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Drag of heavy quarks in an anisotropic QCD medium beyond the static limit
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Heavy quark dynamics in an anisotropic QCD medium have been analyzed within the Fokker-Planck ap-
proach. Heavy quark drag force and the momentum diffusion tensor have been decomposed by employing a
general tensor basis for an anisotropic medium. Depending upon the relative orientation of the direction of the
momentum anisotropy of the medium and heavy quark motion, two drag and four diffusion coefficients have
been estimated in the anisotropic QCD medium. The relative significance of different components of drag and
momentum diffusion coefficients has been explored. The dependence of the angle between the anisotropic vector
and heavy quark motion to the drag and diffusion coefficients has also been studied. Furthermore, the energy loss
of heavy quarks due to the elastic collisional process in an anisotropic medium has been studied. It is seen that
the anisotropic contributions to heavy quark transport coefficients and its collisional energy loss have a strong
dependence on the direction and strength of momentum anisotropy in the QCD medium.
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I. INTRODUCTION

The heavy-ion collision experiments pursued at the Rel-
ativistic Heavy Ion Collider (RHIC) and the Large Hadron
Collider (LHC) have confirmed the existence of strongly
interacting matter, the quark-gluon plasma (QGP) [1–6].
Among various signatures from experimental observables,
heavy quarks (HQs), mainly charm and bottom quarks, are
identified as excellent experimental probes to study the prop-
erties of the hot QCD medium [7–17]. HQs undergo random
motion and witness the QCD medium expansion. This is at-
tributed to the fact that HQs are mostly created in the early
stages of heavy-ion collisions, and their thermalization time is
greater than the lifetime of the QGP. Several theoretical efforts
have been made to explore HQ dynamics and the associated
experimental observables such as the nuclear suppression fac-
tor RAA and flow coefficients [18–37]. A few attempts have
been made to explore the impact of momentum anisotropic
aspects of the QCD medium on HQ transport. However, a
systematic study of HQ transport by constructing the drag
force and diffusion tensor using a general tensor basis in an
anisotropic medium is essential for the proper understanding
of HQ observables.
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Momentum anisotropy arises due to the rapid expansion
of the created QCD medium in the longitudinal direction
compared with the transverse directions and may sustain in the
entire evolution of the medium. This anisotropy may induce
instability in the Yang-Mills fields (Chromo-Weibel instabil-
ity) and may have a vital role in the evolution of the QCD
medium [38–41]. It has been argued that the QCD medium
has an anomalous viscosity that arises from Chromo-Weibel
instabilities, which may provide a possible explanation for
the near-perfect liquidity of the QGP without considering
the strongly coupled state assumption [42,43]. The momen-
tum anisotropic aspects have been explored in the context
of electromagnetic probes [44–46], collective modes of QCD
[47–49], momentum broadening of energetic partons [50],
and in the hydrodynamical expansion of the medium [51–53].
Medium anisotropy will affect the dynamics of HQ and can be
quantified in terms of its transport coefficients, dragm and mo-
mentum diffusion in the medium. A magnetic-field-induced
anisotropy to the HQ momentum diffusion has been recently
explored in Refs. [54,55] and generates huge attention toward
the recent RHIC and LHC observations [56,57]. Nonequilib-
rium effects of the QCD medium to the HQ transport have
been studied in Refs. [58–65].

The focus of the present study is to set up a general frame-
work to explore HQ dynamics in an anisotropic QCD medium
for arbitrary relative orientation of the direction of anisotropy
and HQ motion. To that end, we have performed a decompo-
sition of HQ drag force and momentum diffusion tensor by
using a tensor basis for an anisotropic medium. This gives
rise to two drag and four diffusion coefficients of HQs in the
QCD medium. The anisotropic effects are entering through
the nonequilibrium part of the distribution and are obtained by
solving the transport equation. We have analyzed the impact
of anisotropy on the temperature and momentum dependence
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of the HQ transport coefficients in the medium. In addition,
we have explored the dependence of the orientation of HQ
motion with the direction of anisotropy on HQ dynamics
in the medium. These anisotropic transport coefficients may
have a significant role in the estimation of HQ experimental
observables in the heavy-ion collision experiments by treating
it as input parameters in the Langevin dynamics.

The paper is organized as follows: Section II is devoted
to the theoretical formulation of HQ transport along with the
general decomposition of drag and momentum diffusion ten-
sors in an anisotropic QCD medium. In Sec. III, we present the
results of HQ transport coefficients and its collisional energy
loss in the anisotropic medium. We summarize the analysis
with an outlook in Sec. IV.

Notations and conventions. In this paper, the subscript k
represents the particle species of the medium, i.e., k = (g, q̃)
with g and q̃ denoting the gluons and quarks. The HQ energy
is defined by Ep = (|p|2 + m2

HQ)1/2 where p and mHQ respec-
tively denote the momentum and mass of HQs. The energy of
constituent particles (in the massless limit) is represented as
Eq = |q| with q as the momentum. The quantity ak = 1,−1, 0
for Bose-Einstein, Fermi-Dirac, and Maxwell-Boltzmann dis-
tributions, respectively.

II. HEAVY QUARK DRAG AND DIFFUSION

The dynamics of HQs in the hot QCD medium is con-
sidered as Brownian motion and can be described within the
Fokker-Planck equation as follows [59,66]:

∂ fHQ

∂t
= ∂

∂ pi

[
Ai(p) fHQ + ∂

∂ p j
[Bi j (p) fHQ]

]
, (1)

where fHQ denotes the HQ distribution in the medium. The
interactions of HQ with the light quarks and gluons are quan-
tified in terms of drag force Ai and momentum diffusion Bi j

in the QGP medium. In the current analysis, we consider
the two-body elastic collisional process HQ(P) + l (Q) →
HQ(P′) + l (Q′), where l denotes quarks and antiquarks, and
gluons. Here, P = (Ep, p) and Q = (Eq, q) define the four-
momentum of HQ and medium constituent particle before
the interaction. The matrix element |M2→2| for the elastic
collisions of HQs with medium particles has been investigated
in Ref. [66,67]. The drag force of HQ describes the thermal
average of the momentum transfer due to the interaction,
whereas the momentum diffusion quantifies the average of the
square of the momentum transfer. The HQ drag and momen-
tum diffusion in the QGP medium take the following forms:

Ai = 1

2Ep

∫
d3q

(2π )32Eq

∫
d3q′

(2π )32Eq′

∫
d3p′

(2π )32Ep′

1

γHQ

×
∑

|M2→2|2(2π )4δ4(P + Q − P′ − Q′) fk (q)

× [1 + ak fk (q′)][(p − p′)i] = 〈〈(p − p′)i〉〉, (2)

Bi j = 1

2
〈〈(p − p′)i(p − p′) j〉〉, (3)

where γHQ is the statistical degeneracy factor of the HQ, fk

represents the near-equilibrium distribution function of quark
and antiquark and gluon. In general, HQ drag and diffusion

coefficients can be schematically described as

Xc =
∫

phase space × interaction × transport part.

HQ transport coefficients can be obtained with the proper
decomposition of drag force and momentum diffusion matrix
in the background QGP medium. We proceed with the decom-
position of Ai and Bi j in the isotropic QCD medium.

A. For isotropic QCD medium

In an isotropic medium, the drag force depends on the HQ
momentum and Ai can be decomposed as

Ai = piA0(p2), (4)

where p2 = |p|2 and A0 is the drag coefficient of the HQ in the
isotropic QGP medium. The drag coefficient can be obtained
from Eqs. (2) and (4) as

A0 = piAi/p2 = 〈〈1〉〉 − 〈〈p · p′〉〉
p2

. (5)

Similarly, Bi j can be decomposed into longitudinal and trans-
verse components in the isotropic QCD medium as

Bi j =
(

δi j − pi p j

p2

)
B0(p2) + pi p j

p2
B1(p2), (6)

where the transverse and longitudinal diffusion coefficients
can be defined as follows:

B0 = 1

4

[
〈〈p′2〉〉 − 〈〈(p′ · p)2〉〉

p2

]
, (7)

B1 = 1

2

[ 〈〈(p′ · p)2〉〉
p2

− 2〈〈(p′ · p)〉〉 + p2〈〈1〉〉
]
. (8)

The kinematics of 2 → 2 processes can be simplified in the
center-of-momentum (COM) frame of the system, and the
average of a function F (p) in the COM frame for the isotropic
medium can be described as follows:

〈〈F (p)〉〉 = 1

(512π4)EpγHQ

∫ ∞

0
dq

(
s − m2

HQ

s

)
f 0
k (Eq)

×
∫ π

0
dχ sin χ

∫ π

0
dθcm sin θcm

∑
|M2→2|2

×
∫ 2π

0
dφcm

[
1 + ak f 0

k (Eq′ )
]
F (p), (9)

where f 0
k is the isotropic distribution function, and χ quan-

tifies the angle between the incident HQ and medium
constituent particles in the laboratory frame. The quantities
θcm and φcm respectively describe the zenith and azimuthal
angle in the COM frame. Here, the Mandelstam variables
s, t, u are defined as follows:

s = (Ep + Eq)2 − (p2 + q2 + 2pq cos χ ), (10)

t = 2p2
cm(cos θcm − 1), (11)

u = 2m2
HQ − s − t, (12)

with pcm = |pcm| as the magnitude of initial momentum of HQ
in the COM frame.
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B. For an anisotropic QCD medium

Momentum anisotropies arise due to the rapid expansion
of the hot QCD medium in the early stages of the relativis-
tic heavy-ion collisions. In the present analysis, the impact
of momentum anisotropy is entering through the distribution
function of the medium constituent particles. The anisotropic
momentum distribution can be described in terms of isotropic
distribution function by rescaling one direction in momentum
space as follows [47,48]:

f (aniso)
k (q) =

√
1 + ξ f 0

k (
√

q2 + ξ (q · n)2), (13)

where ξ is the anisotropic parameter that quantifies the
stretching or squeezing of the momentum distribution in the
prescribed direction n where n is the unit vector that indi-
cates the direction of momentum anisotropy in the medium.
The present focus is on a weakly anisotropic medium such
that ξ � 1 and the distribution function reduces to the form
f (aniso)
k (q) = f 0

k + δ fk with [68]

δ fk = − ξ

2EqT
(q · n)2

(
f 0
k

)2
exp

(
Eq

T

)
. (14)

By defining ñi = (δi j − pi p j

p2 )n j such that p · ñ = 0, the drag
force in the anisotropic medium can be decomposed on the
orthogonal basis as follows:

Ai = piA
(aniso)
0 + ñiA

(aniso)
1 . (15)

The components of the drag force in the anisotropic medium
can be obtained as follows,

A(aniso)
0 = piAi/p2 = 〈〈1〉〉 − 〈〈p · p′〉〉

p2
, (16)

A(aniso)
1 = ñiAi/ñ2 = − 1

ñ2
〈〈ñ · p′〉〉, (17)

where ñ2 = 1 − (p·n̂)2

p2 = 1 − cos2 θn. Employing the defini-
tion of the near-equilibrium distribution function as described
in Eq. (14), the average of a function F (p′) in the anisotropic

medium can be defined as

〈〈F (p′)〉〉 = 〈〈F (p′)〉〉0 + 〈〈F (p′)〉〉a, (18)

where the isotropic part 〈〈F (p′)〉〉 is defined in Eq. (9). Fol-
lowing the same prescription as in the case of isotropic case,
we can represent 〈〈F (p′)〉〉a in the COM frame as

〈〈F (p)〉〉a = 1

(1024π5)EpγHQ

∫ ∞

0
dqq

(
s − m2

HQ

s

)

×
∫ π

0
dχ sin χ

∫ 2π

0
dφ

∫ π

0
dθcm sin θcm

×
∑

|M2→2|2

×
∫ 2π

0
dφcm

{
δ fk (q)

[
1 + ak f 0

k (q′)
]

+ ak f 0
k (q)δ fk (q′)

}
F (p). (19)

Employing Eq. (18) in Eq. (16), we obtain the nonequilibrium
correction to the HQ drag coefficient described in Eq. (5) as,

A(aniso)
0 = A0 + δA0, (20)

where A0 is the isotropic part and δA0 represents the
anisotropic corrections to the drag coefficient in the QGP
medium and can be obtained from Eq. (19). Furthermore, the
term A(aniso)

1 is the additional component of the drag coefficient
that arises due to the anisotropy of the medium. To decompose
the HQ diffusion, one needs to construct the appropriate ten-
sor basis for the symmetric matrix Bi j with the momentum
vector pi and anisotropy vector ni. Following Ref. [47], we
decompose the Bi j into four components as follows:

Bi j =
(

δi j − pi p j

p2

)
B(aniso)

0 + pi p j

p2
B(aniso)

1

+ ñiñ j

ñ2
B(aniso)

2 + (piñ j + pjñi )B(aniso)
3 . (21)

The components of the momentum diffusion can be obtained
by taking the appropriate projections of the Eq. (21) and have
the following forms:

B(aniso)
0 =

[(
δi j − pi p j

p2

)
− ñiñ j

ñ2

]
Bi j = 1

2

[
〈〈p′2〉〉 − 〈〈(p′ · p)2〉〉

p2
− 〈〈(p′ · ñ)2〉〉

ñ2

]
, (22)

B(aniso)
1 = pi p j

p2
Bi j = 1

2

[ 〈〈(p′ · p)2〉〉
p2

− 2〈〈(p′ · p)〉〉 + p2〈〈1〉〉
]
, (23)

B(aniso)
2 =

[
2ñiñ j

ñ2
−

(
δi j − pi p j

p2

)]
Bi j = 1

2

[
−〈〈p′2〉〉 + 〈〈(p′ · p)2〉〉

p2
+ 2〈〈(p′ · ñ)2〉〉

ñ2

]
, (24)

B(aniso)
3 = 1

2p2ñ2

(
piñ j + pjñi

)
Bi j = 1

2p2ñ2

[−p2〈〈(p′ · ñ)〉〉 + 〈〈(p′ · p)(p′ · ñ)〉〉]. (25)

Note that Eqs. (22)–(25) will reduce back to the results of
Ref. [60] in the case of 〈〈ñ · p′〉〉 = 0. Note that we have
obtained 〈〈ñ · p′〉〉 = 0 for the isotropic case. However, for
the anisotropic medium, by employing the general tensor de-

composition, we observe that the term 〈〈ñ · p′〉〉a is nonzero
and modify the HQ transport coefficients. Now, we proceed
with the estimation of 〈〈ñ · p′〉〉 in center-of-mass frame.
We have considered n = (sin θn, 0, cos θn), where angle θn
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is the angle between anisotropy vector and ẑ. It is impor-
tant to note that the analysis is also valid for the choice
n = (0, sin θn, cos θn). Light quark momentum can be decom-
posed as q = (q sin χ cos φ, q sin χ sin φ, q cos χ ) and HQ
momentum chosen as p = (0, 0, p) such that we have

p · q = pq cos χ, (26)

p · n = p cos θn, (27)

q · n = q sin χ cos φ sin θn + q cos χ cos θn. (28)

We have ñi p′ i = p′ i(δi j − pi pj

p2 )n j . Hence, we have

〈〈ñ · p′〉〉 = 〈〈n · p′〉〉 − 〈〈p · p′〉〉cos θn

p
. (29)

First, we need to obtain (n · p′) in terms of other variables of
integration. The Lorentz transformation that relates laboratory
frame and center-of-mass frame has the following form:

p′ = γcm(p̂′
cm + vcmÊ ′

cm), (30)

where γcm = Ep+Eq√
s

and the velocity of the center-of-mass

vcm = p+q
Ep+Eq

. Energy conservation leads to p̂′ 2
cm = p̂2

cm. In the

center-of-mass frame, p̂′
cm can be decomposed as follows:

p̂′
cm =p̂cm(cos θcmx̂cm + sin θcm sin φcmŷcm

+ sin θcm cos φcmẑcm), (31)

where p̂cm = s−m2
HQ

2
√

s
is the HQ momentum and Êcm =

( p̂2
cm + m2

HQ)1/2 is the energy in the center-of-mass frame. The
axes x̂cm, ŷcm, and ẑcm are defined in Ref. [66]. Employing the
above definitions, we obtain

ñ · p′ = γcm

1 + γ 2
cmv2

cm

{
p̂cm[cos θcm(x̂cm · n) + sin θcm sin φcm(ŷcm · n) + sin θcm cos φcm(ẑcm · n)]

+ γcmE ′
p

p cos θn + q cos χ cos θn + q sin χ cos φ sin θn

Ep + Eq

}

− γcm

1 + γ 2
cmv2

cm

cos θn

p

{
p̂cm[cos θcm(x̂cm · p) + sin θcm sin φcm(ŷcm · p)] + γcmE ′

p

p2 + pq cos χ

Ep + Eq

}
. (32)

Note that we have obtained

p · p′ = γcm

1 + γ 2
cmv2

cm

{
p̂cm[cos θcm(x̂cm · p) + sin θcm sin φcm(ŷcm · p)] + γcmE ′

p

p2 + pq cos χ

Ep + Eq

}

= EpE ′
p − Ê2

cm + p̂2
cm cos θcm.

The respective projections of the anisotropy vector and HQ
momentum with the center-of-mass axis are defined in Ap-
pendix B.

III. RESULTS AND DISCUSSIONS

A. Heavy quark transport coefficients in an anisotropic medium

We initiate the discussions with the momentum depen-
dence of the components of the HQ drag force in an
anisotropic QCD medium. HQ drag force has two compo-
nents, namely, A(aniso)

0 and A(aniso)
1 , in the anisotropic medium

as described in Eq. (15). The anisotropic effects are entering
through the nonequilibrium part of the momentum distribution
function. For the quantitative estimation, we have consid-
ered mHQ = 1.3 GeV for charm quarks, ak = 0, and one-loop
running coupling constant from Ref. [25]. The impact of
anisotropy on the momentum dependence of A0 is depicted
in Fig. 1 (top panel). The momentum and temperature of A0

in the isotropic QCD medium have been well explored in
Refs. [23,59]. The anisotropic part δA0 considerably reduces
the drag coefficient A0, especially in the low-momentum
regimes. It is seen that the anisotropic correction has a strong

dependence on the direction of anisotropy (with respect to the
direction of HQ motion, θn) and the strength of anisotropy in
the medium. However, the dependence of the angle θn on the
drag coefficient is observed to be opposite for low-momentum
regimes in comparison with the high-momentum regimes. The
additional drag coefficient A(aniso)

1 arises due to the anisotropy
of the medium. The relative significance of A(aniso)

1 with that
with A(aniso)

0 is plotted as a function of HQ momentum at
T = 360 MeV and T = 480 MeV in Fig. 1 (middle panel and
bottom panel). We have observed that the additional compo-
nent is negligible in the high-momentum regimes. However,
the additional drag coefficient may have an important role at
the higher-temperature regimes. It is important to note that the
same decomposition of HQ drag force holds true in a strongly
anisotropic medium, and the additional component may have
a more visible impact on HQ motion with an increase in the
strength of anisotropy because 〈〈ñ · p′〉〉 ∝ ξ .

The anisotropic corrections to the HQ diffusion coeffi-
cients B(aniso)

0 = B0 + δB0 and B(aniso)
1 = B1 + δB1 are plotted

in Fig. 2. The impact of medium anisotropy is more
pronounced in the low HQ momentum regimes. Unlike in
the case of B(aniso)

1 , the coefficient B(aniso)
0 gets anisotropic
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FIG. 1. Anisotropic correction to A0 as a function of its initial
momentum at T = 360 MeV (top panel). Relative significance of
A(aniso)

1 in comparison with A(aniso)
0 at T = 360 MeV (middle panel)

and T = 480 MeV (bottom panel).

contribution from 〈〈(p′ · ñ)2〉〉 along with nonequilibrium part
of the thermal distribution function. In the limit ξ → 0, the
forms of B(aniso)

0 and B(aniso)
1 as described in Eqs. (22) and

(23) will reduce back to the results of Ref. [66] (if we use
same parameters as used in Ref. [66]). Both the momentum
behavior of diffusion coefficients are seen to have a strong de-
pendence on the angle between the anisotropic vector and HQ
velocity in the QCD medium. The momentum anisotropy in
the medium further give rise to additional components of HQ
diffusion coefficients, namely, B(aniso)

2 and B(aniso)
3 . Note that

these additional coefficients vanish in the isotropic limit as
ξ → 0. The relative significance of HQ diffusion coefficients
in an anisotropic QCD medium is depicted in Fig. 3. The addi-
tional diffusion coefficients seem to be more prominent in the
low-momentum regimes in comparison with high-momentum
regimes. In the static limit p → 0, these coefficients are non-
negligible, especially for the case of a strongly anisotropic
medium. However, the coefficient B(aniso)

1 is dominant over
B(aniso)

0 at high momenta. Similar to the case of isotropic
medium, in the static limit, we obtain B(aniso)

0 = B(aniso)
1 . The

direction of anisotropy in the medium has a visible impact on

FIG. 2. Momentum dependence of anisotropic corrections to B0

(top panel) and B1 (bottom panel) at T = 360 MeV.

the low-momentum behavior of B(aniso)
2 and B(aniso)

3 . Whereas
the angle θn dependence is negligible for the momentum be-
havior of B(aniso)

1 .

B. Heavy quark energy loss in an anisotropic medium

HQs may lose its energy while traveling through the
anisotropic QCD medium due to the collisional processes with
the in-medium particles. The differential collisional energy
loss can be quantified in terms of the HQ drag coefficient due
to the elastic collisions in the medium as [59]

(
−dE

dx

)
aniso

= A(aniso)
0 (p2, T )p. (33)

It is important to note that the current focus is on the energy
loss in the direction of initial HQ momentum. Hence, the
contribution from A(aniso)

1 will vanish as p · ñ = 0. However,
the energy loss will have an anisotropic contribution through
the δA0. We have plotted the ratio of collisional energy loss
of the charm quark in an anisotropic medium (− dE

dx )aniso to
that in the isotropic QCD medium (− dE

dx )0 for the RHIC and
LHC energies in Fig. 4. The quark energy loss of HQ in
the QCD medium seems to have a dependence on its initial
momentum and temperature of the background medium. The
energy loss of HQ gets suppressed in the anisotropic QCD
medium with an increase in the strength of the anisotropy
factor. However, the direction of anisotropy in the medium
seems to have a weaker dependence on the HQ energy loss for
the RHIC energy. These observations on charm quark energy
loss hold true for the LHC energy, too.
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FIG. 3. Relative significance of HQ diffusion coefficients in an
anisotropic medium: B(aniso)

1 /B(aniso)
0 (top panel), B(aniso)

2 /B(aniso)
0 (mid-

dle panel), (pB(aniso)
3 )/B(aniso)

0 (bottom panel) at T = 360 MeV.

FIG. 4. Impact of anisotropy on the momentum behavior of col-
lisional energy loss of charm quark for the RHIC energy at T =
360 MeV (top panel) and for the LHC energy at T = 480 MeV.

IV. CONCLUSION AND OUTLOOK

We have studied the HQ transport coefficients and energy
loss in an anisotropic QCD medium within the Fokker-Planck
approach. The anisotropic aspect of the medium has been
incorporated in the analysis through the nonequilibrium part
of the quarks and antiquarks and gluonic momentum distribu-
tion. We have employed a proper decomposition to HQ drag
force with two components in the anisotropic QCD medium.
Similarly, we have constructed the second rank HQ diffu-
sion tensor with four diffusion coefficients in the anisotropic
medium. We have realized that the anisotropic effects have
a strong dependence on the orientation of HQ motion with
the direction of anisotropy in the medium. The relative sig-
nificance of these anisotropic transport coefficients has been
studied as a function of HQ initial momentum. It is seen that
the additional components of drag and diffusion coefficients
that arise due to the momentum anisotropy of the medium
are subdominant in comparison with the isotropic components
for weakly anisotropic medium. Moreover, these anisotropic
contributions are essential for the theoretical consistency for
studying the HQ transport in an anisotropic QCD medium.
Furthermore, we have analyzed the anisotropic contribution to
HQ collisional energy loss. It is observed that the HQ energy
loss depends on the relative orientation of anisotropy with the
HQ motion, especially in the low-momentum regimes.

In the anisotropy medium, the overall magnitude of the
transport coefficients at the chosen momentum regimes de-
creases, which can reduce the nuclear suppression factor and
elliptic flow. However, the anisotropy in the heavy quark
transport will be able to generate an additional contribution to
the HQ elliptic flow, which can enhance it at low momentum.
In the current analysis, we have observed that the effect of
anisotropy on HQ drag coefficient (and diffusion coefficients)
is more significant in the lower-momentum regimes. This
indicates that the heavy quark average momentum transfer
will depend on the direction and strength of anisotropy in the
medium. We expect a positive contribution to the elliptic flow
of HQs as the momentum transfer will be different along and
the direction transverse to the anisotropy vector. The same
prediction holds true for the case of HQs in the magnetized
medium [54]. However, the quantitative difference needs to
be explored with detailed numerical simulations.

An enhanced directed flow of D0/D̄0 mesons in compar-
ison with that of charged kaons have been recently reported
at the LHC and RHIC [56,57]. HQ v1 has been computed
recently in the presence of electromagnetic fields and tilted
bulk distributions. To compute the HQ directed flow along
with the bulk, one needs to consider the effect of anisotropy on
HQ transport coefficients, which has been ignored in the pre-
vious calculations. The impact of anisotropy of the medium,
more specifically, the anisotropic drag force and momentum
diffusion due to the magnetic field in the medium, will help
in better understanding the recent data. The current work can
be the first step towards the understanding of the recent LHC
and RHIC data on the flow coefficient of D mesons. Further-
more, the heavy quark scattering process (matrix element) in a
general magnetized medium and the inclusion of (1 + 3)D
QGP medium expansion need to be considered systematically
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in the analysis to explore the phenomenological aspects of
heavy quarks at RHIC and the LHC.

We intend to study the phenomenological aspect of the
anisotropic HQ transport coefficients in follow-up work. It
is an interesting task to study HQ dynamics in a strongly
anisotropic medium. Perhaps the additional drag and diffusion
coefficients due to the anisotropy in the medium may have
a significant role in a strongly anisotropic medium. The ra-
diative process by HQs (inelastic process) in the anisotropic
magnetized QCD medium is another interesting direction to
explore.

ACKNOWLEDGMENTS

V.C. and S.K.D. acknowledge the SERB Core Research
Grant (CRG) [CRG/2020/002320]. M.K. and A.K. acknowl-
edge the Indian Institute of Technology Gandhinagar for the
Institute postdoctoral fellowship.

APPENDIX A: 〈〈F(p′ )〉〉a IN AN ANISOTROPIC MEDIUM

The most general form for the average of a function F (p)
in the COM frame for an anisotropic medium (nonequilibrium
medium) can be described as follows:

〈〈F (p)〉〉 = 1

(1024π5)EpγHQ

∫ ∞

0
dqq

(
s − m2

HQ

s

)

×
∫ π

0
dχ sin χ

∫ 2π

0
dφ

∫ π

0
dθcm sin θcm

×
∑

|M2→2|2
∫ 2π

0
dφcm f (aniso)

k (Eq)

× [
1 + ak f (aniso)

k (Eq′ )
]
F (p), (A1)

where f (aniso)
k (Eq′ ) is the anisotropic momentum distribution

function. As the current focus is on a weakly anisotropic
medium ξ � 1, the distribution function takes the form

f (aniso)
k (q) = f 0

k + δ fk, (A2)

in which δ fk is the anisotropic contribution to the isotropic
distribution function f 0

k . From Eq. (14), we have δ fk ∝ ξ (q ·
n)2, which depends on the scattering angles and θn. Note that,
in the isotropic limit, we have f (aniso)

k (q) → f 0
k , and the dφ

integration can be carried out directly because
∑ |M2→2|2 is

independent of the angle φ. Hence, Eq. (A1) reduces back to

the expression in Eq. (9) for the isotropic case. By substituting
Eq. (A2) into Eq. (A1) and arranging terms in order of ξ we
obtain

〈〈F (p)〉〉 = 1

(1024π5)EpγHQ

∫ ∞

0
dqq

(
s − m2

HQ

s

)

×
∫ π

0
dχ sin χ

∫ 2π

0
dφ

∫ π

0
dθcm sin θcm

×
∑

|M2→2|2
∫ 2π

0
dφcm

{
f 0
k (Eq)

× [
1 + ak f 0

k (Eq′ )
] + δ fk (Eq)

[
1 + ak f 0

k (Eq′ )
]

+ f 0
k (Eq)δ fk (Eq′ ) + O(ξ 2)

}
F (p). (A3)

As we are considering the case of weakly anisotropic case, we
can neglect the term with (δ fk )2 because it is of higher order
in ξ . Equation (A3) can be further decomposed into isotropic
and anisotropic parts as

〈〈F (p′)〉〉 = 〈〈F (p′)〉〉0 + 〈〈F (p′)〉〉a,

in which 〈〈F (p′)〉〉0 and 〈〈F (p′)〉〉a take the forms as described
in Eqs. (9) and (19), respectively.

Substituting Eq. (18) into Eq. (5) and employing Eqs. (9)
and (19), we obtain Eq. (20). Following Ref. [47], a general
decomposition of diffusion matrix and drag force need to
be done to describe the dynamics of HQ in an anisotropic
medium as described in Eqs. (15) and in (21).

APPENDIX B: PROJECTIONS OF ANISOTROPY VECTOR
AND HEAVY QUARK MOMENTUM WITH THE

CENTER-OF-MASS AXIS

By employing the following definitions in the center-of-
mass frame:

(vcm · p̂cm) = γcm

[
p2 + pq cos χ

Ep + Eq
− v2

cmEp

]
, (B1)

N2 = v2
cm − (vcm · p̂cm)2

p̂2
cm

, (B2)

v2
cm = p2 + q2 + 2pq cos χ

(Ep + Eq)2 , (B3)

we have

(x̂cm · n) = γcm

p̂cm

[
p cos θn − Ep

(p cos θn + q cos χ cos θn + q sin χ cos φ sin θn)

Ep + Eq

]
, (B4)

(ŷcm · n) = N−1

[
(p cos θn + q cos χ cos θn + q sin χ cos φ sin θn)

Ep + Eq

− (vcm · p̂cm)
γcm

p̂2
cm

(
p cos θn − Ep

(p cos θn + q cos χ cos θn + q sin χ cos φ sin θn)

Ep + Eq

)]
, (B5)

(ẑcm · n) = γcmN−1 1

p̂cm(Ep + Eq)
pq sin χ sin φ sin θn, (B6)
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(x̂cm · p) = γcm

p̂cm

[
p2 − Ep

(p2 + pq cos χ )

Ep + Eq

]
, (B7)

(ŷcm · p) = N−1

[
(p2 + pq cos χ )

Ep + Eq
− (vcm · p̂cm)

γcm

p̂2
cm

(
p2 − Ep

(p2 + pq cos χ )

Ep + Eq

)]
. (B8)
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