
PHYSICAL REVIEW C 105, 054904 (2022)
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We calculate the nth order of 2k-particle azimuthal cumulants cn{2k} based on transverse momentum conser-
vation (TMC) and collective flow vn (n = 2, 3). We demonstrate that the TMC effect only leads to a nonzero
cn{2k} with the sign of (−1)nk and the magnitude inversely proportional to (N − 2k)nk . The interplay between
TMC and collective flow can change the signs of c2{4}, c3{2}, and c3{4} at some values of multiplicity N , which
could provide a good probe to study the onset of collectivity and search for the substructure of proton in small
colliding systems.
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I. INTRODUCTION

Quarks and gluons which are confined inside nucleons can
be released under an environment with high temperature and
(or) large baryon number chemical potential [1–5]. A large
amount of experimental results from both the Relativistic
Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC) have shown that a new deconfined QCD matter, so-
called strongly coupled quark gluon plasma (sQGP), has been
produced in the early stage of high energy nucleus-nucleus
(A + A) collisions [6–8]. Among the most important experi-
mental evidence is the observation of strong collective flow
of the produced particles in A + A collisions. This is because
the collective flow is considered to result from the collective
expansion of sQGP, which can transfer the asymmetry of the
initial space geometry into the anisotropy of the final particles’
momenta [9–13].

Compared with the large A + A colliding systems, proton-
proton or proton-nucleus collisions are called small colliding
systems. Recent experimental results surprisingly show that
small colliding systems carry “collective flow” as strong as
that in large colliding systems, which poses a challenge to
our current understanding of the strong collective flow due
to the expansion of sQGP [14–16]. In order to understand
the origin(s) of collective flow in small colliding systems,
lots of theoretical efforts have been made, which basically
can be divided into two categories according to whether the
origin comes from the final or initial state. For example,
hydrodynamics can transform the initial geometric asymme-
try into the final momentum anisotropic flow through the
pressure gradient of the QGP, which can well describe the
experimental results [17–23]. Parton cascade could achieve
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a similar conversion through an escape mechanism [24–28].
On the other hand, the initial state of color glass condensate
(CGC) has also been proposed as a possible mechanism,
contributing to the experimentally measured correlations in
small colliding systems [29–37]. Interestingly, using the CGC
effective field theory coupled to hydrodynamical simulations,
it has been found that fluctuating substructure of the proton
must be included in order to better match the experimen-
tally observed anisotropic flow in small systems [38–40]. A
multiphase transport model with subnucleon geometry can
better describe the multiplicity dependence of cn{4}, which
demonstrates the importance of incorporating the substructure
of the proton in studies of small colliding systems [41].

On the other hand, experimentalists have made lots of
efforts to measure collective flow in small colliding systems
using different observables. The multiparticle azimuthal cu-
mulant has been proposed as an advanced and powerful tool to
explore the collectivity of many-body systems, because it can
effectively reduce few-body nonflow contribution [42]. The
nth order of 2k-particle azimuthal cumulant cn{2k} is defined
as follows:

cn{2} = 〈ein(φ1−φ2 )〉,
cn{4} = 〈ein(φ1+φ2−φ3−φ4 )〉 − 2〈ein(φ1−φ2 )〉2,

cn{6} = 〈ein(φ1+φ2+φ3−φ4−φ5−φ6 )〉
− 9〈ein(φ1+φ2−φ3−φ4 )〉〈ein(φ1−φ2 )〉
+ 12〈ein(φ1−φ2 )〉3

cn{8} = 〈ein(φ1+φ2+φ3+φ4−φ5−φ6−φ7−φ8 )〉
− 16〈ein(φ1+φ2+φ3−φ4−φ5−φ6 )〉〈ein(φ1−φ2 )〉
− 18〈ein(φ1+φ2−φ3−φ4 )〉2

+ 144〈ein(φ1+φ2−φ3−φ4 )〉〈ein(φ1−φ2 )〉2

− 144〈ein(φ1−φ2 )〉4, (1)
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where φi is the azimuthal angle of the ith particle, and n = 2
and 3 correspond to the elliptic and triangular flow, respec-
tively. The experimental measurement has shown that four-,
six, and eight-particle elliptic flow cumulants are almost same
in p + p and p+Pb collisions, which indicates the existence of
multiparticle correlations in small colliding systems [43]. The
recent experimental results show that four-particle azimuthal
elliptic flow cumulant c2{4} changes its sign, from posi-
tive to negative, as the multiplicity increases [44,45], which
could be related to the onset of collectivity in small colliding
systems [46].

The conservation laws are also an obvious source of the
azimuthal correlation between particles; see, e.g., [47–53].
For instance, transverse momentum conservation (TMC) is an
important background for the experimental measurement of
directed flow (v1), especially in peripheral A + A collisions
[13,54], mainly because the 1/N correction caused by TMC
is very large. Our recent studies have found that TMC is also
important for understanding of the behavior of elliptic flow
in small colliding systems. We found that with the increasing
value of the total multiplicity N , the TMC effect leads to a
positive 2k-particle elliptic flow cumulants c2{2k} which sat-

isfies the dependence of 1/(N − 2k)2k [55]. The four-particle
elliptic flow coefficient c2{4} will change its sign if TMC
interplays with hydrolike elliptic flow, which can naturally
explain the observed behavior of the multiplicity dependence
of c2{4} in the small colliding systems at the LHC [56].

In this work, we will generalize the 2k-particle flow cumu-
lant cn{2k} induced by TMC to higher orders in Sec. II. By
including the interplay between TMC with hydrolike elliptic
and triangular flow, we will focus on the third order of multi-
particle azimuthal cumulants c3{2} and c3{4} in Sect. III and
compare them with the recent experimental data in small col-
liding systems from the LHC in Sec. IV. Finally, conclusions
are given in Sec. V.

II. cn{2k} FROM TRANSVERSE MOMENTUM
CONSERVATION

The previous studies have shown that the cumulant flow
coefficients can arise from transverse momentum conserva-
tion [55]. Let us first briefly review our calculation method.
To calculate the TMC contribution to 2k-particle azimuthal
cumulant cn{2k}, the following term has to be calculated first:

〈ein(φ1+···+φk−φk+1−···−φ2k )〉 =
∫
�

ein(φ1+···+φk−φk+1−···−φ2k ) f ( �p1, �p2, . . . , �p2k )p1 p2 · · · p2kdφ1dφ2 · · · dφ2kd p1d p2 · · · d p2k∫
�

f ( �p1, �p2, . . . , �p2k )p1 p2 · · · p2kdφ1dφ2 · · · dφ2kd p1d p2 · · · d p2k
, (2)

where p stands for a particle transverse momentum, and the
integration is over a given acceptance phase-space region �

of 2k particles. Note that we denote ein(φ1+···+φk−φk+1−···−φ2k ) as
ein(φ1+···−φ2k ) in the following for simplicity. The 2k-particle
probability distribution f ( �p1, �p2 · · · �p2k ) for the N-particle
system under TMC can be approximately given by the central
limit theorem (see, e.g., [47,50,53]):

f ( �p1, . . . , �p2k ) = f ( �p1) · · · f ( �p2k )
N

N − 2k

× exp

(
− ( �p1 + · · · + �p2k )2

(N − 2k)〈p2〉F

)
, (3)

where N is the total number of particles in the system (2k <

N) and 〈p2〉F stands for mean value of squared p in the full
phase space F ,

〈p2〉F =
∫

F p2 f ( �p)d2 �p∫
F f ( �p)d2 �p . (4)

Equation (2) contains an integration over transverse momenta.
In our work, we calculate the cumulants at a given p, which
substantially simplifies the problem. In this case Eq. (2) can
be rewritten as

〈ein(φ1+···−φ2k )〉|p1,p2···p2k

=
∫
�

ein(φ1+···−φ2k ) exp(X )dφ1dφ2 · · · dφ2k∫
�

exp(X )dφ1dφ2 · · · dφ2k
, (5)

where

X = −
∑

0<l< j<2k+1 2pl p j cos (φl − φ j )

(N − 2k)〈p2〉F

= −
∑

l �= j pl p jei(φl −φ j )

(N − 2k)〈p2〉F
. (6)

We can easily integrate the denominator of Eq. (5), which
approximately equals (2π )2k (here we keep the leading term,
eX ≈ 1). However, the integration of the numerator cannot be
achieved easily. But as X scales inversely with N − 2k, it can
be presumed that X is small enough so that an expansion in
powers of X can be employed if N − 2k is large enough. Then
we can rewrite Eq. (5) as

〈ein(φ1+···−φ2k )〉|p1,p2···p2k

=
∫
�

ein(φ1+···−φ2k )(1+X + X 2

2 + X 3

6 +· · · )dφ1dφ2 · · · dφ2k

(2π )2k
.

(7)

With the knowledge of orthogonal functions, among the ex-
pansion terms (1 + X + X 2

2 + X 3

6 + · · · ), only terms linearly
correlated with e−in(φ1+···−φ2k ) can generate a nonzero outcome
with a coefficient of (2π )2k . Here only X m

m! with m � nk would
contain terms linearly correlated with ein(−φ1−···+φ2k ). In our
calculation we keep only the leading term coming from X nk

(nk)! .
Observing Eqs. (6) and (7), we can write the leading

term as C pn
1 pn

2···pn
2k

(N−2k)nk〈p2〉nk
F

, where the coefficient C can be cal-
culated as follows. From Eq. (6), we can see that among
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TABLE I. The nth order 2k-particle cumulant cn{2k} from the
global conservation of transverse momentum only.

n cn{2} cn{4} cn{6} cn{8}

2 1
2

p2
1 p2

2
[(N−2)〈p2〉F ]2

p2
1 p2

2 p2
3 p2

4
[(N−4)〈p2〉F ]4 6

p2
1 p2

2 ···p2
6

[(N−6)〈p2〉F ]6 72
p2

1 p2
2 ···p2

8
[(N−8)〈p2〉F ]8

3 − 1
6

p3
1 p3

2
[(N−2)〈p2〉F ]3

1
2

p3
1 p3

2 p3
3 p3

4
[(N−4)〈p2〉F ]6 −7

p3
1 p3

2 ···p3
6

[(N−6)〈p2〉F ]9 261
p3

1 p3
2 ···p3

8
[(N−8)〈p2〉F ]12

4 1
24

p4
1 p4

2
[(N−2)〈p2〉F ]4

17
144

p4
1 p4

2 p4
3 p4

4
[(N−4)〈p2〉F ]8

709
288

p4
1 p4

2 ···p4
6

[(N−6)〈p2〉F ]12
54193
288

p4
1 p4

2 ···p4
8

[(N−8)〈p2〉F ]16

X nk , each X can provide a factor with a positive power
ei(φl ) and a negative one e−i(φ j ), 0 < j �= l < 2k + 1. To reach
ein(−φ1−···−φk+φk+1+···+φ2k ), the only possibility is that nk pos-
itive power factors explicitly form the ein(φk+1+···+φ2k ) and nk
negative power factors form the e−in(φ1+···+φk ). For the positive
power factors, there are (nk)!

(n!)k ways in total to form ein(φ1+···+φk ).

For the negative terms, (nk)!
(n!)k ways exist as well. Taking the

coefficient coming from the exponential expansion (−1)nk

(nk)! into
account, we obtain the 2k-particle azimuthal cumulant cn{2k}
due to TMC with the leading term considered only, as shown
below:

cn{2k} = (−1)nk (nk)!

(n!)2k

pn
1 pn

2 · · · pn
2k

(N − 2k)nk〈p2〉nk
F

. (8)

Using the definitions of cn{2k} in Eqs. (1), we summarize
the TMC-induced cn{2k} for n = 2, 3, 4 and 2k = 2, 4, 6, 8
in Table I. From these results, we observe that except for
the coefficients of c3{2} and c3{6} which are negative, the
other coefficients are all positive. Moreover the magnitude
of the TMC contribution to cn{2k} obviously decreases with
the increasing value of N . Note that although our calcula-
tions concern only the leading term, these results can still
be applied to describe the tendency and the magnitude of the
TMC-induced cn{2k}.

Our calculations are based on the assumption that X is
small enough to make an expansion. As X scales inversely
with N − 2k, our calculations may tend to lose efficacy when
N − 2k is very small, as higher orders terms need to be in-
cluded. On the other hand, when N − 2k is very large, the

TMC effects would be faint and the flow contribution would
instead dominate the total outcome.

III. cn{2k} FROM TRANSVERSE MOMENTUM
CONSERVATION AND FLOW

In the previous section, the 2k-particle cumulants cn{2k}
from the transverse momentum conservation only have been
calculated. In this section, the contribution coming from the
collective flow will be included as well. The particle azimuthal
distribution can be described as

dN

dφ
= g(p)

2π

(
1 +

∑
n

2vn(p) cos[n(φ − �n)]

)
, (9)

where vn is the nth order of the flow coefficient and �n is
the nth order event plane. Because the experimental results
disclose that the directed flow v1 and high orders of vn (n > 3)
are smaller than v2, v3, we only consider v2 and v3 in our
calculations for simplicity. After taking the collective flow
into account, the 2k-particle probability distribution of Eq. (3)
can be modified as (see, e.g., Refs. [53,56])

f ( �p1, . . . , �p2k )

= f ( �p1) · · · f ( �p2k )
N

N − 2k

× exp

(
− (p1x + · · · + p2kx )2

2(N − 2k)
〈
p2

x

〉
F

− (p1y + · · · + p2ky)2

2(N − 2k)
〈
p2

y

〉
F

)
,

(10)

where 〈
p2

x

〉
F = 1

2 〈p2〉F (1 + v2F ), (11)〈
p2

y

〉
F

= 1
2 〈p2〉F (1 − v2F ), (12)

v2F =
∫

F v2(p)g(p)p2d2 p∫
F g(p)p2d2 p

. (13)

Note that we set �2 = 0. With the help of Euler’s formula,
〈ein(φ1+···−φ2k )〉|p1,...,p2k is given by

〈ein(φ1+···−φ2k )〉|p1,...,p2k =
∫

F ein(φ1+···−φ2k ) exp(X )
∏

j (1 + ∑
m vm(p j )(eim(φ j+�m ) + e−im(φ j−�m ) ))dφ1dφ2 · · · dφ2k∫

F exp(X )dφ1dφ2 · · · dφ2k
, (14)

where

X = − (p1x + · · · + p2kx )2

2(N − 2k)
〈
p2

x

〉
F

− (p1y + · · · + p2ky)2

2(N − 2k)
〈
p2

y

〉
F

. (15)

This integral is not straightforward and generate a lot of terms.
First, to simplify our consideration we assume that all the
momenta are equal, i.e., p1 = p2 = · · · = p2k = p. Next, as
before, we expand eX , i.e., eX = 1 + X + X 2/2! + · · · , which
allows to write the result as

〈ein(φ1+···−φ2k )〉|p = U0 + U1Y + U2
Y 2

2
+ · · · + Um

Y m

m!
+ · · · ,

(16)

where Y = − p2

(N−2k)〈p2〉F (1−v2
2F )

and the coefficients Um depend
on v2, v3, p, and v2F . We include all the terms up to the
one containing the pure TMC effect, i.e., Unk for cn{2k}, and
higher ones are neglected. The details of our calculation are
shown in the Appendix.

We obtained c2{2}|p and c2{4}|p in our previous work
[56]. In this paper, we focus on c3{2}|p and c3{4}|p. Given
that v2 = 0.05, v3 = 0.0175, v2F = 0.025, the terms that are
about 100 times (or more) smaller than the largest term in
a given Un are omitted. The full results can be found in the
Appendix. We give their approximate expressions below. The
two-particle triangular cumulant coefficient with a momentum
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FIG. 1. Left: N dependence of c2{4} for the three selected momenta p, where the ATLAS data for p+Pb collisions at 5.02 TeV are shown
for comparisons [45]. Right: N dependences of c2{4} from “Pure TMC,” “TMC + v2,” “TMC+v3,” and “TMC+v2 + v3,” respectively, for
the case of p = 0.6 GeV. Note that the curve of “Pure TMC” almost overlaps with that of “TMC+v3,” and the curve of “TMC + v2” almost
overlaps with that of “TMC+v2 + v3.”

p, c3{2}|p, is given by

c3{2}|p = U0 + U1Y + U2
Y 2

2
+ U3

Y 3

6
,

Y = − p2

(N − 2)〈p2〉F
,

U0 = v2
3,

U1 = 2v2
3 + v2

2,

U2 = 6v2
3 + 4v2

2 − 2v2F v2,

U3 = 1 + 15v2
2 − 18v2F v2. (17)

The first term in the four-particle triangular cumulant coef-
ficient, c3{4}|p, with a momentum p, reads

〈ei3(φ1+φ2−φ3−φ4 )〉|p = U0 + U1Y + U2
Y 2

2
+ · · · + U6

Y 6

720
,

Y = − p2

(N − 4)〈p2〉F
,

U0 = v4
3,

U1 = 4v4
3 + 4v2

2v
2
3,

U2 = 28v4
3 + 48v2

2v
2
3 + 4v4

2 − 8v2F v2v
2
3,

U3 = 4v2
3 + 256v4

3 + 564v2
2v

2
3

+ 72v4
2 − 264v2F v2v

2
3 − 48v2F v3

2,

U4 = 160v2
3 + 64v2

2 + 6880v2
2v

2
3

+ 1056v4
2 −6224v2F v2v

2
3 −1680v2F v3

2,

U5 = 4180v2
3 + 2400v2

2 + 87044v2
2v

2
3

+ 14800v4
2 − 800v2F v2−40800v2F v3

2,

U6 = 400 + 89120v2
3 + 59760v2

2

− 42000v2F v2. (18)

Using Eqs. (1), (17) and (18), we can get the final c3{4}|p.
Note that in the approximations (17) and (18) we cannot see

any terms involving �3. It indicates that the effect of �3 is
negligible, although the �3 terms do exist in the full results
(see the Appendix).

IV. APPLICATION TO c2{4}, c3{2}, AND c3{4}
In this section, we compare three observables (c2{4}, c3{2},

and c3{4}) with the experimental measurements, and show the
TMC and collective flow effects on them. For simplicity, we
assume that all particles carry a common transverse momen-
tum p, and we consider several reasonable values of p. The
value of 〈p2〉F is always taken to be 0.135 (GeV/c)2, and
the flow parameters are chosen as follows: v2 = 0.05, v3 =
0.0175, v2F = 0.025, which are estimated based on the re-
lated experimental measurements. It should be pointed out
that although we choose these parameters as some constants
for simplicity, obviously they should depend on the multiplic-
ity of N in real experiments. In the following, we will present
the results of c2{4}, c3{2}, and c3{4}, which are obtained from
full expressions as given in the Appendix.

In the left plot of Fig. 1, we show our results on the
N dependence of c2{4} including the TMC and collective
flow (v2 and v3) contributions for three selected momenta
p, in comparison with the ATLAS data for p+Pb collisions
at 5.02 TeV [45]. Note that because the N should stand for
the total number of particles affected by TMC, which is not
equivalent to the number of detected charged particles, the N
of experimental data points is multiplied by a factor of 1.5
to take the neutral particles into account. Our results show a
decreasing tendency with increasing N which resembles the
data qualitatively. We also find that c2{4} changes its sign at
different N for different p, which was observed in our previous
study [56].

To illustrate how the TMC and collective flow can influ-
ence c2{4}, the right panel of Fig. 1 shows four different cases
for p = 0.6 GeV which include four kinds of contribution
combinations: from the TMC only (denoted as“Pure TMC”),
TMC and elliptic flow (denoted as“TMC + v2”), TMC and
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FIG. 2. Same as Fig. 1 but for c3{2}, where the ALICE data for p+Pb collisions at 5.02 TeV are shown for comparison [57].

triangular flow (denoted as “TMC+v3”), and TMC and col-
lective flow (denoted as“TMC+v2 + v3”). We can see that the
TMC only leads to a decreasing tendency with increasing N ,
and if one further takes into account the elliptic flow v2 the
curve will be lowered ,which results in a sign change of c2{4}.
However, the presence of triangular flow v3 has a negligible
effect on c2{4}.

The left plot of Fig. 2 shows our results on N dependence
of c3{2} due to the total effect of TMC and collective flow
for three selected momenta p. They all show an increasing
tendency with increasing N , which can describe the data
qualitatively. In the right plot of Fig. 2, we choose p = 0.6
GeV to analyze different effects separately. As discussed in
Table I, the TMC effect results in a negative c3{2}, which
is our baseline to study any additional effect from collective
flow. But c3{2} will be enhanced if only triangular flow v3

exists, which can result in a sign change at a certain N . On
the other hand, c3{2} becomes more negative if only elliptic
flow v2 is present. Therefore, we observe that c3{2} from
“TMC+v2+v3” is lower than that from “TMC+v3,” because
v2 plays such a reducing role for c3{2}.

In the left plot of Fig. 3, we present the N dependence
of c3{4} due to the total effect of TMC and collective flow
for three selected momenta p. We can observe a decreasing
tendency of c3{4} with different magnitudes for different mo-
menta p, which can describe the data qualitatively. Note that
because the magnitude of c3{4} is so small its sign change
with increasing N is hardly visible in the left plot. But this
feature can be observed in the right plot of Fig. 3 with a
smaller scale of the y axis. By comparing the different kinds
of cases, we see that although v2 slightly raises c3{4} at
small N , v3 significantly pushes c3{4} down which can result
in a sign change of c3{4} with increasing N . Unfortunately,
we cannot see the sign change of c3{4} in the current ex-
perimental measurement due to large statistical uncertainties.
However, it is very helpful and important to measure the small
sign change of c3{4} for both exploring the collectivity in
small colliding systems and searching for the substructure
of the proton, because these triangular flow coefficients are
expected to be more sensitive to the enhanced triangularity
due to the existence of a three-hot-spot substructure inside the
proton [38–41].

FIG. 3. Same as Fig. 1 but for c3{4}, where the ATLAS data for p+Pb 5.02 TeV collisions are shown for comparison [45].
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TABLE II. The integration outcome for calculating 2k-particle cumulant cn{2k}.

Initial term 1 eiφ1 eiφ2 e−iφ1 e−iφ2 e2iφ1 e2iφ2 e3iφ1 e3iφ2

Integration outcome (n = 2) v2
2 v2v3 v1v2 v2v3 v1v2 v2v4 v2 v2v5 v1v2

Integration outcome (n = 3) v2
3 v3v4 v2v3 v3v4 v2v3 v3v5 v1v3 v6v3 v3

V. CONCLUSION

In this paper, we calculate the nth order of 2k-particle
azimuthal cumulant flow coefficients cn{2k} with the effects
from transverse momentum conservation and collective flow
(including both elliptic and triangular flow). We analytically
demonstrate that the TMC only leads to a nonzero cn{2k} with
the sign of (−1)nk and the magnitude inversely proportional to
(N − 2k)nk . The results including both the TMC and collec-
tive flow are qualitatively comparable with the experimental
measurements. We observe the sign changes of c3{2} and
c3{4} with increasing multiplicity N due to the interplay of
TMC and collective flow, which could provide a good probe
to study the onset of collectivity and the substructure of the
proton in small colliding systems. We note that our analytic
investigation should be viewed as the first approximation of
the TMC effects. For example, we assumed that all momenta
are fixed and identical. To address this and other issues one
needs to investigate this problem using numerical methods.
This would also allow obtaining a more precise result at a very
small number of produced particles. The technique presented
in this paper could be also used to study other correlations
such as the four-particle symmetric cumulant scn,m{4} and
the three-particle asymmetric cumulant acn,m{3}. This could
allow for more precise tests of the interplay of TMC and
collective flow.
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APPENDIX: CALCULATION METHOD

When calculating cn{2k}, every term coming from
the expansion (1 + X + X 2

2 + X 3

6 + · · · ) of exp(X ) can be
written as

C exp
(
i
∑

a jφ j
)

(A1)

of which the outcome of integration in the numerator of
Eq. (14) is determined by the power of each eiφ j and can be
written as

C
∏

v|b j | exp[i sgn(b j )�|b j |], (A2)

where

b j =
{

n − a j, j � k,

n + a j, j > k.
(A3)

To illustrate the calculation, we first give a corresponding
calculating table of integration outcome in Table II and then
an example.

When calculating, e.g., c2{2}|p, the cumulant c2{2}|p can
be written as

c2{2}|p = U0 + U1Y + U2
Y 2

2
,

Y = − p2

(N − 2)〈p2〉F
(
1 − v2

2F

) . (A4)

U0,U1,U2 terms from the expansion (1 + X + X 2

2 ) are ob-
tained as follows.

Clearly, from the table above we can get the integral out-
come of 1 is U0 = v2

2 .
The U1 term from the expansion term X can be first rewrit-

ten as

X = (
2e0 − 1

2v2F e2iφ1 − 1
2v2F e−2iφ1 − 1

2v2F e2iφ2 − 1
2v2F e−2iφ2 + ei(φ1−φ2 ) + ei(φ2−φ1 ) + v2F ei(φ1+φ2 ) + v2F e−i(φ1+φ2 )

)
Y, (A5)

and thus the integration outcome is

U1 = 2v2
2 − 1

2v2F v2v4ei(4�4−2�2 ) − 1
2v2F v2ei(−2�2 ) − 1

2v2F v2ei(2�2 ) − 1
2v2F v2v4ei(2�2−4�4 )

+ v2
3 + v2

1 + v2F v1v3ei(3�3−�1 ) + v2F v1v3ei(�1−3�3 ), (A6)

Neglecting all terms containing v1, v4 (they are assumed to be small) and putting �2 = 0, we obtain

U1 = 2v2
2 + v2

3 − v2F v2. (A7)

Similarly, we have

U2 = 1 + 6v2
2 + 4v2

3 − 8v2F v2 + 1
2v2

2F

(
1 + 7v2

2 + 4v2
3

)
. (A8)
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Following the same technique, c3{2}|p is given by

c3{2}|p = U0 + U1Y + U2
Y 2

2
+ U3

Y 3

6
, Y = − p2

(N − 2)〈p2〉F
(
1 − v2

2F

) , (A9)

U0 = v2
3,

U1 = 2v2
3 + v2

2,

U2 = 6v2
3 + 4v2

2 − 2v2F v2 + 3v2
2F v2

3 + 2v2
2F v2

2,

U3 = 1 + 20v2
3 + 15v2

2 − 18v2F v2 + 3

2
v2

2F + 30v2
2F v2

3 + 24v2
2F v2

2

− 1

4
v3

2F v2
3 cos(6�3) − 9

2
v3

2F v2. (A10)

For the term of 〈ei2(φ1+φ2−φ3−φ4 )〉|p in c2{4}|p we have

〈ei2(φ1+φ2−φ3−φ4 )〉|p = U0 + U1Y + U2
Y 2

2
+ U3

Y 3

6
+ U4

Y 4

24
, Y = − p2

(N − 4)〈p2〉F
(
1 − v2

2F

) ,

U0 = v4
2,

U1 = 4v2
2v

2
3 + 4v4

2 − 2v2F v2
2v

2
3 cos(6�3) − 2v2F v3

2,

U2 = 4v4
3 + 4v2

2 + 48v2
2v

2
3 + 28v4

2 − 24v2F v2v
2
3 − 36v2F v2

2v
2
3 cos(6�3)

− 40v2F v3
2 + 2v2

2F v4
3 + 12v2

2F v2v
2
3 cos(6�3) + 5v2

2F v2
2 + 24v2

2F v2
2v

2
3 + 15v2

2F v4
2,

U3 = 36v2
3 + 72v4

3 + 96v2
2 + 564v2

2v
2
3 + 256v4

2 − 36v2F v2 − 672v2F v2v
2
3 − 564v2F v2

2v
2
3 cos(6�3)

− 702v2F v3
2 + 54v2

2F v2
3 + 108v2

2F v4
3 + 420v2

2F v2v
2
3 cos(6�3) + 264v2

2F v2
2 + 879v2

2F v2
2v

2
3

+ 432v2
2F v4

2 − 45v3
2F v2

3 cos(6�3) − 9v3
2F v2 − 168v3

2F v2v
2
3 − 162v3

2F v2
2v

2
3 cos(6�3)

− 183v3
2F v3

2,

U4 = 36 + 960v2
3 + 1056v4

3 + 1768v2
2 + 6880v2

2v
2
3 + 2720v4

2 − 1440v2F v2 − 13968v2F v2v
2
3

− 8600v2F v2
2v

2
3 cos(6�3) − 12016v2F v3

2 + 108v2
2F + 2880v2

2F v2
3 + 3168v2

2F v4
3

+ 10332v2
2F v2v

2
3 cos(6�3) + 8754v2

2F v2
2 + 22416v2

2F v2
2v

2
3 + 9732v2

2F v4
2

− 2100v3
2F v2

3 cos(6�3) − 84v3
2F v4

3 cos(6�3) − 1080v3
2F v2 − 10476v3

2F v2v
2
3

− 7822v3
2F v2

2v
2
3 cos(6�3) − 9544v3

2F v3
2 + 27

2
v4

2F + 360v4
2F v2

3 + 396v4
2F v4

3

+ 2016v4
2F v2v

2
3 cos(6�3) + 1238v4

2F v2
2 + 2876v4

2F v2
2v

2
3 + 5163

4
v4

2F v4
2 . (A11)

For the term of 〈e3i(φ1+φ2−φ3−φ4 )〉|p in c3{4}|p we obtain

〈ei3(φ1+φ2−φ3−φ4 )〉|P = U0 + U1Y + U2
Y 2

2
+ · · · + U6

Y 6

720
, Y = − p2

(N − 4)〈p2〉F
(
1 − v2

2F

) ,

U0 = v4
3,

U1 = 4v4
3 + 4v2

2v
2
3 − 2v2F v2

2v
2
3 cos(6�3),

U2 = 28v4
3 + 48v2

2v
2
3 + 4v4

2 − 8v2F v2v
2
3 − 36v2F v2

2v
2
3 cos(6�3) + 14v2

2F v4
3

+ 4v2
2F v2v

2
3 cos(6�3) + 24v2

2F v2
2v

2
3 + 2v2

2F v4
2,

U3 = 4v2
3 + 256v4

3 + 564v2
2v

2
3 + 72v4

2 − 264v2F v2v
2
3 − 564v2F v2

2v
2
3 cos(6�3) − 48v2F v3

2

+ 6v2
2F v2

3 + 384v2
2F v4

3 + 165v2
2F v2v

2
3 cos(6�3) + 852v2

2F v2
2v

2
3 + 108v2

2F v4
2

− 5v3
2F v2

3 cos(6�3) − 1

2
v3

2F v4
3 cos(6�3) − 66v3

2F v2v
2
3 − 144v3

2F v2
2v

2
3 cos(6�3) − 12v3

2F v3
2,

U4 = 160v2
3 + 2716v4

3 + 64v2
2 + 6880v2

2v
2
3 + 1056v4

2 − 6224v2F v2v
2
3 − 8600v2F v2

2v
2
3 cos(6�3)

− 1680v2F v3
2 + 480v2

2F v2
3 + 8148v2

2F v4
3 + 4656v2

2F v2v
2
3 cos(6�3) + 312v2

2F v2
2 + 21036v2

2F v2
2v

2
3

+ 3240v2
2F v4

2 − 350v3
2F v2

3 cos(6�3) − 44v3
2F v4

3 cos(6�3) − 4668v3
2F v2v

2
3

054904-7



MU-TING XIE, GUO-LIANG MA, AND ADAM BZDAK PHYSICAL REVIEW C 105, 054904 (2022)

− 6702v3
2F v2

2v
2
3 cos(6�3) − 1260v3

2F v3
2 + 60v4

2F v2
3 + 2037

2
v4

2F v4
3 + 790v4

2F v2v
2
3 cos(6�3)

+ 44v4
2F v2

2 + 2646v4
2F v2

2v
2
3 + 408v4

2F v4
2,

U5 = 4180v2
3 + 31504v4

3 + 2400v2
2 + 87044v2

2v
2
3 + 14800v4

2 − 800v2F v2 − 127320v2F v2v
2
3

− 130560v2F v2
2v

2
3 cos(6�3) − 40800v2F v3

2 + 20900v2
2F v2

3 + 157520v2
2F v4

3 + 110460v2
2F v2v

2
3 cos(6�3)

+ 18300v2
2F v2

2 + 451300v2
2F v2

2v
2
3 + 78200v2

2F v4
2 − 14630v3

2F v2
3 cos(6�3) − 2345v3

2F v4
3 cos(6�3)

− 1200v3
2F v2 − 190980v3

2F v2v
2
3 − 208360v3

2F v2
2v

2
3 cos(6�3) − 61760v3

2F v3
2 + 15675

2
v4

2F v2
3

+ 59070v4
2F v4

3 + 113925

2
v4

2F v2v
2
3 cos(6�3) + 7650v4

2F v2
2 + 342495

2
v4

2F v2
2v

2
3 + 29850v4

2F v4
2

− 7315

4
v5

2F v2
3 cos(6�3) − 2345

8
v5

2F v4
3 cos(6�3) − 100v5

2F v2 − 15915v5
2F v2v

2
3

− 71603

4
v5

2F v2
2v

2
3 cos(6�3) − 5170v5

2F v3
2,

U6 = 400 + 89120v2
3 + 387140v4

3 + 59760v2
2 + 1134720v2

2v
2
3 + 206064v4

2 − 42000v2F v2 − 2417184v2F v2v
2
3

− 1985256v2F v2
2v

2
3 cos(6�3) − 856800v2F v3

2 + 3000v2
2F + 668400v2

2F v2
3 + 2903550v2

2F v4
3

+ 2374920v2
2F v2v

2
3 cos(6�3) + 662400v2

2F v2
2 + 9019260v2

2F v2
2v

2
3 + 1698120v2

2F v4
2

− 469140v3
2F v2

3 cos(6�3) − 95140v3
2F v4

3 cos(6�3) − 105000v3
2F v2 − 6042960v3

2F v2v
2
3

− 5433750v3
2F v2

2v
2
3 cos(6�3) − 2184840v3

2F v3
2 + 2250v4

2F + 501300v4
2F v2

3 + 4355325

2
v4

2F v4
3

+ 2489940v4
2F v2v

2
3 cos(6�3) + 550350v4

2F v2
2 + 6891660v4

2F v2
2v

2
3 + 1312695v4

2F v4
2

− 351855

2
v5

2F v2
3 cos(6�3) − 71355

2
v5

2F v4
3 cos(6�3) − 26250v5

2F v2 − 1510740v5
2F v2v

2
3

− 5681529

4
v5

2F v2
2v

2
3 cos(6�3) − 551565v5

2F v3
2 + 125v6

2F + 27850v6
2F v2

3 + 483925

4
v6

2F v4
3

+ 231

8
v6

2F v4
3 cos(12�3) + 319869

2
v6

2F v2v
2
3 cos(6�3) + 64125

2
v6

2F v2
2

+ 1545615

4
v6

2F v2
2v

2
3 + 148059

2
v6

2F v4
2 . (A12)
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