proper
justification.
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I. INTRODUCTION

The journey of relativistic dissipative hydrodynamic the-
ory can be traced back from the relativistic extension of the
Navier-Stokes (NS) formalism introduced by Landau and Lif-
shitz (LL) [1] and Eckart [2]. These theories are known as
the first-order theories because of the presence of first-order
gradient corrections in the out of equilibrium deviations of the
thermodynamic quantities such as entropy current. The prob-
lem occurs with these theories when they exhibit superluminal
speed of signal propagation, causing a severe causality viola-
tion problem [3]. This undesirable feature further associates
instabilities within the system such that small departures of
these fluids from equilibrium lead to rapid evolution away
from equilibrium [4]. These features pose a major concern
for the practical applicability of these theories and make them
unacceptable as a reasonable relativistic theory for fluids.

To rescue the situation, second-order theories are in-
troduced where the dissipative fluxes are promoted as the
fundamental dynamical variables and give rise to relaxation-
type evolution equations. The second-order theory introduced
by Israel and Stewart [5], known as Israel-Stewart (IS) the-
ory, accepted as the standard theory of relativistic dissipative
hydrodynamics, was shown to be both stable and causal
in Refs. [3,4,6]. In Ref. [7] the hyperbolicity of IS theory
along with subluminal signal propagation was demonstrated
for linear perturbations around equilibrium. Since then, a
range of second-order theories like IS [8,9] to recently devel-
oped Denicol-Niemi-Molnar-Rischke (DNMR) [10,11] and
resummed Baier-Romatschke-Son-Starinets-Stephanov the-
ory [12] have been introduced in the literature. In works like
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Refs. [13,14] the stability and causality were analyzed for
IS theory and in Ref. [15] the same was studied for DNMR
theory. These studies give conditions involving the equation of
state and the transport coefficients that ensure that these the-
ories are indeed causal and stable. Proven to be free from
causality and stability related issues at least for linear pertur-
bations around equilibrium, they have been used for a wide
range of hydrodynamic numerical simulations. Constraints to
ensure causality for IS-like theories in nonlinear, far-from-
equilibrium regimes were recently explored in Refs. [16,17].

Recently, a new comprehensive formalism has been pro-
posed by Bemfica, Disconzi, Noronha, and Kovtun (BDNK)
to establish a causal and stable hydrodynamic theory [18–22]
without incorporating extra dynamical degrees of freedom
other than the fundamental ones such as temperature, hy-
drodynamic velocity, and charge chemical potential. In other
words, they derive first-order theories in the most general
way possible that prohibit superluminal signal propagation as
well as retain stability criteria besides other requirements like
non-negative entropy production, which are essential for an
acceptable hydrodynamic theory. The basic idea is to define
the out of equilibrium thermodynamic variables in a general
frame other than specified either by Landau and Lifshitz or
by Eckart, through their postulated constitutive relations. This
is the so-called BDNK formalism, which proposed a class of
stable and causal frames for the first-order relativistic hydro-
dynamic theory. In Refs. [18,23,24] the derivation of such
a causal-stable first-order theory from the relativistic Boltz-
mann equation has been studied in order to establish its kinetic
theory origin.

Motivated from these studies, in this work, a first-order the-
ory is derived, where the out of equilibrium thermodynamic
fields are not uniquely defined and are subject to including
dissipative effects from the medium. Here, a first-order rela-
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tivistic dissipative hydrodynamic theory that includes the out
of equilibrium contributions in thermodynamic fields purely
from system interactions, and was recently derived from rel-
ativistic transport equation by gradient expansion technique
[25], is employed to derive the dispersion equations and the
associated modes. To linearize the nontrivial collision inte-
gral, the momentum dependent relaxation time approximation
(MDRTA) is adopted for solving the relativistic transport
equation as a model study [26–31]. The obtained results re-
veal interesting facts regarding the microscopic extraction of
hydrodynamic field redefinition and its consequent effects on
stability and causality of the theory.

In the usual NS theory, the macroscopic thermodynamic
quantities such as energy density and particle number density
in the conservation equations are usually set to their equi-
librium values even in the dissipative medium by imposing
certain matching or fitting conditions. The resulting disper-
sion relation, at the limit of large wave number (k), gives
rise to nonpropagating modes with k2 dependence [13,32],
identical to that of the diffusion process which is acausal
with an infinite propagation speed. This behavior (ω(k) is
growing faster than k) is a consequence of the acausal na-
ture of the equations; when linearized around equilibrium,
the resulting modes become superluminal. The intention of
the current analysis is to observe if there are any changes
in the linear modes after the first-order field redefinition is
introduced. Here, first the equations of motion have been
linearized around a hydrostatic equilibrium at local rest frame
(LRF). Next, the equations have been tested with a more
general state of equilibrium where the background is Lorentz
boosted with an arbitrary velocity. This generalization from
zero to arbitrary background velocity is necessary, since this
could result in a whole new set of modes. In this context,
the precedence of LL theory can be remembered. At zero
chemical potential the LL theory gives two modes with zero
background velocity, keeping the stability of the theory intact.
It is the new mode that appears with a boosted background,
and drives the instability in the theory [13]. A well defined
relativistic theory cannot depend on whether one sets the
background velocity to zero or not, and hence a consistency
check between the boosted and nonboosted results is essential.

The paper is organized as follows: In Sec. II the first-
order relativistic hydrodynamics with thermodynamic field
redefinition is derived from relativistic transport equation of
kinetic theory. In Sec. III the dispersion relations and the
modes are analyzed with a hydrostatic background at local
rest frame giving the asymptotic causality condition. Sec-
tion IV studies the same dispersion relations but with a
Lorentz boosted background and demonstrates the additional
acausal modes. Finally in Sec. V the work is summarized with
prior conclusions and useful remarks regarding the choice of
hydrodynamic field redefinition and its consequence on the
causality and stability of a first-order theory.

Throughout the paper I use natural units (h̄ = c = kB =
1) and consider flat space-time with mostly negative metric
signature gμν = diag(1,−1,−1,−1). The timelike fluid four-
velocity, uμ, satisfies the normalization condition uμuμ =
1. The projection operator orthogonal to uμ is defined as
�μν = gμν − uμuν . The space-time partial derivative can be

decomposed as ∂μ = uμD + ∇μ, with a temporal part D =
uμ∂μ and a spatial part ∇μ = �μν∂

ν . The traceless irre-
ducible tensors of rank 1 and rank 2 are defined as A〈μ〉 =
�μνAν and A〈μBν〉 = �αβ

μνAαBβ , respectively, with �αβ
μν =

1
2 (�α

μ�β
ν + �β

μ�α
ν ) − 1

3�μν�
αβ .

II. FIELD REDEFINITION IN RELATIVISTIC
HYDRODYNAMICS

The basic problem is to estimate the first-order out of
equilibrium correction of the thermodynamic fields needed to
define the particle four-flow Nμ and energy-momentum tensor
T μν . Here, a relativistic transport equation serves the purpose
by providing the first-order correction in the single particle
distribution function via gradient expansion technique. The
first-order Chapman-Enskog (CE) method gives the following
integro-differential equation over the single particle distribu-
tion function [33]:

pμ∂μ f (0)(x, p) = −L[φ]. (1)

Here, the first-order particle distribution function is decom-
posed as f = f (0) + f (0)(1 ± f (0) )φ with f (0) = [exp( p·u

T −
μ

T ) ∓ 1]−1 as the equilibrium distribution for bosons and
fermions, respectively, and φ denotes the distribution devia-
tion from equilibrium. The linearized collision term (L[φ])
over the deviation of the first-order distribution function is
given by

L[φ] =
∫

d	p1 d	p′d	p′
1

f (0) f (0)
1 (1 ± f ′(0) )(1 ± f ′(0)

1 )

× (φ + φ1 − φ′ − φ′
1)W (p′ p′

1|pp1), (2)

with d	p = d3 p
(2π )3 p0 as the phase space factor and W as the

microscopic interaction rate. The equilibrium temperature,
chemical potential, and hydrodynamic four-velocity of the
system are denoted by T , μ, and uμ, respectively.

In order to solve Eq. (1), I am adopting here one of the
most conventional techniques. In transport equation (1), the
time derivatives on the left hand side are eliminated by the
spatial gradients using the first-order thermodynamic iden-
tities such as DT

T = −( ∂P0
∂ε0

)ρ0 (∂ · u), Dμ̃ = − 1
T ( ∂P0

∂ρ0
)ε0 (∂ · u),

and (ε0 + P0)Duμ = ∇μP0. Here, ρ0, ε0, and P0 are the equi-
librium values of particle number density, energy density, and
hydrodynamic pressure of the system, respectively. It is to be
noted that the spatial gradients over field variables contribute
to the thermodynamic forces and that is why in conventional
methods to extract the single particle distribution function
from transport equation the time derivatives are eliminated by
spatial gradients using first-order thermodynamic identities.

Following this prescription, the left hand side of Eq. (1)
turns out to be a linear combination of thermodynamic forces
as the following [34]:

f (0)(1 ± f (0) )

[
Q̂∂ · u +

(
τp

ĥ
− 1

)
p̃μ∇μμ̃ + p̃μ p̃νσμν

]

= 1

T
L[φ], (3)
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with Q̂ = z2

3 + τ 2
p (( ∂P0

∂ε0
)ρ0 − 1

3 ) + τp
1
T ( ∂P0

∂ρ0
)ε0 . σμν = ∇〈μuν〉

is the traceless, symmetric velocity gradient and ĥ = (ε0 +
P0)/ρ0T is the scaled enthalpy per particle at equilibrium. The
other used notations denote p̃μ = pμ/T as the scaled particle
4-momenta, τp = (p · u)/T as the scaled particle energy at
local rest frame, z = m/T as the scaled particle mass, and
μ̃ = μ/T .

Since the thermodynamic forces are independent, in order
to be a solution of Eq. (3), φ must be a linear combination of
the thermodynamic forces as

φ = A(∂ · u) + Bν∇νμ̃ + Cμνσμν, (4)

with Bμ = Bp̃〈μ〉 and Cμν = C p̃〈μ p̃ν〉. It is customary to ex-
pand the unknown coefficients in the particle momentum
basis as A = ∑p

s=0 As(z, x)τ s
p, B = ∑p

s=0 Bs(z, x)τ s
p, and C =∑p

s=0 Cs(z, x)τ s
p, with the series expanded up to any desired

degree of accuracy.
The next job is to estimate the out of equilibrium dissipa-

tive correction in the thermodynamic fields. For this purpose,
the two most general field variables, namely, the particle four-
flow (Nμ) and the energy-momentum tensor (T μν), are given
respectively in their integral forms as the following:

Nμ =
∫

d	p pμ f , T μν =
∫

d	p pμ pν f . (5)

The out of equilibrium part of the distribution function f in
Eqs. (5) gives the necessary field corrections. The correction
in particle number density (δρ), energy density (δε), pressure
(δP), energy flow or momentum density (W α), and particle
flux (V α) are given by

δρ = uμδNμ =
∫

d	p f (0)(1 ± f (0) )(p · u)φ, (6)

δε = uμuνδT μν =
∫

d	p f (0)(1 ± f (0) )(p · u)2φ, (7)

δP = −1

3
�μνδT μν,

= 1

3

∫
d	p f (0)(1 ± f (0) )

[
(p · u)2 − m2

]
φ, (8)

W μ = �α
μuνδT μν,

=
∫

d	p f (0)(1 ± f (0) )p〈μ〉(p · u)φ, (9)

V μ = �α
μNμ =

∫
d	p f (0)(1 ± f (0) )p〈μ〉φ. (10)

Here, δNμ and δT μν are the first-order dissipative corrections
in particle four-flow and energy-momentum tensor, respec-
tively.

Keeping up to the first nonvanishing contribution from the
collision operator, the respective corrections in the thermody-
namic fields listed in Eqs. (6)–(10) are given by

δρ = c	 (∂ · u), δε = c�(∂ · u), δP = c�(∂ · u), (11)

W α = c�∇αμ̃, V α = c�∇αμ̃, (12)

with

c	 = T (A0a1 + A1a2 + A2a3), (13)

c� = T 2(A0a2 + A1a3 + A2a4), (14)

c� = T 2

3

[
A0(a2 − z2a0) + A1(a3 − z2a1)

+A2(a4 − z2a2)
]
, (15)

c� = T 2(B0b1 + B1b2), (16)

c� = T (B0b0 + B1b1). (17)

The moment integrals are defined here as an =∫
dFpτ

n
p , �μνbn = ∫

dFp p̃〈μ〉 p̃〈ν〉τ n
p , ad �αβμνcn =∫

dFp p̃〈μ p̃ν〉 p̃〈α p̃β〉τ n
p , with dFp = d	p f (0)(1 ± f (0) ).

It is to be noted here that, by the virtue of the collision in-
tegral properties L[pμ] = 0 and L[1] = 0 which follow from
the energy-momentum and particle number conservation, the
coefficients A0, A1, and B0 cannot be determined from the
transport equation (3) and hence they are called homogeneous
solutions. Beyond that, As, Bs, and Cs can be fully estimated
from the transport equation and can be called interaction so-
lutions. In the present case they are estimated to be

A2 = T

[τ 2
p , τ 2

p ]

∫
dFpτ

2
p Q̂, (18)

B1 = T

[τp p̃〈μ〉, τp p̃〈ν〉]

∫
dFp p̃〈μ〉 p̃〈ν〉τp

(
τp

ĥ
− 1

)
, (19)

C0 = T

[ p̃〈α pβ〉, p̃〈μ pν〉]

∫
dFp p̃〈α p̃β〉 p̃〈μ p̃ν〉. (20)

The bracketed quantities are defined as [φ, φ] = ∫
d	pφL[φ],

which are always non-negative. The homogeneous solutions
are fully arbitrary and the field corrections in Eqs. (13)–(17)
due to them are attributed solely to the hydrodynamic frame
choice. In certain situations the frame is so chosen that the
homogeneous part exactly cancels the interaction part, giving
rise to field correction zero such that the field can be identified
with its equilibrium value even in the dissipative medium. In
current analysis, the nonequilibrium field corrections will be
kept nonzero to generate the equations of motion that give rise
to the dispersion relations and finally the frequency modes.

However, these field corrections are not independent but
constrained to give the dissipative flux of the same tensorial
rank. The coefficients are shown to follow

c� − c�

(
∂P0

∂ε0

)
ρ0

− c	

(
∂P0

∂ρ0

)
ε0

= −ζ , (21)

c� − ĥT c� = −λT

ĥ
, (22)

such that the field corrections add up to produce dissipative
fluxes as

δP −
(

∂P0

∂ε0

)
ρ0

δε −
(

∂P0

∂ρ0

)
ε0

δρ = �, (23)

W α − ĥTV μ = qα. (24)

Here, � = −T 2
∫

d	p f (0)(1 ± f (0) )Q̂φ = −ζ (∂ · u) and
qα = T 2

∫
d	p f (0)(1 ± f (0) ) p̃〈α〉(τp − ĥ)φ = − λT

ĥ
∇αμ̃ are

respectively the first-order bulk viscous and diffusion flow.
The coefficient of bulk viscosity (ζ ) and thermal conductivity

054910-3



SUKANYA MITRA PHYSICAL REVIEW C 105, 054910 (2022)

(λ) in this theory are respectively given by

ζ = T 2
∫

d	p f (0)(1 ± f (0) )Q̂A, (25)

λ = −T

3
ĥ

∫
d	p f (0)(1 ± f (0) ) p̃μ p̃μ(τp − ĥ)B. (26)

Now, since Q̂ f (0)(1 ± f (0) ) = 1
T L[A] and p̃〈μ〉( τp

ĥ
−

1) f (0)(1 ± f (0) ) = 1
T L[Bμ], then by virtue of the self-

adjoint property of the collision integral
∫

d	pψL[φ] =∫
d	pφL[ψ] with ψ = ψ (x, pμ), ζ and λ do not include the

homogeneous solutions and purely depend upon interactions.
Equations (21) and (22) reveal that these combinations
are frame invariant as suggested by Ref. [20], and retain
only the interaction part of the field corrections through the
physical transport coefficients associated with dissipative
fluxes. Detailed discussion of this derivation for any order of
gradient expansion are available in Ref. [25]. Including field
corrections, the expressions for particle four-flow and the
energy-momentum tensor are respectively given as follows:

Nμ = (ρ0 + δρ)uμ + V μ, (27)

T μν = (ε0 + δε)uμuν − (P0 + δP)�μν

+(W μuν + W νuμ) + πμν. (28)

Here, πμν = �
μν
αβδT αβ = 2ησμν is the first-order shear stress

tensor with η as the shear viscous coefficient.
The next job is to implement a microscopic model that

can explicitly determine the field correction coefficients from
Eqs. (13)–(17). Since the homogeneous part in the field cor-
rection of Eqs. (13)–(17) can be chosen arbitrarily, here I
consider only the interaction correction provided by the trans-
port equation itself. For the same, I propose here solving the
relativistic transport equation (1) in the MDRTA. The idea is
just to replace L[φ] in Eq. (1) with the help of relaxation time
τR of the single particle distribution function as follows:

p̃μ∂μ f = − τp

τR
f (0)(1 ± f (0) )φ, τR(x, p) = τ 0

R (x)τ n
p , (29)

where the momentum dependence of τR is expressed as a
power law of the scaled particle energy τp in the comoving
frame, with τ 0

R as the momentum independent part and n as
the exponent specifying the power of the scaled energy. In
Refs. [25,29] the interaction part of the out of equilibrium field
corrections were estimated using the MDRTA technique from
the relativistic transport equation. Here, the first-order field
correction coefficients are listed below:

c�

τ 0
R

= T 2

[
z2

3
an+1 +

{(
∂P0

∂ε0

)
ρ0

− 1

3

}
an+3

+ 1

T

(
∂P0

∂ρ0

)
ε0

an+2

]
, (30)

c	

τ 0
R

= T

[
z2

3
an +

{(
∂P0

∂ε0

)
ρ0

− 1

3

}
an+2

+ 1

T

(∂P0

∂ρ0

)
ε0

an+1

]
, (31)

c�

τ 0
R

= T 2

[
z2

9
an+1 + 1

3

{(
∂P0

∂ε0

)
ρ0

− 1

3

}
an+3

+ 1

3T

(
∂P0

∂ρ0

)
ε0

an+2 − z4

9
an−1

− z2

3

{(
∂P0

∂ε0

)
ρ0

− 1

3

}
an+1 − z2

3T

(
∂P0

∂ρ0

)
ε0

an

]
, (32)

c�

τ 0
R

= T 2

[
1

ĥ
bn+1 − bn

]
, (33)

c�

τ 0
R

= T

[
1

ĥ
bn − bn−1

]
. (34)

The corresponding first-order transport coefficients bulk vis-
cosity (ζ ), thermal conductivity (λ), and shear viscosity (η) in
the MDRTA are given by

ζ

T 2τ 0
R

= z4

9
an−1 +

{(
∂P0

∂ε0

)
ρ0

− 1

3

}2

an+3

+2z2

3T

(
∂P0

∂ρ0

)
ε0

an + 2

T

{(
∂P0

∂ε0

)
ρ0

− 1

3

}(
∂P0

∂ρ0

)
ε0

an+2

+ 1

T 2

(
∂P0

∂ρ0

)2

ε0

an+1 + 2z2

3

{(
∂P0

∂ε0

)
ρ0

− 1

3

}
an+1, (35)

λT

T 2τ 0
R

= −{
bn+1 − 2ĥbn + ĥ2bn−1

}
, (36)

η

T 2τ 0
R

= 1

2
cn−1. (37)

The conservation of particle four-flow and energy-momentum
tensor along with the non-negativity of entropy produc-
tion rate have been confirmed within the present theory in
Ref. [25].

III. CAUSALITY AND STABILITY ANALYSIS IN
LOCAL REST FRAME

To analyze the modes, first small perturbations of the
hydrodynamic variables are considered around a hydrostatic
equilibrium state of the fluid which is in the local rest frame
such as

T = T0 + δT (t, x), μ̃ = μ̃0 + δμ̃(t, x),

uμ = (1, �0) + δuμ(t, x). (38)

In linear approximation, the velocity perturbation has only
spatial components δuμ = (0, δux, δuy, δuz ), since one needs
uμ

0 δuμ = 0 to retain the normalization condition. It is
convenient to express these fluctuations in their plane
wave solutions via a Fourier transformation δψ (t, x) →
ei(ωt−kx)δψ (ω, k), with wave 4-vector kμ = (ω, k, 0, 0). Fol-
lowing this prescription, the conservation equations ∂μNμ =
0 and ∂μT μν = 0, over Eqs. (27) and (28), give the dispersion
relations. Following the convention of Ref. [12], retaining the
component of δuμ parallel to kμ, the dispersion relation for
the longitudinal or sound mode is obtained as the following:

ω3(1 + Ak2) − iBω2k2 − ω(Ck2 + Dk4) + iEk4 = 0, (39)
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with

A = ĥc̃� (c̃� − c̃	 ), (40)

B = (4η/3 + ζ + λT )/(ε0 + P0), (41)

C = c2
s , (42)

D = (4η/3 + ζ )λT/(ε0 + P0)2

+ĥ(c̃� − c̃	 )

[(
∂P0

∂ε0

)
ρ0

c̃� + 1

ĥ

1

T

(
∂P0

∂ρ0

)
ε0

c̃�

]
,(43)

E = c2
s λT/(ε0 + P0). (44)

The used notations read c̃� = c�/(ε0 + P0), c̃� = c�/(ε0 +
P0), c̃	 = c	/ρ0, c̃� = c�/ρ0, and c2

s = ( ∂P0
∂ε0

)ρ0
+ 1

ĥ
1
T ( ∂P0

∂ρ0
)ε0

is the velocity of sound squared [35]. The coefficients B, C, E ,
and the first part of D being the function of physical transport
coefficients associated with dissipative fluxes only (which are
independent of hydrodynamic field corrections), they will be
present in the usual NS theory as well, i.e., without field
redefinition in the out of equilibrium scenario. However, as
mentioned earlier, in most of the studies c� and c	 are set to
zero, employing a certain frame choice in order to keep the
energy density and particle number density at their equilib-
rium values even in a dissipative medium. In such cases, A
and the second part of D in Eq. (39) vanish. In such situa-
tions, propagating modes appear only at small k values with
a propagation speed of usual sound velocity cs. The problem
occurs at the large k limit, where the propagating modes are
changed to nonpropagating modes with k2 dependence which
indicate acausality [13]. Here the sound channel dispersion
relation [Eq. (39)] is analyzed in the presence of all the field
corrections.

At small k values the dispersion relation gives

ω
‖
1,2 = i

2

[
4η/3 + ζ

(ε0 + P0)

]
k2 ± kcs, (45)

ω
‖
3 = i

[
λT

(ε0 + P0)

]
k2, (46)

which is identical to the usual NS theory without field re-
definition. ω

‖
1,2 is the conventional propagating sound mode

with a propagation velocity of the speed of sound. ω
‖
3 is the

purely nonpropagating heat-diffusion mode. Because of the
imaginary part of all the modes being always positive by
virtue of positive physical transport coefficients, the modes
are always stable.

It is the large k limit that differs from the conventional NS
theory. At large k, the dispersion relation renders

ω
‖
1,2 = i

2

{
B

A
− E

D

}
± k

√
D

A
, (47)

ω
‖
3 = i

E

D
, (48)

where positive values of D/A give two propagating modes via
the real part of frequency ω

‖
1,2. Equation (40) shows that in

the absence of field redefinition in energy density and particle
number density, A (as well as the second term of D) vanishes
and consequently Eq. (39) produces only the nonpropagating
modes at the large k limit. Since propagation speed of the

fluid is characterized by the group velocity of the propagating
mode, in order to analyze the causality of the mode, here the
asymptotic value of group velocity (vg) is defined as follows:

vg = lim
k→∞

∣∣∣∣∂ Re(ω)

∂k

∣∣∣∣ =
√

D

A
. (49)

To be subluminal, the theory must satisfy D/A < 1 along
with D/A > 0. Equations (40) and (43) show that A and D
explicitly depend upon the field correction coefficients. So
it can be derived that, in order to preserve causality of the
propagating mode at local rest frame, the coefficients must
satisfy the following relation:

(4η/3 + ζ )λT/(ε0 + P0)2

ĥc̃� (c̃� − c̃	 )

<

[
1 −

{(
∂P0

∂ε0

)
ρ0

+ 1

ĥ

1

T

(
∂P0

∂ρ0

)
ε0

c̃�

c̃�

}]
. (50)

Equation (50) is the asymptotic causality condition of the
theory at local rest frame. Under the MDRTA formalism it can
be shown that with small mass (typically z values below 0.25)
and nonzero values of the exponent n in Eq. (29) (particularly
on the negative n side), the asymptotic causality condition
0 < vg < 1 is indeed satisfied with linearized perturbations
around LRF equilibrium.

The causal propagating mode of Eq. (47) with thermody-
namic field redefinition is, however, interesting, but certainly
not conclusive for verifying the causality of the theory as
a whole. Since the local rest frame is not the most general
equilibrium state, it is crucial to check also the situation
with a more general state of equilibrium, i.e., to consider lin-
ear disturbances around the background with hydrodynamic
velocity uμ

0 = γ (1, v), where the velocity v is nonzero and
γ = 1/

√
1 − v2. Anyway, with field redefinition and at LRF

background, the shear channel does not improve and gives the
same mode as in NS theory, ω⊥ = i[η/(ε0 + P0)]k2. Though
this mode is stable, it is certainly not causal. That is why, in
order to have a more rigorous study, in the next section a more
general equilibrium with a boosted background is considered
for linear stability and causality analysis.

IV. CAUSALITY AND STABILITY ANALYSIS IN
LORENTZ-BOOSTED FRAME

The background fluid is now considered to be boosted
along the x axis with a constant velocity v, uμ

0 =
γ (1, v, 0, 0). The corresponding velocity fluctuation is δuμ =
(γ vδux, γ δux, δuy, δuz ) which again gives uμ

0 δuμ = 0 to
maintain velocity normalization. The dispersion relations can
be obtained in the boosted frame by giving the transformations
ω → γ (ω − kv) and k2 → γ 2(ω − kv)2 − ω2 + k2 to the lo-
cal rest frame [19].

The dispersion relation for the shear channel with boosted
background turns out to be a quadratic equation of ω. Here, I
address the shear modes in two limiting cases.

At the small k limit, the shear modes are

ω⊥
1 = vk + O(k2), (51)

ω⊥
2 = − i

γ	v2
+ (2 − v2)

v
k + O(k2), (52)
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with 	 = η/(ε0 + P0). In the small k limit, it is clear that the
mode ω⊥

1 is a propagating mode with just the background
velocity itself. The imaginary part of the other shear mode
ω⊥

2 is always negative since η is a positive quantity, indicating
the mode is unstable. For a background velocity 0 < v < 1,
the mode is acausal as well.

At the large k limit, the shear modes become

ω⊥
1,2 = 1

v
k, (53)

which can be readily seen as acausal for any acceptable back-
ground velocity v. So, with a boosted background velocity, the
causality and stability both are violated in the shear channel of
the fluid.

With boosted background, the dispersion relation for the
sound channel becomes an extremely complicated fifth-order
polynomial which is not possible to solve analytically. For this
difficulty, here I again address the numerical solution of the
modes in two limiting cases.

In the small k limit, the sound modes become

ω
‖
1 = vk + O(k2), (54)

ω
‖
2,3 = 1

2

[
M ±

√
M2 − 4N

]
k + O(k2), (55)

ω
‖
4,5 = i

2

[
Q ±

√
Q2 + 4R

] + O(k), (56)

with

M = 2v
(
c2

s − 1
)

(
c2

s v2 − 1
) , N = c2

s − v2(
c2

s v2 − 1
) , (57)

Q = Ev2 − B

γ (Dv2 − A)
, R = c2

s v2 − 1

γ 2v2(Dv2 − A)
. (58)

Here, the coefficients A, B, D, and E are listed in Eqs. (40)–
(44). The O(k2) terms of ω

‖
1 and ω

‖
2,3 are complicated

functions of field correction coefficients which at v → 0 re-
duce to the same nonpropagating parts of the LRF modes of
Eqs. (46) and (45), respectively. So with that, at vanishing
background velocity, the modes in Eqs. (54) and (55) boil
down to LRF sound modes with small wave number. It is the
ω

‖
4,5 modes which were not present in the local rest frame.

It has been tested that no combination of the field correction
coefficients can produce a positive imaginary part for ω

||
4,5 and

the modes become unstable.
In the limit of large wave numbers, an expansion of the

form ω‖ = v‖
gk + ∑∞

n=0 cnk−n can be used as a solution [15].
The roots of v‖

g are obtained as

v
‖
g,1 = v, (59)

v
‖
g,2,3 =

[
v(A − D) ± √

AD − 2ADv2 + ADv4
]

A − Dv2
, (60)

v
‖
g,4,5 = ±1

v
. (61)

At v → 0, v
‖
g,1 vanishes and v

‖
g,2,3 reduce to Eq. (49) with

asymptotic group velocity vg = √
D/A of the local rest frame.

With 0 < v < 1, these three modes remain always sublumi-

nal as long as the causal parameters of the field correction
coefficients are being used from condition (50). It is the
two new roots v

‖
g,4,5 that are always acausal for 0 < v < 1.

So finally it can be concluded that, although at the local
rest frame the asymptotic causality condition and stability
criteria are maintained, the new modes of shear and sound
channels due to the boosted background are conclusively
showing that the theory is acausal and unstable, irrespective
of whatever values of the field correction coefficients are
taken.

V. SUMMARY AND CONCLUSION

In this work, I analyze the causality and stability of a
relativistic hydrodynamic theory, including the out of equilib-
rium field redefinition estimated from the relativistic kinetic
equation. In the local rest frame, when linearized around an
equilibrium, the equations of motion give a propagating mode
which was previously absent for the usual NS theory, along
with the asymptotic causality condition [Eq. (50)] obeyed
for certain constrained values of the field correction coeffi-
cients. However, when the background fluid is boosted with
an arbitrary velocity v, it is observed that new modes appear
on the top of the LRF modes, which are both acausal and
unstable. This observation reveals two important points here.
The first one is quite straightforward. To analyze the causal-
ity and stability of a theory, observing Fourier modes in the
local rest frame is not only insufficient, but sometimes can be
misleading (like the present case) as well. To have the correct
conclusions, the most general equilibrium state is needed to
be implemented. In fact causality is a general property of the
equations of motion, and the ability of doing a Fourier analysis
is not requisite. Considering this fact, in future a full nonlinear
analysis with thermodynamic field redefinition is in order to
study the causality and stability of the theory in a more general
way.

The second point is somewhat more significant. The
derivation of a first-order theory, introducing nonequilibrium
field corrections in fundamental macroscopic quantities, is
a recent venture which is establishing itself as an authen-
tic framework for the relativistic hydrodynamics. In their
analysis, the contribution from the homogeneous part of the
nonequilibrium distribution function is attributed to gener-
ate new terms that give rise to causality and stability of
the theory [18]. Motivated by these works, in the current
analysis the effects of the purely interacting or inhomoge-
neous contribution from the distribution function have been
tested in the hydrodynamic field corrections. To do that, the
most general approach of gradient expansion, the Chapman-
Enskog method, has been used that expresses the out of
equilibrium distribution function purely in terms of spatial
gradients (eliminating the time derivatives imposing conser-
vation equations). The resulting field corrections lack the
time derivatives of the general constitutive relations of the
BDNK formalism and only include the spatial gradients re-
sembling thermodynamic forces. The theory turns out to
be causal and stable at the local rest frame background;
however, it shows an anomaly in a more general boosted back-
ground. This is the limitation of the general Chapman-Enskog
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methodology which replaces the time derivatives with pure
spatial gradients. The presence of terms including comoving
derivatives is fundamental for causality and stability in any
first-order formulation. So, an alternate microscopic approach
of solving the transport equation is required [24] that retains
the comoving derivatives, because this work singularly proves
that they are the crucial counterparts in the hydrodynamic field
corrections that definitively make the theory causal and stable.
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