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Heavy quarks are valuable probes of the electromagnetic field and the initial condition of the quark-gluon
plasma (QGP) matter produced in high-energy nuclear collisions. Within an improved Langevin model that
is coupled to a (3 + 1)-dimensional viscous hydrodynamic model, we explore the origin of the directed flow
coefficient (v1) of heavy mesons and their decay leptons, and its splitting (�v1) between opposite charges. We
find that while the rapidity dependence of the heavy flavor v1 is mainly driven by the tilted energy density profile
of the QGP with respect to the longitudinal direction at energies available at the BNL Relativistic Heavy Ion
Collider (RHIC), it is dominated by the electromagnetic field at energies available at the CERN Large Hadron
Collider (LHC). The �v1 serves as a novel probe of the spacetime evolution profile of the electromagnetic field.
Our results of D mesons and their decay electrons are consistent with the available data at RHIC and LHC, and
our predictions on the heavy flavor decay muons can be further tested by future measurements.
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I. INTRODUCTION

Heavy-ion collisions provide a unique opportunity to study
the color deconfined state of nuclear matter, known as the
quark-gluon plasma (QGP) [1]. Heavy flavor spectra are
among the cleanest observables that reveal the QGP prop-
erties probed at different energy scales [2,3]. Due to their
large masses, heavy quarks are mostly produced in the very
early stage of high-energy nuclear collisions, and then interact
with the nuclear medium with their flavors conserved before
hadronizing into heavy flavor hadrons on the QGP boundary,
thus performing a tomography of the entire evolution history
of the QGP.

Tremendous efforts have been devoted in both experi-
mental [4–7] and theoretical [8–26] studies on the nuclear
modification of heavy quarks inside the QGP, including the
suppression factor RAA and the elliptic flow coefficient v2

of heavy flavor hadrons and their decay leptons. This has
revealed the mass and flavor dependence of jet-medium
interaction at high transverse momentum (pT) and the ther-
malization process of heavy quarks at low pT. Another
important aspect of heavy quark study is utilizing them to
probe the hadronization process from the quark-gluon state to
the hadronic state of nuclear matter. This can be reflected by
the heavy flavor hadron chemistry, such as the enhancement of
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�c/D0, Ds/D0, and Bs/B+ ratios in nucleus-nucleus collisions
with respect to proton-proton collisions. Relevant investiga-
tions have recently been improved from both experimental
[27–32] and theoretical [33–36] sides.

While higher-order harmonic (elliptic v2, triangular v3,
etc.) flow coefficients mainly characterize the heavy quark en-
ergy loss and thermalization through an asymmetric medium
in the transverse plane, the rapidity dependence of directed
flow (v1) focuses more on the asymmetry in the reaction plane
of heavy-ion collisions and becomes a novel tool to probe the
longitudinal distribution of the initial profile of the QGP. It
was proposed that the heavy flavor hadron v1 could be more
than an order of magnitude larger than that of the light hadrons
emitted from the QGP [37–39], which was soon confirmed by
data from the STAR experiment [40]. More detailed studies
were later performed [41,42] using transport models of heavy
quarks coupled to a QGP medium, taking into account the
initial longitudinal tilt [43] in the reaction plane with respect
to the beam axis.

Another crucial origin of the heavy flavor v1 is the strong
electromagnetic field produced in heavy-ion collisions. It has
been estimated that the magnetic field in the early stage
of nuclear collisions (<0.5 fm/c) can reach several times
1018 G in Au + Au collisions at the BNL Relativistic Heavy
Ion Collider (RHIC) and 1019 G in Pb + Pb collisions at the
CERN Large Hadron Collider (LHC) [44–49]. Such strong
electromagnetic fields can deflect the motion of heavy quarks
traversing the medium, causing the separation of v1 between
D0 and D̄0 mesons in the end. Interestingly, while the STAR
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measurement [40] observes decreasing v1 with respect to
rapidity (y) for both D0 and D̄0, with very small differ-
ence between their magnitudes, the ALICE measurement [50]
presents apparent splitting of the directed flow (�v1) between
opposite charges, with D0 increasing and D̄0 decreasing with
pseudorapidity (η). This puzzling observation has attracted
a series of investigations on heavy quark dynamics in the
presence of an electromagnetic field [38,41,51,52].

The different behaviors of the heavy meson v1 observed
at STAR and ALICE suggest different competing effects be-
tween the asymmetric medium and the electromagnetic field
at RHIC and LHC. Based on the pioneer studies above, we
conduct a systematic exploration of the origin of the heavy
flavor v1 at different colliding energies in this work. The
heavy quark evolution through the QGP is described using
a modified Langevin approach [13,53] that incorporates the
thermal diffusion of heavy quarks inside the QGP, medium-
induced gluon emission, as well as the Lorentz force due
to the electromagnetic field. With the tilted geometry of the
initial energy density distribution with respect to the longitu-
dinal direction [54,55], the spacetime evolution profile of the
QGP is simulated with the (3 + 1)-dimensional [(3 + 1)-D]
viscous hydrodynamic model CLVisc [56–59]. Within this
sophisticated framework, we find that the heavy meson v1 is
dominated by the heavy quark interaction with the tilted QGP
medium at energies available at the RHIC, while it is domi-
nated by the heavy quark interaction with the electromagnetic
field at energies available at the LHC. By comparing between
two different model calculations of the electromagnetic field,
we also find that the �v1 between D0 and D̄0 is sensitive to
the evolution profile of the field. These findings are further
confirmed with our predictions on the heavy flavor decay
electrons and muons.

This work is organized as follows. In Sec. II, we will
briefly review our modelings of the tilted initial condition
of the bulk medium and its subsequent evolution via the
CLVisc hydrodynamic simulation, and two different setups
of the electromagnetic field. In Sec. III, we will develop our
modified Langevin approach that describes the heavy quark
interaction with both the QGP medium and the external field.
Our numerical results on the heavy flavor v1 and �v1 will be
presented and discussed in Sec. IV. We summarize in Sec. V.

II. SPACETIME EVOLUTION OF THE QGP AND THE
ELECTROMAGNETIC FIELD

A. Hydrodynamic evolution of the QGP

Before studying the heavy quark interaction with the
QGP medium, we first discuss the evolution of the QGP
fireballs within the (3 + 1)-D viscous hydrodynamic model
CLVisc [57] coupled with the tilted initial energy density
distribution in the reaction plane of noncentral heavy-ion
collisions [54,55].

The initial energy density ε(x, y, ηs) is given by [57]

ε(x, y, ηs) = KW (x, y, ηs)H (ηs), (1)

where K is an overall normalization factor determined by the
soft particle yield in different collision systems, (x, y) repre-
sents the transverse plane, and ηs is the spacetime rapidity.

TABLE I. Model parameters for the initial energy density distri-
butions at RHIC and LHC [57,60].

Au+Au Pb+Pb√
sNN = 200 GeV

√
sNN = 5.02 TeV

τ0 (fm/c) 0.2 0.2
K (GeV/fm3) 125.0 490.0
α 0.05 0.05
σNN (mb) 42 68
ηw 1.3 2.2
ση 1.5 1.8

The total weight function W (x, y, ηs) is defined as

W (x, y, ηs) = (1 − α)WN (x, y, ηs) + αnBC(x, y)

[(1 − α)WN (0, 0, 0) + αnBC(0, 0)]|b=0
, (2)

where WN represents the weight contributed by wounded nu-
cleons, nBC represents contributions from binary collisions
[55], and the collision hardness parameter α measures the
relative contributions between them. Following our recent
studies [54,55], the asymmetric distribution with respect to
the beam axis is introduced into WN as

WN (x, y, ηs) = [T1(x, y) + T2(x, y)]

+ Ht [T1(x, y) − T2(x, y)] tan

(
ηs

ηt

)
, (3)

in which T1 and T2, containing the nucleon-nucleon inelastic
scattering cross section σNN , are the density distribution of
participant nucleons from the two colliding nuclei traveling
in the positive and negative z directions respectively [55];
and Ht tan(ηs/ηt ) reflects the strength of imbalance between
particle emission in the forward and backward spacetime ra-
pidities (ηs) along the direction of impact parameter (b). In
the present work, we adopt Ht = 3.9 for 10–80% Au + Au
collisions at

√
sNN = 200 GeV and Ht = 0.70 for 10-40%

Pb + Pb collisions at
√

sNN = 5.02 TeV; ηt = 8.0 is used for
both systems. These values have been adjusted in Ref. [55]
for a satisfactory description of the soft hadron v1 in their
corresponding collision systems. Additionally, in Eq. (1), a
function

H (ηs) = exp

[
− (|ηs| − ηw )2

2σ 2
η

θ (|ηs| − ηw )

]
(4)

is introduced to describe the plateau structure of the rapidity
distribution of emitted hadrons at mid-rapidity, in which ηw

determines the width of the central rapidity plateau while ση

determines the width (speed) of the Gaussian decay away
from the plateau region [57]. Related model parameters are
summarized in Table I.

The initial fluid velocity at τ0 is assumed to follow the
Bjorken approximation in this work as vx = vy = 0 and vz =
z/t , where the initial transverse expansion and the asymmetric
distribution of vz along the impact parameter (x) direction are
ignored. More sophisticated initial velocity profiles will be
studied in an upcoming effort.

With these setups, the initial energy density distribution is
illustrated in Fig. 1, where a counterclockwise tilted geometry
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FIG. 1. The initial energy density of the bulk medium in the ηs-x
plane at τ0 = 0.2 fm/c in 10–80% (b = 8.5 fm) Au + Au collisions
at

√
sNN = 200 GeV. The empty arrow (lime color) illustrates the

counterclockwise tilted geometry with respect to the longitudinal
direction, while the solid arrows (aqua color) sketch the heavy quark
propagation through the medium.

in the x-ηs plane with respect to the longitudinal direction can
be seen. This tilted initial condition was shown to be essential
for understanding the directed flow of soft hadrons emitted
from the QGP [55]. Since heavy quarks are produced from the
initial hard scatterings within the overlapping region between
the two colliding nuclei, their initial spatial distribution is
expected to be symmetric about the y-ηs plane. The tilted
medium above then gives rise to a longer path length (stronger
energy loss) of heavy quarks traveling along the +x direction
than along the −x direction towards the +z region, leading to a
negative x component of the average heavy quark momentum
(〈px〉), thus a negative v1. The reverse is expected for heavy
quarks propagating towards the −z region.

With this initial condition, the subsequent evolution of the
bulk medium follows the hydrodynamic equations as [61–65]

∂μT μν = 0, (5)

where the energy-momentum tensor is given by

T μν = εuμuν − (P + �)�μν + πμν, (6)

which involves the local energy density ε, the fluid four-
velocity uμ, the pressure P, the bulk viscosity pressure �,
and the shear viscosity tensor πμν . The projection tensor is
defined as �μν = gμν − uμuν with the metric tensor gμν =
diag(1,−1,−1,−1). The hydrodynamic equations are solved
together with the lattice QCD equation of state (EoS) from
the Wuppertal-Budapest group [66]. For a minimal model, a
constant shear-viscosity-to-entropy-density ratio is taken as
ηv/s = 0.08 (ηv for the shear viscosity), while the bulk vis-
cosity and the net baryon density are ignored in the current
work. With these setups, our hydrodynamic calculation is able
to provide a satisfactory description of the soft hadron spectra,
including their pseudorapidity-dependent yield (dNch/dη) and
directed flow coefficient (v1) [54,55,57].

B. Time evolution of the electromagnetic field

Intensive studies have been performed in the past decade
on the strong electromagnetic field generated in relativistic

heavy-ion collisions. Although the evaluation of the field at
the initial time of nuclear collisions (t = 0) has been settled in
earlier work [46,67], how it evolves with spacetime is still an
open question [67–70]. The challenges come from the com-
plicated medium environment that starts from an extremely
nonequilibrated condition and rapidly evolves from the color
glass condensate (CGC) state to the QGP state. While lattice
QCD calculations can provide the electric conductivity σel of
the QGP medium, large uncertainties still remain [71].

In this work, we will employ two different model calcu-
lations of the spacetime profiles of the electromagnetic field
and compare their impacts on the heavy flavor v1. Following
earlier studies [38,41,51,52,68], only the two dominant com-
ponents, Ex and By, are included in our calculation.

Setup 1. The first setup of the electromagnetic field is
based on the solution of the Maxwell’s equations with the
source of moving charges contributed by the spectators in
nuclear collisions [51,68,69]. In most calculations, an in-
stantaneous thermalization within the overlapping region of
collisions is assumed, and a constant electric conductivity
σel = 0.023 fm−1 is adopted from the lattice QCD evaluations
[71,72]. Although introducing conductivity slows down the
decay of the electromagnetic field, it significantly reduces the
strength of the field at early time (before the realistic start-
ing time of the QGP) compared to the vacuum environment
[46,48,67].

Setup 2. The second setup is adopted from Ref. [52], where
the magnetic field at the medium center is initialized with the
value calculated in vacuum: By(t = x = y = z = 0) = −B0,
with eB0 taken as 0.06 GeV2 (≈2.97m2

π ) for RHIC and
1.43 GeV2 (≈73m2

π ) for LHC [46,73–75]. Its spacetime dis-
tribution is then modeled as

eBy(τ, x, y) = −eB0ρ(τ )ρB(x, y), (7)

in which ρ(τ ) = 1/(1 + τ/τB) with τB = 0.4 fm/c provides
the evolution with respect to the proper time (τ ) [52], and
ρB(x, y) = exp[−x2/(2σ 2

x ) − y2/(2σ 2
y )] provides the spatial

distribution with σx and σy being the Gaussian widths along
the x and y directions [76]. Boost invariance is assumed for
the field strength at different spacetime rapidities (ηs).

With the magnetic field given above, the eEx can be deter-
mined by solving Faraday’s Law ∇ × E = −∂B/∂t as

eEx(t, x, y, ηs) = eB0ρB(x, y)

×
∫ ηs

0
dχ ρ ′

(
t

cosh χ

)
t

cosh χ
, (8)

where ρ ′ denotes the derivative of ρ(τ ) with respect to τ .
This modeling of the electromagnetic field is expected

to be applicable when ηs and the transverse coordi-
nate (

√
x2 + y2) are not large. Otherwise, one needs to

solve the full Maxwell equations with complex boundary
conditions [77].

Shown in Fig. 2 are the time evolutions of eEx and eBy,
compared between our two model setups, in 10–80% (im-
pact parameter b = 8.54 fm) Au + Au collisions at

√
sNN =

200 GeV and 10–40% (b = 7.65 fm) Pb + Pb collisions at√
sNN = 5.02 TeV. Results are shown for the position (x, y) =

(0, 0) and ηs = 1.0. One observes that for t > 1 fm/c the
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FIG. 2. Time evolution of the electromagnetic field at x = y = 0
and ηs = 1.0, compared between two different model setups; upper
panel for 10–80% Au + Au collisions at

√
sNN = 200 GeV and

lower panel for 10–40% Pb + Pb collisions at
√

sNN = 5.02 TeV.

magnitude of eBy is larger than eEx in setup 2, but they
are almost indistinguishable in setup 1. This will affect the
direction of the deflection of charged particles and in the end
the sign of the heavy flavor v1. In addition, the maximum
value of eBy in setup 1 is approximately 30 times smaller
than that in setup 2 (vacuum value) in 5.02A TeV Pb + Pb
collisions, while is it 2 times smaller in 200A GeV Au + Au
collisions. For numerical simulations of heavy quarks, the
grid range of the electromagnetic field will be assigned as
0.2 < τ < 10.2 fm/c, 0 < xT < 10.2 fm, 0 < φ < 2π , and
−4.0 < ηs < 4.0 in this work, with xT and φ being the radius
and azimuthal angle in the transverse plane.

III. TRANSPORT OF HEAVY QUARKS

In this work, we further develop the modified Langevin
approach [13,53] to simultaneously describe the heavy quark
interaction with the QGP and the electromagnetic field. The
modified Langevin equation is now expressed as

d �p
dt

= −ηD( �p) �p + �ξ + �fg + q( �E + �v × �B). (9)

The first two terms on the right hand side represent the
drag force and thermal random force on heavy quarks in-
side a thermal medium. The third term �fg provides the recoil
force experienced by heavy quarks when they emit medium-
induced gluons. The last term is introduced for the Lorentz
force on heavy quarks in the presence of electromagnetic field.

For quasielastic scatterings, the minimal assumption of the
momentum ( �p) independent �ξ is adopted. It is determined
by the white noise 〈ξ i(t )ξ j (t ′)〉 = κδi jδ(t − t ′), where κ is
known as the the momentum space diffusion coefficient which
is related to the drag coefficient via the fluctuation-dissipation
relation ηD(p) = κ/(2T E ) with T and E being the medium
temperature and heavy quark energy respectively. The spatial
diffusion coefficient of heavy quarks is then given by Ds ≡
T/[MηD(0)] = 2T 2/κ , in which M denotes the mass of heavy
quarks.

The recoil force is given by fg = d �pg/dt , where �pg rep-
resents the momentum of medium-induced gluons, whose
spectrum is taken from the higher-twist energy loss formalism
[78–80]. The strength of this term is controlled by the jet
quenching parameter q̂, which is related to the momentum
space diffusion coefficient via the dimension factor q̂ = 2κ .
For detailed implementation, one may refer to our previous
work Ref. [13]. And the systematic uncertainties from vari-
ous model ingredients have been discussed in Ref. [25]. By
convention, we take Ds as the input parameter for our model
calculation, whose value is set as D(2πT ) = 4.0 at RHIC
and D(2πT ) = 7.0 at LHC for a reasonable description of
the observed nuclear modification factors of heavy mesons.
Note that the heavy quark transport coefficient quoted in
the present study only measures the strength of the thermal
random force from the QGP medium, while effects from the
electromagnetic field are treated as an external force in Eq. (9).
In principle, the total transport coefficient should also include
the contribution from the electromagnetic field.

The spatial distributions of heavy quarks are initialized
using the binary collision positions from the Monte Carlo
Glauber model, while their momentum spectra are calcu-
lated using the leading-order perturbative QCD calculation
that includes pair production and flavor excitation processes,
coupled to the CTEQ6 parton distribution function [81] and
the EPS09 parametrization of the nuclear shadowing effect
[82] in nucleus-nucleus collisions. In the present study, we
assume heavy quarks start interacting with the medium at the
initial time of the hydrodynamic evolution (τ0 = 0.2 fm/c).
Upon traveling across the QGP boundary with a decoupling
temperature set as Td = 165 MeV, heavy quarks are converted
to heavy flavor mesons via our hybrid fragmentation and
coalescence model [36] that is well constrained by the heavy
flavor hadron chemistry measured at RHIC and LHC. In the
end, these heavy flavor hadrons decay into leptons, according
to PYTHIA simulation [83].

IV. NUCLEAR MODIFICATION AND DIRECTED FLOW OF
HEAVY MESONS AND THEIR DECAY LEPTONS

In this section, we present our numerical results on the
heavy flavor observables and discuss how they are affected
by the initial geometry of the QGP and the evolution profiles
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of the electromagnetic field. We will concentrate on two main
observables, nuclear modification factor RAA and the directed
flow coefficient v1. The former is defined as the ratio of
the particle spectra between nucleus-nucleus collisions and
proton-proton collisions,

RAA = 1

N
dNN/dy d pT

dNpp/dy d pT
, (10)

where N is the average number of binary nucleon-nucleon
collisions in a given setup of nucleus-nucleus collisions. The
directed flow is the first-order Fourier coefficient of the angu-
lar distribution of the particle spectra and can be obtained via

v1 = 〈cos(φ − �1)〉 =
〈

px

pT

〉
, (11)

where �1 is the first-order event plane angle and 〈· · · 〉 denotes
the average over the final-state heavy mesons or their decay
leptons obtained from our Langevin simulation. Since we use
the optical Glauber model, as described in Sec. II A, to initial-
ize the energy density distribution of the QGP, event-by-event
fluctuations have not been taken into account in this work.
Therefore, the event plane in the final state here is the same as
the participant plane in the initial state, which is also the same
as the spectator plane determined using the deflected neutrons
in realistic experimental measurements. More sophisticated
analysis needs to be implemented in our future work after
introducing the event-by-event fluctuation.

A. RAA and v1 of heavy mesons

We start with the nuclear modification factor and directed
flow coefficient of D mesons, including the splitting of v1

between D0 and D̄0, in 200A GeV Au + Au collisions at
RHIC and 5.02A GeV Pb + Pb collisions at LHC.

In Fig. 3, we first present the RAA of D mesons in central
Au + Au and Pb + Pb collisions. Results are shown for the
mid-rapidity region (|y| < 1) and compared to experimental
data at RHIC and LHC. With the spatial diffusion coefficient
set as D(2πT ) = 4 at RHIC and 7 at LHC, a reasonable
agreement has been obtained between our calculation and
the data. A larger value of the diffusion can be understood
with a weaker average interaction strength between heavy
quarks and the hotter QGP matter at LHC than at RHIC.
The peak structure of the D meson RAA results from the co-
alescence process when charm quarks hadronize [13]. Model
uncertainties still remain in this nonperturbative process. We
have verified that the effect of the electromagnetic field is
negligible in the heavy meson RAA, considering the much
weaker Lorentz force compared to the elastic and inelastic
scatterings between heavy quarks and the QGP medium. A
reasonable description of the D meson RAA at mid-rapidity
provides a necessary baseline for further investigation of the
longitudinally dependent observables that rely on the tilted
initial condition of the bulk matter and the spacetime profiles
of the external field.

In Fig. 4, we investigate the rapidity dependence of the D
meson v1 in 10–80% Au-Au collisions. Effects of both the
tilted initial condition and the electromagnetic field have been

FIG. 3. Nuclear modification factor of D mesons in 0–10%
200A GeV Au + Au collisions (upper panel) and 5.02A TeV Pb + Pb
collisions (lower panel), compared to the STAR [84] and CMS [85]
data respectively.

included. By using the second setup of the electromagnetic
field described in Sec. II B, we observe that both D0 and
D̄0 exhibit a negative slope of v1 vs y in the upper panel of
the figure. The directed flow of D̄0 decreases slightly faster
than that of D0 because c̄ and c quarks are deflected towards
different directions along the x axis by the electromagnetic
field. Note that, according to Eq. (8), the negative By with
decaying magnitude results in positive Ex at z < 0 and neg-
ative Ex at z > 0. With such a configuration, the electric and
magnetic fields deflect a given charge into opposite directions.
For instance, for a positive charge traveling along the +z
direction, the magnetic field deflects it towards +x while the
electric field deflects towards −x. In the end, whether v1 of
D0 decreases faster or slower than that of D̄0 with respect to
rapidity relies on the competing strength between electric and
magnetic fields. In the upper panel, we also present the di-
rected flow of charm quarks before hadronization. Comparing
between results for the c quark and D0, a weak effect from the
hadronization process can be seen on the heavy flavor v1.

For a closer investigation on the effect of electromagnetic
field, we present the directed flow splitting �v1 = v1(D0) −
v1(D̄0) in the lower panel of Fig. 4, compared between the two
field setups. However, due to the relatively weak magnitude
of electromagnetic field at RHIC, compared to that at LHC
as will be shown later, the v1 splittings from both field setups
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FIG. 4. Upper panel: directed flow of charm quarks and D0 and
D̄0 mesons as a function of rapidity in 10–80% Au + Au collisions at√

sNN = 200 GeV with electromagnetic field setup 2. Lower panel:
the direct flow splitting �v1 = v1(D0) − v1(D̄0 ) compared between
two setups of the electromagnetic field. Results are compared to the
STAR data [40].

are small. The evolution profile of the electromagnetic field
is hard constrain using the RHIC data with the current large
uncertainties. The unbalanced energy loss in ±x directions
through a tilted medium (as shown in Fig. 1) is the main
source of the heavy flavor v1 at RHIC. This is consistent with
the findings presented in Refs. [37,38,41,42].

In Fig. 5, we further study the directed flow of D mesons
in 10–40% Pb + Pb collisions. In the upper panel, with setup
2 of electromagnetic field, one observes that while D̄0 shows
a negative slope of v1 with respect to pseudorapidity (η), D0

shows the opposite. To understand this qualitative difference
from the RHIC result, we separate different origins of v1 in the
middle panel. Without introducing the electromagnetic field
(blue solid curve), the tilted geometry of the QGP medium
yields very small magnitude of v1. This is due to the much
more balanced initial conditions between the forward and
backward rapidity regions in more energetic nuclear collisions
at LHC than at RHIC. The weaker tilt of the bulk medium at
LHC can also be reflected by the smaller v1 of soft hadrons
emitted from the QGP, as shown in our earlier study [55]. On
the other hand, the electromagnetic field is much stronger at
LHC than at RHIC. As in the earlier discussion, we observe
that the pure magnetic field (green dashed curve) leads to a

FIG. 5. Directed flow coefficients of D0 and D̄0 mesons and
their difference in 10–40% Pb + Pb collisions at

√
sNN = 5.02 TeV,

compared to the ALICE data [50].

positive slope of v1(η) for the positively charged charm quark
and thus D0. In contrast, the pure electric field (black dotted
curve) leads to a negative slope. Because of the larger magni-
tude of By than Ex within setup 2, the slope is still positive after
electric and magnetic fields are combined (red dotted-dashed
curve). This positive slope also overwhelms the small negative
slope contributed by the tilted medium geometry (blue solid
curve), resulting in a final positive slope for D0 after all effects
are combined.

In the lower panel of Fig. 5, the �v1 between D0 and D̄0 is
compared between our two setups. As illustrated in Fig. 2, the
magnitude of the electromagnetic field is much larger in setup
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FIG. 6. Directed flow coefficients of B0 and B̄0 mesons and their
difference in 10–80% 200A GeV Au + Au collisions (upper panel)
and 10–40% 5.02A TeV Pb + Pb collisions (lower panel).

2 than in setup 1. Besides, setup 1 yields similar magnitudes
of By and Ex, but setup 2 provides a larger By than Ex during
the entire QGP lifetime. As a result, one observes very small
�v1 here from setup 1, and an apparently larger �v1 (with
a positive slope with respect to η) from setup 2. The ALICE
data [50] prefer the field profile modeled with setup 2. In the
rest of this work, we will continue using setup 2 for predicting
the observables of heavy flavor decay leptons.

Similar investigations have also been implemented for B
mesons in Fig. 6, where we assume b quarks share the same Ds

with c quarks, which enables a reasonable description of the
B meson RAA at RHIC and LHC. Conclusions consistent with
those for D mesons can be drawn here. In the upper panel,
we observe a negative slope of v1 as a function of rapidity at
RHIC for both B̄0 and B0, with no apparent difference between
them. This indicates the negligible impact of electromagnetic
field at RHIC, while the B meson v1 is mainly driven by
the tilted geometry of the QGP medium. The v1 difference
v1(B̄0) − v1(B0) is also compared with v1(D0) − v1(D̄0): they
are equally small. In the lower panel, we observe different
slopes between B̄0 (positive) and B0 (negative) at LHC, in-
dicating the dominant effect from the electromagnetic field
from the more energetic collisions at LHC. However, the v1

splitting between B̄0 and B0 is much smaller than that between
D0 and D̄0, which results from the smaller electric charge
carried by b quarks (−1/3) compared to c quarks (2/3), and

FIG. 7. Nuclear modification factor of charm decay electrons in
0–80% Au + Au collisions at

√
sNN = 200 GeV (upper panel) and

0–10% Pb + Pb collisions at
√

sNN = 5.02 TeV (lower panel), com-
pared to the STAR data [87,88] and the ALICE data [89] respectively.

the larger mass of b quarks (or smaller velocity for a given
momentum) than c quarks, both reducing the Lorentz force
experienced by b quarks compared to c quarks.

B. RAA and v1 of charm decay electrons

Measurements of open heavy flavor at large rapidity have
been carried out via detecting electrons and muons from the
decay of charm and beauty hadrons using an electron/muon
spectrometer in nuclear collision experiments. The new Muon
Forward Tracker in the LHC Run 3 is able to separate
muons from charm and beauty semileptonic decays [86], al-
lowing a clean investigation of the properties heavy quarks
with particular species. These upgraded experiments provide
a broad coverage of rapidity, making heavy flavor decay
electrons and muons ideal candidates for probing the tilted
medium geometry with respect to the longitudinal direction,
as well as the the evolution profile of the electromagnetic
field.

We start with validating our model calculation with the
RAA of charm decay electrons at RHIC and LHC. As shown
in Fig. 7, with the same transport calculations for D mesons
in the previous subsection, our RAA of charm decay elec-
trons agrees with the STAR data for 0–80% Au + Au at√

sNN = 200 GeV (upper panel) at mid-rapidity. For 0–10%
Pb + Pb collisions at

√
sNN = 5.02 TeV (lower panel), since
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FIG. 8. Directed flow coefficient of charm decay electrons in
10–80% Au + Au collisions at

√
sNN = 200 GeV, compared to the

STAR data [87,88,90], and in 10–40% Pb + Pb collisions at
√

sNN =
5.02 TeV.

the current ALICE measurement includes contributions from
both charm and beauty decay electrons, our result with con-
tribution from charm quarks alone is expected to be a little
smaller than the data, considering the stronger energy loss
experienced by lighter charm quarks than heavier beauty
quarks.

The directed flow coefficients of charm decay electrons
are then presented in Fig. 8, with setup 2 adopted for the
electromagnetic field. As shown in the upper panel, the ra-
pidity dependence of the charm decay electron v1 agrees with
the STAR data in 10–80% Au + Au collisions at

√
sNN =

200 GeV, with a slope parameter extracted as dv1/dy =
−0.045 ± 0.005 around the y = ±1 regions. Little difference
can be observed between c-decay e+ and c̄-decay e−. In the
middle panel, we present the average v1 of c-decay e+ and
c̄-decay e−, compared to the difference between them on the
same scale. One observes that the difference, resulting from
the electromagnetic effect, is much smaller than the average,
resulting from the tilted geometry of the QGP medium. This
confirms the asymmetric medium profile is the dominant ori-
gin of the heavy flavor v1 at RHIC, consistent with the findings
using the D meson v1 in the previous subsection.

Shown in the lower panel of Fig. 8 is our prediction
for v1 of charm decay electrons in 10–40% Pb + Pb col-
lisions at

√
sNN = 5.02 TeV. Separate results for c-decay

positrons and c̄-decay electrons, together with their differ-
ence, are presented. While v1(e− ← c̄)(η) shows a negative
slope, v1(e+ ← c)(η) shows a positive slope, indicating the
stronger electromagnetic effect on the heavy flavor v1 than
the geometric effect of the medium at LHC. The v1 split-
ting between positron and electron increases with η, whose
slope parameter is extracted as d�v1/dη = 0.05 ± 0.01
around y = ±1, which can be tested by future measurement
at LHC.

C. RAA and v1 of charm decay muons

Finally, we close our study with the prediction for heavy-
flavor decay muons, which is the only probe so far of heavy
flavor dynamics at forward rapidity in nuclear collisions.
Contributions from charm and beauty quarks can also be
distinguished at ATLAS within the |y| < 2.0 range [86].

Displayed in Fig. 9 is the RAA of charm decay muons
in 0–10% Au + Au collisions at

√
sNN = 200 GeV (upper

panel) and Pb + Pb collisions at
√

sNN = 5.02 TeV (lower
panel). Our calculation for the latter is in reasonable agree-
ment with the available data from the ATLAS Collaboration
in the mid-rapidity region [86]. The RAA of charm decay
muons should be close to that of charm decay electrons
previously shown in Fig. 7. The residual difference should
come from the decay functions that take different fractions
of momentum from the parent charm quarks for electrons and
muons.

The directed flow coefficients of charm decay muons are
presented in Fig. 10, upper panel for 10–80% Au + Au col-
lisions at

√
sNN = 200 GeV and lower panel for 10–40%

Pb + Pb collisions at
√

sNN = 5.02 TeV. Consistent with the
previous results for charm decay electrons, in the upper panel,
we observe that the directed flow coefficients of c-decay μ+,
c̄-decay μ−, and their average almost overlap each other. The
slope parameter for v1(η) is dv1/dy = −0.05 ± 0.005 around
y = ±1. Meanwhile, �v1 between μ+ and μ− is close to zero.
This further confirms the dominant contribution to v1 from
the tilted medium geometry at RHIC. Contrarily, the strong
electromagnetic field dominates the formation of muon v1 at
LHC. As shown in the lower panel, while the slope of v1(η)
is negative for c̄-decay μ−, it is flipped for c-decay μ+ due to
opposite Lorentz force on opposite charges. Their difference,
v1(μ+ ← c) − v1(μ− ← c̄), then increases with η, with a
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FIG. 9. Nuclear modification factor of muons in 0–10% Au +
Au collisions at

√
sNN = 200 GeV and Pb + Pb collisions at

√
sNN =

5.02 TeV. The latter is compared to the ATLAS data [86,91].

slope parameter d�v1/dη = 0.07 ± 0.005 extracted around
η = ±1.

V. SUMMARY AND OUTLOOK

We have conducted a systematic investigation on the inter-
playing mechanisms behind the heavy flavor directed flow v1

and �v1. Effects from the tilted initial condition of the bulk
medium, the electric field, and the magnetic field have been
analyzed in detail within a modified Langevin transport model
coupled to a (3 + 1)-D viscous hydrodynamic model CLVisc,
which has been validated with the nuclear modification factor
(RAA) data of both heavy mesons and their decay leptons.

We have illustrated, for the first time, that the tilted initial
energy density profile is the main source of the heavy fla-
vor v1 at the RHIC energy, while the electromagnetic field
dominates the v1 formation at the LHC energy. Comparing
between our two setups of the electromagnetic field, we have
found that the splitting of v1 between positive and negative
charges (�v1) is sensitive to the decay speed and the rela-
tive strength between electric and magnetic fields. While the
electric field results in a negative slope of the v1(y) function
of positive charges, the magnetic field yields a positive slope.
Compared to our setup 1 (the direct solution of the Maxwell
equation), our setup 2 adopted from Ref. [52] provides a
much slower decay of the field, and a stronger strength of

FIG. 10. Directed flow coefficient of charm decay muons in 10–
80% Au + Au collisions at

√
sNN = 200 GeV and 10–40% Pb + Pb

collisions at
√

sNN = 5.02 TeV.

the magnetic field than the electric field throughout the QGP
lifetime, which is favored by the experimental data on the
pseudorapidity dependence of v1 at LHC. These have been
consistently confirmed with our calculations across D mesons
and their decay electrons and muons. Our numerical results
agree with the available data at RHIC and LHC, and await
test with future electron measurement at LHC and muon mea-
surement at RHIC and LHC. These new observations at RHIC
are expected to place a more stringent constraint on the initial
energy density profile of the QGP, while observations at LHC
are expected to help refine our knowledge on the spacetime
evolution of the electromagnetic field in energetic nuclear
collisions.

Our current study of the directed flow v1 and the directed
flow splitting �v1 of heavy flavor can be further extended
in several directions. For instance, a simultaneous investiga-
tion of the RAA and v1 (�v1) of heavy quarks in isobaric
96
44Ru + 96

44Ru collisions and 96
40Zr + 96

40Zr collisions at RHIC and
O + O and Ar + Ar collisions at LHC could provide addi-
tional constraints on the system size dependence of the tilted
initial condition of the QGP, as well as the evolution profiles
of the electromagnetic fields. While a qualitative agreement
can be achieved between our model calculation with setup
2 of electromagnetic field and the experimental data, a more
precise quantitative agreement would requires a much more
dedicated calculation of the electromagnetic field. Recent
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studies [48,92] have shown that including electric and chiral
magnetic conductivities can affect both the decay speed and
the spatial symmetry of the electromagnetic field, which may
also influence the azimuthal distribution of heavy quarks and
their decay products. These will be incorporated in our model
calculation in an upcoming effort.
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