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Background: Heavy-ion fusion reactions play a crucial role in various aspects of nuclear physics and astro-
physics. The nuclear interaction potential and hence the fusion barrier formed between the interacting nuclei
are the keys to understanding the complex fusion process dynamics. Thus, a theoretical investigation of fusion
barrier characteristics which includes the relativistic effects is of paramount significance.
Purpose: This work intends to explore the fusion barrier characteristics of different target-projectile com-
binations within the relativistic mean-field (RMF) formalism. The M3Y nucleon-nucleon (NN) potential is
compared with the relativistic R3Y and density-dependent R3Y (DDR3Y) NN potentials within the double
folding approach. A systematic study is carried out to study the effect of different RMF density distributions and
effective NN interactions on the fusion and/or capture cross section of 24 target-projectile combinations leading
to heavy and superheavy nuclei (SHN).
Methods: The density distributions of interacting nuclei and the microscopic R3Y NN interaction are obtained
from the RMF formalism for nonlinear NL1, NL3, and TM1 parameter sets and the relativistic Hartree-
Bogoliubov (RHB) approach for the DDME2 parameter set. The medium-independent relativistic R3Y, the
density-dependent DDR3Y, and widely adopted M3Y NN potentials are used to obtain the nuclear interaction
potential within the double folding approach. The densities for the projectiles and targets are obtained from the
relativistic mean-field approaches. The fusion and/or capture cross section for the different reaction systems is
calculated using the well-known �-summed Wong model.
Results: The barrier height and position of 24 heavy-ion reaction systems are obtained for different nuclear
density distributions and effective NN interaction potentials. We have considered the lighter mass projectile
and heavier mass target combinations for synthesizing exotic drip-line nuclei, including the superheavy nuclei
(SHN). These reactions include the even-even 48Ca + 154Sm, 48Ca + 238U, 48Ca + 248Cm, and 26Mg + 248Cm;
even-odd 46K + 181Ta; odd-odd 31Al + 197Au and 39K + 181Ta; and also 17 other systems for the synthesis of SHN
Z = 120. The comparison of fusion and/or capture cross section obtained from the �-summed Wong model is
made with the available experimental data.
Conclusions: The phenomenological M3Y NN potential is observed to give higher barrier heights than the
relativistic R3Y NN potential for all the reaction systems. The comparison of results obtained from different
relativistic parameter sets shows that the densities from NL1 and TM1 parameter sets give the lowest and highest
barrier heights for all the systems under study. The density dependent DDR3Y NN potential is obtained within
the relativistic Hartree-Bogoliubov approach for the DDME2 parameter set. We observed higher barrier heights
and lower cross sections for the DDR3Y NN potential as compared to density-independent R3Y NN potentials
obtained for considered nonlinear NL1, NL3, and TM1 parameter sets. According to the present analysis, it is
concluded that the NL1 and NL3 parameter sets provide comparatively better overlap with the experimental
fusion and/or capture cross section than the TM1 and DDME2 parameter sets.
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I. INTRODUCTION

The study of underlying physics involved in low energy
heavy-ion fusion reactions is essential for a better understand-
ing of the characteristics of nuclear forces, nuclear structure,
superheavy nuclei (SHN), magic shell closure, drip lines, and
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other related phenomena [1–10]. The interaction potential and
consequently the fusion barrier formed between the projectile
and target nuclei provide the basis to understand the dynamics
involved in these fusion reactions. The characteristics of the
fusion barrier such as the barrier height, position, oscillator
frequency, etc. are used further to calculate one or more re-
lated physical quantities such as the fusion probability and
cross section [11–13]. Since the fusion barrier is not a directly
measurable quantity in the experiments, theoretical model-
ing is required to extract its characteristics [14]. The origin
of the fusion barrier is the interplay between the attractive
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short-range nuclear potential and the repulsive long-range
Coulomb potential. The Coulomb potential is a known quan-
tity and has a well-established formula. For the calculation
of nuclear potential, we have different theoretical approaches
available in the literature [2,15–26]. These theoretical models
differ from each other in their basic assumptions and the
parameters used. As a consequence, the fusion barrier char-
acteristics calculated also vary and greatly depend upon the
adjustments of parameters used in a theoretical formalism
[2,15–26].

The phenomenological proximity potentials based on the
proximity theorem [16,17] are widely used to estimate the
nuclear interaction potential in terms of the mean curvature
of the interacting surfaces and a universal function of sepa-
ration distance [2,16–19]. The Bass potential based upon the
liquid drop model also provides a simple exponential form
for the nuclear interaction potential [2,20–22]. Moreover,
the semimicroscopic approaches describe the nuclear interac-
tion potential as the difference in the energies of interacting
nuclei at an infinite separation and a distance when over-
lapping. Examples include the asymmetric two-center shell
model and models based on the energy density formalism
(EDF) [23–25,27–31]. Furthermore, the phenomenological
double folding approach also has successful applications to
deduce the interaction potential between the two colliding
heavy ions [32–35]. In this approach, the nuclear optical
potential is obtained using nuclear density distributions and
effective nucleon-nucleon interaction. The model has been
widely adopted to provide real and imaginary parts of the
optical potentials between the colliding ions in elastic and
inelastic scattering as well as in the study of nuclear fusion
characteristics; see Refs. [32–37] and references therein.

Nuclear fusion is considered to be a complex phenomenon
since a large number of nucleons are involved. A complete
description of the nucleon-nucleon (NN) interaction potential
is a prerequisite to understand these nucleon’s interactions.
One of the well-known approaches to handle the nuclear
many-body problem is the self-consistent relativistic mean-
field model. Recently, the microscopic R3Y NN interaction
potential was also derived from the relativistic mean-field
formalism [38–40]. In relativistic mean-field (RMF) models,
the pointlike Dirac nucleons interact through the exchange
of mesons and photons [36,37,41–47]. The mass of the σ

meson and the coupling constants of the interacting mesons
are fine tuned to the ground state bulk properties of finite
nuclei. A number of these parameter sets are available, with
linear and/or nonlinear meson couplings (e.g., HS, models
with names starting with L and NL, TM1, FSUGold, IOPB-I,
G2, G3, etc.), density-dependent meson-exchange couplings
(DDME1, DDME2, DDMEδ, etc.), and zero-range point-
couplings (DD-PC1, PC-PK1, etc.); see Refs. [37,38,42–55]
and references therein. All these defined parameter sets pro-
vide overall satisfactory results for the nuclear bulk properties
and also explain the nuclear matter observables [41–44,51–
64]. With frequent measurements of various bulk properties
from experiments and constraints on nuclear matter observ-
ables including highly dense and isospin asymmetric systems,
all these relativistic parameters are being developed. Each
parametrization in the relativistic mean-field model has its

own identities and certain limitations; for more details see
Ref. [65]. In the present study, we have considered two differ-
ent kinds of parametrizations, i.e., nonlinear NL1, NL3, and
TM1 parameter sets within the relativistic mean-field model,
and the density-dependent DDME2 parameter set within the
relativistic Hartree-Bogoliubov (RHB) approach, to study the
characteristics of nuclear fusion in terms of the nuclear density
distributions and NN potential. The medium-dependent R3Y
(named DDR3Y) NN potential given in terms of density-
dependent nucleon-meson couplings was recently introduced
in a fusion study, and can be found in Ref. [66]. Along with
the relativistic R3Y and DDR3Y potentials, we have also
employed the widely adopted M3Y potential to estimate the
nucleon-nucleon interaction potential [32,33] for comparison.

A systematic analysis will be carried out in three steps
to study the effect of nucleon-nucleon interaction potential
and the density distributions of the fusing nuclei on the
fusion barrier characteristics and consequently on the
fusion and/or capture cross section. In the first step, a
comparison will be made for the widely used M3Y and
recently developed relativistic R3Y effective nucleon-nucleon
(NN) potential in terms of nuclear potential within the
double folding approach. Moreover, the density-dependent
R3Y (DDR3Y) NN interaction potential obtained for the
DDME2 parameter set within the RHB approach is also
taken into account in this analysis. In the second step, the
effect of RMF nuclear density distributions obtained for
nonlinear NL1, NL3, TM1 and density-dependent DDME2
parameter sets will be analyzed on the fusion characteristics.
Finally, in the third step, we will study the effect of the
R3Y NN potential obtained for nonlinear NL1, NL3, and
TM1 parameter sets within the RMF model as well as the
DDR3Y NN potential obtained for the density-dependent
DDME2 parameter set within the RHB approach on the
fusion barrier characteristics and consequently on the fusion
and/or capture cross section. We have chosen 24 different
light mass projectile and heavy mass target combinations
from the various exotic regions of the nuclear chart in the
present analysis. The even-even 48Ca + 154Sm, 48Ca + 238U,
48Ca + 248Cm, 26Mg + 248Cm; even-odd 46K + 181Ta; and
odd-odd 31Al + 197Au and 39K + 181Ta systems of lighter
mass projectile and heavier mass target nuclei. These reaction
systems involve neutron-rich projectiles and are pertinent for
the synthesis of neutron-rich heavy and superheavy nuclei
[5,67–71]. Seventeen different possible systems, namely,
40Ca + 257Fm, 48Ca + 254Fm, 46Ti + 248Cf, 46Ti + 249Cf,
50Ti + 249Cf, 50Ti + 252Cf, 50Cr + 242Cm, 54Cr + 248Cm,
58Fe + 244Pu, 64Ni + 238U, 64Ni + 235U, 66Ni + 236U,
50Ti + 254Cf, 54Cr + 250Cm, 60Fe + 244Pu, 72Zn + 232Th,
and 76Ge + 228Ra are chosen, leading to the synthesis of
different isotopes of highly discussed superheavy Z = 120
[41,72,73]. It is worth mentioning that all these isotopes are
neutron rich and also 304120 is predicted to be a doubly magic
shell nuclei within various theoretical models [41,57,72,74–
78]. Hence, it would be of interest to study the effect of
different nuclear density distributions and nucleon-nucleon
interaction potentials on the fusion and/or capture cross
section for these systems. The �-summed Wong model [79] is
employed to deduce the fusion and/or capture cross section,

054613-2



SYSTEMATIC STUDY OF FUSION BARRIER … PHYSICAL REVIEW C 105, 054613 (2022)

and comparison with the experimental cross section is also
made wherever available.

The paper is organized as follows: the theoretical formal-
ism for the nuclear potential using the relativistic mean-field
approach and the double folding procedure is explained in
Sec. II along with a brief description of the �-summed Wong
model to estimate the fusion and/or capture cross section. The
results obtained from the calculations are discussed in Sec. III.
In Sec. IV the summary and conclusions of the present work
are given.

II. NUCLEAR INTERACTION POTENTIAL FROM THE
RELATIVISTIC MEAN-FIELD FORMALISM

A complete description of the total interaction potential
is crucial to estimate the fusion probability of two colliding
nuclei. This interaction potential comprises three parts: the
nuclear interaction potential, the Coulomb potential, and the
centrifugal potential. The total interaction potential [V �

T (R)]
between the projectile and target nuclei can be written as

V �
T (R) = Vn(R) + VC (R) + V�(R). (1)

Here, VC (R) = ZpZt e2/R and V�(R) = h̄2�(�+1)
2μR2 are the

Coulomb and centrifugal potentials, respectively. μ is the
reduced mass and R is the separation distance. The nuclear
potential Vn(R) is calculated here within the double folding
approach [32],

Vn( �R) =
∫

ρp(�rp)ρt (�rt )Veff (|�rp − �rt + �R| ≡ r)d3rpd3rt . (2)

Here, ρp and ρt are the total density (sum of proton and
neutron densities) distributions of projectile and target nu-
clei, respectively. Veff is the effective nucleon-nucleon (NN)
interaction. There are several expressions for the effective NN
interaction potential available in the literature. One of the
well-known expressions is known as the M3Y (Michigan 3
Yukawa) potential [33]. As the name suggests, it consists of
three Yukawa terms [32,33,36,40] and is given by

V M3Y
eff (r) = 7999

e−4r

4r
− 2140

e−2.5r

2.5r
+ J00(E )δ(r). (3)

Here, J00(E )δ(r) is long-range one-pion exchange potential
because there can be the possibility of nucleon exchange
between the projectile and target nuclei.

As mentioned before, the characteristics of the total inter-
action potential play a crucial role in determining the fusion
properties. The barrier characteristics such as the barrier
height (V �

B ) and barrier position (R�
B) can be determined from

Eq. (1) using following conditions:

dV �
T

dR

∣∣∣∣
R=R�

B

= 0. (4)

d2V �
T

dR2

∣∣∣∣
R=R�

B

� 0. (5)

Moreover, the barrier curvature (h̄ω�) is evaluated at R = R�
B

corresponding to the barrier height V �
B , and is given as

h̄ω� = h̄
[∣∣d2V �

T (R)/dR2
∣∣
R=R�

B

/
μ

] 1
2 . (6)

To determine these quantities, we need a complete description
of nuclear interaction potential, which is calculated here us-
ing the double folding integral given by Eq. (2). The main
requirements to solve the double folding integral are the
nuclear density distributions and effective nucleon-nucleon
interaction potential. The well-known relativistic mean-field
(RMF) formalism and relativistic-Hartree-Bogoliubov (RHB)
have been employed to determine these density distributions
and the NN interaction potential. The RMF formalism has
its successful applications in describing the properties of nu-
clear matter as well finite nuclei [36,37,41–45,47–49,56]. A
phenomenological description of nucleon interaction through
the exchange of mesons and photons is given by the RMF
Lagrangian density [36,37,41–45,47–49,56], which can be
written as

L = ψ{iγ μ∂μ − M}ψ + 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2

− 1

3
g2σ

3 − 1

4
g3σ

4 − gσψψσ − 1

4

μν
μν

+ 1

2
m2

wωμωμ + 1

4
ξ3(ωμωμ)2 − gwψγ μψωμ

− 1

4
�Bμν. �Bμν + 1

2
m2

ρ �ρμ.�ρμ − gρψγ μ�τψ · �ρμ

− 1

4
FμνFμν − eψγ μ (1 − τ3)

2
ψAμ. (7)

Here ψ denotes the Dirac spinor for the nucleons, i.e., proton
and neutron. mσ , mω, and mρ signify the masses of isoscalar
scalar σ , isoscalar vector ω, and isovector vector ρ mesons,
respectively which intermediate the interaction between the
nucleons having mass M. gσ , gω, and gρ are the linear cou-
pling constants of the respective mesons whereas g2, g3, and
ξ3 are the nonlinear self-interaction constants for scalar σ and
vector ω mesons, respectively. These mass of the σ meson
and the coupling constants of mesons are fitted to match the
infinite nuclear matter’s saturation properties and the bulk
properties of magic shell nuclei. For the present study, we
have considered three parameter sets, namely NL1 [42], NL3
[43], and TM1 [44]. In NL1 and NL3 parameters, only the
σ -meson self-coupling nonlinear terms (i.e, the associated
coupling constants, g2 and g3) are taken into account. In the
case of the TM1 parameter set, the self-coupling term of the
vector ω meson (ξ3) is considered. The terms τ and τ3 in
Eq. (7) symbolize the isospin and and its third component,
respectively. 
μν , �Bμν , and Fμν are the field tensors for ω, ρ,
and photons, respectively and are given as


μν = ∂μων − ∂νωμ, (8)

�Bμν = ∂μ�ρν − ∂ν �ρμ, (9)

Fμν = ∂μAν − ∂νAμ. (10)
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The quantity Aμ here denotes the electromagnetic field, and
the arrows symbolize the vectors in the isospin space. The
equations of motion for the Dirac nucleon and the mesons are
obtained from the Lagrangian density given in Eq. (7) using
the Euler-Lagrange equations under mean-field approxima-
tion. The field equations for nucleons and mesons (σ , ω, ρ)
are given as

(−iα.∇ + β(M + gσ σ ) + gωω + gρτ3ρ3)ψ = εψ,( − ∇2 + m2
σ

)
σ (r) = −gσ ρs(r) − g2σ

2(r) − g3σ
3(r),( − ∇2 + m2

ω

)
ω(r) = gωρ(r) − ξ3ω

3(r),( − ∇2 + m2
ρ

)
ρ(r) = gρρ3(r). (11)

Note that the terms with σ 3 and σ 4 account for the self-
coupling among the scalar σ mesons. Similarly, the term
with ω4 takes care of self-coupling among the vector mesons.
These nonlinear self-coupling terms take care of saturation
properties and also soften the equation of state of the nu-
clear matter [39,42–44]. The properties of finite nuclei such
as the binding energy and charge radius (rch) estimated
from the Lagrangian density containing the nonlinear σ -ω
terms also give a satisfactory match with the experimental
values [42–45,47,49,56]. The alternative approach to intro-
duce the density-dependent nucleon-meson couplings within
a relativistic mean field is the relativistic-Hartree-Bogoliubov
(RHB) approach [53–55,60,61]. In this framework, the cou-
plings of σ , ω, and ρ mesons to the nucleon fields (i.e., gσ , gω

and gρ) are defined as [53–55,60,61]

gi(ρ) = gi(ρsat ) fi(x)|i=σ,ω, (12)

where

fi(x) = ai
1 + bi(x + di )2

1 + ci(x + di )2
(13)

and

gρ (ρ) = gρ (ρsat ) exp[−aρ (x − 1)]. (14)

Here, x = ρ/ρsat, with ρsat being the baryon density of
symmetric nuclear matter at saturation. The five constraints-
fi(1) = 1, f ′′

i (0) = 0, and f ′′
σ (1) = f ′′

ω (1) reduce the number
of independent parameters in Eq. (13) from 8 to 3. All the
independent parameters (the mass of σ meson and coupling
parameters) are obtained to fit the ground state properties
of finite nuclei as well as the properties of symmetric and
asymmetric nuclear matter. In the present analysis we have
adopted the well-known DDME2 parameter set [61] to study
the fusion barrier characteristics, and we also compared the
results with the ones obtained using nonlinear NL1 [42], NL3
[43], and TM1 [44] parameter sets.

A. Medium-dependent relativistic R3Y potential

The nucleon-nucleon interaction potential analogous to the
M3Y potential [see Eq. (3)] has also been derived by solving

the mean-field equations in Eq. (11) within the limit of one-
meson exchange [37–40]. The relativistic NN potential called
the R3Y potential [37–40] can be written as

V R3Y
eff (r, ρ) = [gω(ρ)]2

4π

e−mωr

r
+ [gρ (ρ)]2

4π

e−mρr

r

− [gσ (ρ)]2

4π

e−mσ r

r
+ g2

2

4π
re−2mσ r

+ g2
3

4π

e−3mσ r

r
− ξ 2

3

4π

e−3mωr

r
+ J00(E )δ(r).

(15)

It is worth mentioning here that for the case of the medium-
independent R3Y NN potential obtained for NL1, NL3, and
TM1 parameter sets, the nucleon-meson couplings (gσ , gω,
and gρ) appearing in Eq. (15), are independent of the den-
sity. However, in the case of the medium-dependent DDR3Y
NN potential for the DDME2 parameter set, the gσ , gω, and
gρ are density dependent [given in Eqs. (12)–(14)] and also
the non-linear self-interaction constants (g2, g3, ξ3) are zero
for DDR3Y. The density (ρ) entering in Eqs. (12)–(15) is
obtained within the relaxed density approximation (RDA)
[80,81] at the midpoint of the internucleon separation distance
and can be written as

ρ

( �r
2

)
= ρp

(
�rp + �r

2

)
− 2ρNp (�rp + �r

2 )ρNt (�rt − �r
2 )

ρ1N + ρ2N

+ ρt

(
�rt − �r

2

)
− 2ρPp (�rp + �r

2 )ρPt (�rt − �r
2 )

ρ1P + ρ2P

. (16)

Here, ρNp (ρPp) and ρNt (ρPt ) are the neutron (proton) densities
of projectile and target nuclei, respectively. Also, ρ1(2)N =
Np(t )

Ap(t )
ρsat and ρ1(2)P = Zp(t )

Ap(t )
ρsat, with Np(t ) and Ap(t ) being the

neutron and mass numbers of projectile (target) nuclei, re-
spectively. More details about the validity of this RDA in
obtaining the DDR3Y NN potential can be found in one of
our recent works [66], where a comprehensive analysis of the
fusion cross section obtained using density-dependent M3Y
[32,82,83] and R3Y NN potentials is accomplished. In the
present analysis, a systematic study of fusion barrier charac-
teristics obtained using different RMF density distributions,
relativistic R3Y, DDR3Y, and nonrelativistic M3Y NN po-
tentials is done for 24 isospin asymmetric reaction systems
forming heavy and superheavy nuclei. In open-shell nuclei,
the pairing plays a significant role in describing their structure
properties, including the density distributions. In the present
study, we have considered the nuclei near the β-stable region
of the nuclear chart, so we have considered simple BCS pair-
ing to take care of the pairing correlations [36,37,84,85]. Also,
a blocking procedure is used to treat the odd-mass-number
nuclei [36,37,86,87].

The relativistic R3Y NN potential for different parameter
sets and the analogous M3Y potential are shown in Fig. 1. The
R3Y NN potential for DDME2 is plotted here for the coupling
constants in Eq. (15) at the saturation density, ρsat = 0.152
fm−3 [61]. It can be observed from Fig. 1 that the curves for
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FIG. 1. The relativistic R3Y NN potential for NL1 (dashed light
blue line), NL3 (dash–double-dotted orange line), TM1 (solid black
line), and DDME2 (dash-dotted grey line) parameter sets are com-
pared with the phenomenological M3Y NN-interaction potential
(dotted dark red line). The R3Y NN potential for DDME2 is plotted
at saturation density (ρsat = 0.152 fm−3 for DDME2 [61]).

the R3Y NN-interaction potential for NL1, NL3, TM1, and
DDME2 parameter sets show similar trends as the M3Y NN
potential. The R3Y NN potential for the DDME2 parame-
ter set at saturation density is observed to show the deepest
pocket. However, the actual DDR3Y NN potential for the
DDME2 parameter used to obtain the nuclear potential within
the double-folding approach is density dependent and is not
exactly similar to one plotted at ρsat = 0.152 fm−3 in Fig. 1.
A more detailed inspection shows that the R3Y NN potential
for NL3 and NL1 parameter sets shows a slightly deep pocket
compared to M3Y NN potential. However, the R3Y potential
for the TM1 parameter shows a lightly shallow pocket com-
pared to the M3Y potential, which can be connected with the
self-coupling nonlinear term (ξ3) in the ω-field. More details
can be found in Refs. [37–40]. The barrier characteristics of
total interaction potential given in Eq. (1) are used further
to obtain the fusion and/or capture cross section using the
�-summed Wong model.

B. �-summed Wong model

The fusion and/or capture cross section for two colliding
nuclei is given in terms of the � partial wave by [36,37,79,88]

σ (Ec.m.) = π

k2

�max∑
�=0

(2� + 1)P�(Ec.m.). (17)

Here, Ec.m. is the center-of-mass energy of the target-projectile

system and k =
√

2μEc.m.

h̄2 . P� is called the penetration probabil-
ity, which describes the transmission through the barrier given
in Eq. (1). Using the Hill-Wheeler [89] approximation, P� can

be written in terms of barrier height (V �
B ) and curvature (h̄ω�)

as

P� =
[

1 + exp

(
2π (V �

B − Ec.m.)

h̄ω�

)]−1

. (18)

Equation (17) describes the fusion and/or capture cross sec-
tion of two interacting nuclei in terms of summation over �

partial waves. Wong [88] replaced this summation by integra-
tion using the following approximations: (i) h̄ω� ≈ h̄ω0 and
(ii) V �

B ≈ V 0
B + h̄2�(�+1)

2μR0
B

2 , assuming R�
B ≈ R0

B. These approxi-

mations lead to a simple formula to estimate the fusion and/or
capture cross section in terms of barrier characteristics. This
simplified Wong formula [88] can be written as

σ (Ec.m.) = R0
B

2
h̄ω0

2Ec.m.

ln

[
1 + exp

(
2π

h̄ω0

(
Ec.m. − V 0

B

))]
.

(19)

However, using only the � = 0 barrier and ignoring the mod-
ifications entering due to � dependence of the potential cause
the overestimation of fusion and/or capture cross section by
the Wong formula at above-barrier energies. Gupta and collab-
orators gave the solution of this problem [36,37,79] by using
the more precise �-summed formula given in Eq. (17).

III. CALCULATIONS AND DISCUSSION

In this section, the fusion and/or capture cross sec-
tion of heavy-ion reactions is studied within the �-summed
Wong model supplemented with the self-consistent relativis-
tic mean-field and relativistic Hartree-Bogoliubov formalism.
As we know, the values of nuclear matter observables and
the structural properties of finite nuclei obtained from the
RMF and RHB formalism depend upon the force parameter
set. Parallel to this, the dependence of fusion characteristics
upon these RMF parameter sets can be anticipated. In the
present analysis, we systematically study the nuclear density
distributions and the effective nucleon-nucleon interaction
potential dependence on the different parameter sets and,
consequently, on the fusion barrier characteristics. The nu-
clear density distributions for all the interacting nuclei (targets
and projectiles) are obtained within the relativistic mean-field
formalism for three force parameter sets NL1, NL3, and
TM1, and within the relativistic Hartree-Bogoliubov approach
for the DDME2 parameter set. We have considered three
types of effective nucleon-nucleon interactions: (i) the widely
used nonrelativistic M3Y potential given by Eq. (3); (ii) the
density-independent relativistic R3Y NN potential described
in terms of masses and coupling constants of the mesons
(σ , ω, and ρ mesons). The medium-independent relativistic
R3Y potential is obtained for three relativistic parameter sets,
i.e., NL1, NL3, and TM1. (iii) The medium dependence of
the R3Y NN potential is also taken into account via density-
dependent meson-nucleon coupling terms obtained from the
DDME2 parameter set.

From Fig. 1, it can be noted that the NN potentials of
M3Y and R3Y for NL1, NL3, TM1, and DDME2 sets show
a similar trend but with different depths. A systematic study
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FIG. 2. The variation of total density distributions as a function of nuclear radius r (fm) for (a) 31Al, (b) 48Ca, (c) 252Cf, and (d) 154Sm
nuclei calculated using RMF with NL1 (light blue), NL3 (orange), TM1 (black), and DDME2 (grey) parameter sets. Insets shows the magnified
view of tail region of the densities. See text for details.

is carried out to study the effect of these NN interactions on
the nuclear potential (Vn) calculated within the double folding
approach. As mentioned above, the R3Y NN potential for
the DDME2 parameter is plotted at saturation density (ρsat =
0.152 fm−3) in Fig. 1 whereas the actual density-dependent
R3Y (DDR3Y) obtained within the RHB approach is used for
calculating the nuclear potential and the fusion and/or capture
cross section. The calculations are done in three steps: (i)
The nuclear density distributions are folded with the medium-
independent relativistic R3Y potential for three parameters
sets NL1, NL3, and TM1 and the DDR3Y NN potential for
the DDME2 parameter set to obtain the nuclear potential.
The nuclear density distributions are also folded with the phe-
nomenological M3Y potential for the comparison. (ii) In the
second step, the R3Y NN potential is fixed for one parameter
set and is folded with the density distributions obtained with
the considered four parameter sets. (iii) In the last step, the
density is fixed for one parameter set and is folded with the
R3Y NN potential obtained for NL1, NL3, TM1, and DDME2
parameter sets.

Nuclear density distributions. The RMF formalism suc-
cessfully describes bulk properties such as the binding energy,
quadrupole deformations, nuclear density distributions, etc.,
throughout the nuclear chart. The total density (sum of the
proton and neutron number densities, i.e., ρT = ρP + ρN )

as a function of nuclear radius (r) is plotted in Fig. 2 for
the representative cases of (a) odd-mass 31Al, (b) even-mass
light 48Ca, (c) heavy 252Cf, and (d) intermediate 154Sm nu-
clei. These density distributions are obtained by solving the
RMF equations for the NL1 (dashed light blue line), NL3
(dash–double-dotted orange line), and TM1 (solid black line)
parameter sets and within the RHB approach for the DDME2
(dash-dotted grey line) parameter set. It can be observed from
Fig. 2(a) that the density of the odd-mass light 31Al nucleus
shows a peak in the central region whereas the density of the
48Ca nucleus shows a downturn in the central region which is
caused by the combined effects of Coulomb repulsion and the
nuclear shell structure [90–92]. Moreover, the density distri-
butions of intermediate and heavy mass target nuclei show a
comparatively flattened curve in the central region that falls
rapidly in the surface region. The figure shows that NL1 and
TM1 have respectively, the lowest and highest magnitudes of
central density for all the nuclei under study. In the case of
the heavy-ion fusion reactions, the density at the tail/surface
region only plays the most crucial role in the fusion process
[93]. The insets in Fig. 2 show the magnified view of the tail
region of the densities. A slight difference is observed among
the NL1, NL3, TM1, and DDME2 density distributions at
the surface/tail region of all the interacting nuclei. A sys-
tematic and quantitative study is carried out in the upcoming
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subsections to analyze the effects of this slight difference on
the fusion characteristics.

A. Folding RMF densities with R3Y, DDR3Y, and
M3Y NN potentials

In the first analysis, a comparison is made between
the widely adopted nonrelativistic M3Y, density-independent
relativistic R3Y, and density-dependent relativistic R3Y
(DDR3Y) NN potentials within the double folding approach.
The RMF nuclear density distributions obtained for nonlinear
NL1, NL3, TM1, and density-dependent DDME2 parameter
sets (see Fig. 2) are folded with the M3Y, R3Y, and DDR3Y
NN potentials to obtain the nuclear optical potential. In our
earlier work, the density-independent M3Y and R3Y nucleon-
nucleon potentials were used to study the fusion hindrance
phenomenon in a few Ni-based reactions [36] and to study
the cross section for the synthesis of heavy and superheavy
nuclei [37,94]. In [36,37], the fusion and/or capture cross
section obtained using the nonrelativistic M3Y NN potential
is compared with the relativistic R3Y NN potential for the
NL3∗ parameter set only. A more systematic study with the
inclusion of different nonlinear RMF parameter sets as well
as the explicit medium dependence of the R3Y NN potential
is carried out in the present analysis to investigate the effect of
different nucleon-nucleon potentials and the nuclear density
distributions on the fusion and/or capture cross section of
24 different exotic reaction systems. The reaction system
involves the projectile with a higher N/Z ratio synthesizing
neutron-rich heavy and superheavy nuclei. We have consid-
ered 17 target-projectile combinations for the synthesis of
different isotopes of SHN with Z = 120. The fusion bar-
rier characteristics (barrier height, barrier position, frequency,
etc.) are obtained within the double folding approach for both
M3Y and R3Y NN potentials. Then the fusion and/or capture
cross section is calculated from the well-known �-summed
Wong model.

1. Total interaction potential

As discussed above, the interaction potential at � = 0h̄
(sum of nuclear and Coulomb potentials) formed between
the target and projectile nuclei plays the most crucial role
in determining the fusion characteristics of the system.
We have calculated the nuclear interaction potential
from nuclear density distributions integrated over M3Y,
R3Y, and DDR3Y effective NN interactions. The total
interaction potential at � = 0h̄ [VT (R) = Vn(R) + VC (R)]
is obtained for the even-even 48Ca + 154Sm, 48Ca + 238U,
48Ca + 248Cm, 26Mg + 248Cm; even-odd 46K + 181Ta;
and odd-odd 31Al + 197Au and 39K + 181Ta systems, and
also for 17 systems for the synthesis of SHN Z = 120:
40Ca + 257Fm, 48Ca + 254Fm, 46Ti + 248Cf, 46Ti + 249Cf,
50Ti + 249Cf, 50Ti + 252Cf, 50Cr + 242Cm, 54Cr + 248Cm,
58Fe + 244Pu, 64Ni + 238U, 64Ni + 235U, 66Ni + 236U,
50Ti + 254Cf, 54Cr + 250Cm, 60Fe + 244Pu, 72Zn + 232Th,
and 76Ge + 228Ra. Figure 3 shows the barrier region of the
total interaction potential (MeV) at � = 0h̄ as a function
of the radial separation R (fm) for all 24 reaction systems.

The dashed lines signify the phenomenological M3Y NN
potential integrated over the nuclear densities obtained for
NL1 (light blue), NL3 (orange), TM1 (black), and DDME2
(grey) parameter sets. However, the solid lines signify the
relativistic R3Y and DDR3Y potentials along with the
mean-field densities used to obtain the nuclear potential
within the double folding approach.

From Fig. 3, one can notice that the M3Y NN potential
gives a relatively higher barrier as compared to the relativis-
tic R3Y and DDR3Y NN potentials for all the considered
systems. This signifies that the microscopic R3Y effective
NN potential given in terms of the meson masses and their
coupling constants gives a comparatively more attractive in-
teraction potential than the M3Y NN potential, described
as the sum of three Yukawa terms. Comparing the barrier
heights for different density distributions (NL1, NL3, TM1,
and DDME2) folded with the M3Y potential, it is observed
that TM1 and NL1 sets give the highest and lowest barrier
heights, respectively. For the case of the M3Y NN potential,
the NL3 and TM1 densities are observed to give a higher
barrier than the DDME2 parameter set whereas for the case
of the R3Y NN potential the DDME2 set gives the highest
barrier. This is because the R3Y NN potential for the DDME2
parameter is density dependent. The relaxed density approxi-
mation (RDA) is used here to include the density dependence
of the microscopic R3Y NN potential in terms of nucleon-
meson couplings. Thus, the barrier height is observed to be
increased with the inclusion of the in-medium effects of the
R3Y NN potential.

The Bass potential [20–22] is a simpler and well-known
form of nuclear potential. Here, we have studied the vari-
ation in fusion barrier characteristics, i.e., barrier height VB

and position RB obtained from M3Y, R3Y, and DDR3Y NN
potentials with respect to (w.r.t.) those obtained from the Bass
potential. Figure 4 shows the percentage change in barrier
height (upper panel) and barrier position (lower panel) as a
function of charges ZpZt for all 24 systems. Here, Zp and Zt

are atomic numbers for projectile and target nuclei, respec-
tively. M3Y-NL1, M3Y-NL3, M3Y-TM1, and M3Y-DDME2
signify that the nuclear density distributions obtained for
nonlinear NL1, NL3, TM1 and density-dependent DDME2
parameter sets, respectively, along with the M3Y NN poten-
tial, are used within the double folding procedure to calculate
the nuclear potential. Similarly, NL1-NL1, NL3-NL3, and
TM1-TM1 signify that the RMF density distributions and
relativistic R3Y NN potential are used within the dou-
ble folding approach to obtain the nuclear potential. Also,
DDME2-DDME2 signifies that the DDR3Y NN potential and
density distributions obtained within the RHB approach for
the DDME2 parameter set are used to calculate the nuclear
potential. The Coulomb potential is added then to this nuclear
potential and the barrier characteristics (VB, RB) are obtained
using Eqs. (4) and (5). It can be noted from Fig. 4 that the
nuclear potential calculated for the M3Y NN potential shows
�2% change in barrier height and �1% change in barrier
position for the considered reactions w.r.t. the Bass potential.
However, in the case of the nuclear potential obtained for
R3Y and DDR3Y NN potentials, the barrier height decreases
by up to ≈5% and the barrier position shifts by up to ≈8%
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FIG. 3. The total interaction potential VT (MeV) at � = 0h̄ as a function of radial separation R for 24 reaction systems under study calculated
using the M3Y (dashed lines), R3Y, and DDR3Y (solid lines) NN potentials. The different colors are for parameter sets as labeled in the figure.
See text for details.

054613-8



SYSTEMATIC STUDY OF FUSION BARRIER … PHYSICAL REVIEW C 105, 054613 (2022)

FIG. 4. The percentage (%) change in barrier height (upper panel) and barrier position (lower panel) as a function of charges ZpZt for all
the 24 reaction systems under study. See text for details.

towards the higher separation distance w.r.t. the Bass po-
tential. Moreover, this percentage change in barrier char-
acteristics is minimum for the nuclear density distributions
obtained for the TM1 parameter set and is maximum for
those for the NL1 parameter set. This shows that the in-
clusion of vector meson self-coupling term (∝ ω4) in the
RMF Lagrangian results in the stronger repulsive core of the
NN interaction potential. The characteristics of the fusion
barrier have a direct impact on the fusion cross section of
the reaction systems. The higher the barrier height value cal-
culated for a system, the lower will be its cross section. The
effect of different RMF densities and the NN interaction po-
tential on the fusion and/or capture cross section is studied
using the well known �-summed model in the following sub-
section.

2. Fusion and/or capture cross section

The characteristics of the total interaction potential (barrier
height, position, and frequency) are further used to estimate
the fusion probability and cross section. We have calculated
the fusion and/or capture cross section for all 24 reaction
systems within the well-known �-summed Wong model
described in detail in the previous section. Figure 5 shows
the cross section σ (mb) as function of center-of-mass energy
Ec.m. (MeV) for all the target-projectile systems including
the even-even 48Ca + 154Sm, 48Ca + 238U, 48Ca + 248Cm,
64Ni + 238U, 26Mg + 248Cm; even-odd 46K + 181Ta; and
odd-odd 31Al + 197Au and 39K + 181Ta systems. We have also
considered here 17 different target-projectile combinations
which lead to the synthesis of SHN Z = 120: 40Ca + 257Fm,
48Ca + 254Fm, 46Ti + 248Cf, 46Ti + 249Cf, 50Ti + 249Cf,
50Ti + 252Cf, 50Cr + 242Cm, 54Cr + 248Cm, 58Fe + 244Pu,
64Ni + 238U, 64Ni + 235U, 66Ni + 236U, 50Ti + 254Cf,
54Cr + 250Cm, 60Fe + 244Pu, 72Zn + 232Th, and 76Ge + 228Ra.
The calculated fusion and/or capture cross section is also
compared with the available experimental data [5,67–71].

The �max values are calculated using the sharp cut-off model
[95] for the reaction systems with experimental data. Since
the experimental fusion and/or capture cross section is not
available for all the systems leading to the formation of
SHN Z = 120 except the 64Ni + 238U reaction [71], the sharp
cut-off model is not applicable for them. To extract the �max

values for these system we have used the polynomial between
Ec.m./VB and �max values constructed using 64Ni + 238U data
in our earlier work [94]. The dashed lines in Fig. 5 show the
cross section estimated by employing the nuclear potential
calculated by folding the M3Y NN interaction over the
nuclear density distribution obtained for NL1 (light blue),
NL3 (orange), TM1 (black), and DDME2 (grey) parameter
sets. The solid lines in Fig. 5 signify that the nuclear potential
calculated by folding the relativistic R3Y and DDR3Y NN
potentials along with the spherical densities obtained for NL1
(light blue), NL3 (orange), TM1 (black), and DDME2 (grey)
parameter sets is employed to calculate the cross section.

It can be observed from Fig. 5 that the R3Y and DDR3Y
NN interaction potentials give much better overlap with the
experimental data as compared to the M3Y NN interaction for
all the reaction systems. Comparing the cross sections from
different relativistic force parameter sets, we find that the
DDME2 parameter set gives the lowest whereas the NL1
set gives the highest cross-section value for a given system.
However, this difference is more evident below and around
the fusion barrier center-of-mass energies. At above-barrier
energies, the cross sections from all the parameter sets almost
overlap. The reason for this behavior is that the structure ef-
fects get diminished at above-barrier energies, and the angular
momentum part of total potential dominates [36]. Comparison
of the results for different relativistic parameter sets with
the experimental data shows that the NL1 parameter set is
superior to the NL3, TM1 and DDME2 parameter sets. Out
of NL3, TM1, and DDME2 sets, the parameter set NL3 is
observed to fit the experimental data better. This is because the
TM1 parameter set, which includes the self-coupling terms of
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FIG. 5. The cross section σ (mb) for all target projectile combinations considered in the present study by using M3Y (dashed lines) and
R3Y (solid lines) interaction using NL1 (light blue), NL3 (orange), TM1 (black), and DDME2 (grey) parameter sets. The solid black circle
indicates the experimental data [5,67–71]. See text for details.

the ω mesons, gives a comparatively repulsive NN interac-
tion, underestimating the fusion and/or capture cross section.
However, for three reactions, namely 46K + 181Ta [Fig. 5(b)],
64Ni + 238U [Fig. 5(d)], and 48Ca + 248Cm [Fig. 5(g)], TM1

give better overlap than the other parameter sets. Moreover,
the DDME2 density folded with M3Y is observed to give a
higher cross section than NL3 and TM1 densities. In contrast,
the DDME2 density folded with the DDR3Y NN potential
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gives a lower cross section than the R3Y NN potential folded
with NL1, NL3, and TM1 densities. This indicates that the
inclusion of the density dependence of the microscopic R3Y
NN potential in terms of the DDME2 parameter set decreases
the cross section. In the case of the system 26Mg + 248Cm
[Fig. 5(h)], both the M3Y as well as R3Y NN potentials
underestimate the experimental cross section at below-
barrier energies. This deviation between the experimental and
theoretically calculated cross sections is caused by the fusing
nuclei’s structural deformations, which are not considered in
the present study.

In the case of the reaction systems leading to the formation
of different isotopes of SHN with Z = 120, the experimen-
tal data are only available for 64Ni + 238U and, as discussed
above, shows a good overlap with the results obtained with
the R3Y NN interaction for TM1 parameter sets. Among all
the systems for Z = 120, the difference between cross sec-
tions obtained for NL1, NL3, TM1, and DDME2 parameters
sets is comparatively a little more prominent for 58Fe + 244Pu
[see Fig. 5(v)] system. In the case of the 26Mg + 248Cm sys-
tem, the experimental data are available at center-of-mass
energies far below its Bass barrier (at 126.833 MeV). For
the 48Ca + 248Cm system, the R3Y NN potential for TM1
gives a better fit to the experimental data as compared to
other systems. From all these observations, a more systematic
investigation of the effects of NN potential and RMF density
distributions on the cross section is carried only for these
three reaction systems in the upcoming subsections. We have
dropped the M3Y NN potential for further investigation of
fusion characteristics as it gives comparatively poor overlap
with the experimental data. Since the NL1 and NL3 RMF
parameter sets give comparatively better results than the TM1
parameter sets, we fix the NN R3Y potential and RMF density
distribution for second and third steps for these parameter sets
to explore their effects on the fusion characteristics.

B. Fixing the relativistic R3Y NN interaction
and varying the density

After comparison of the barrier characteristics and fusion
and/or capture cross section obtained from nonrelativistic
M3Y and relativistic R3Y and DDR3Y NN interaction poten-
tials, next we investigate the effects of RMF nuclear density
distributions obtained from different force parameter sets on
fusion characteristics. In Fig. 2, one notices a small difference
at the surface region of interacting nuclei among the nuclear
densities given by NL1, NL3, TM1, and DDME2 parameter
sets. Since nuclear fusion is a surface phenomenon, the tail
region of density distributions plays the most crucial role in
the fusion cross section [93]. To study the effect of density
distributions on the nuclear potential and consequently on the
fusion characteristics, we fixed the effective NN interaction
in the double folding approach and then changed the densi-
ties of the fusing nuclei. First, we fixed the relativistic R3Y
NN potential for the NL1 parameter set and folded it with
the density distributions obtained for NL1, NL3, TM1, and
DDME2 parameter sets to estimate the nuclear potential from
Eq. (2). Then the same procedure was repeated for the R3Y
NN potential obtained for the NL3 parameter set. The total

interaction potential in terms of barrier height and position and
the fusion and/or capture cross section were then investigated
for different density distributions.

1. Total interaction potential

The total interaction potential is calculated for all the nu-
clear potentials using the same procedure described in the
previous subsection. The barrier region of the total interaction
potential as a function of radial separation is represented in
Fig. 6 for the systems (a) 48Ca + 248Cm, (b) 26Mg + 248Cm,
and (c) 58Fe + 244Pu. The values of VB and RB for all 24
reaction systems are given in Table I. Here NL3-TM1 signifies
that the R3Y NN interaction potential obtained for the NL3
parameter set is folded with the RMF density distributions
obtained for the TM1 parameter set. Similarly, NL1-NL3 sig-
nifies that the R3Y NN interaction potential obtained for the
NL1 parameter set is folded with the RMF density distribu-
tions obtained for the NL3 parameter set. The same notation
will be used in all the figures and their discussion from here
onwards. The inspection of Fig. 6 and Table I shows that out
of eight possible nuclear potentials the ones with TM1-NL3
and NL1-NL1 give the highest and lowest fusion barriers,
respectively. Comparing the characteristics of the barrier for
NL1-NL1, NL1-NL3, NL1-TM1, and NL1-DDME2 with the
same effective NN interaction potential, we find that the den-
sities obtained for NL3, TM1, and DDME2 parameter sets
raise the fusion barrier as compared to NL1. The barrier
height increases by ≈1 MeV, and the barrier position shifts
by ≈0.1 fm towards the lower radial distance as we replace
the NL1 densities with those of NL3. Similar behavior is also
observed for the nuclear potentials for NL3-NL3, NL3-NL1,
NL3-TM1, and NL3-DDME2. In a nutshell, the density dis-
tribution obtained for the TM1 parameter set gives the highest
fusion barrier, and those for the NL1 parameter sets give the
lowest fusion barrier. The density distributions given by NL1
parameter sets were observed to be more extended in the
surface region than NL3, TM1, and DDME2 densities. It can
be inferred from here that a small increase in the densities of
fusing nuclei at the surface region lowers the barrier height
by approximately 1 MeV. The suppression of barrier height
will enhance the fusion and/or capture cross section around
the barrier center-of-mass energies. To study the effect of
density distributions more clearly further, we have calculated
the fusion and/or capture cross section using all six nuclear
potentials given in Fig. 6 and listed in Table I.

2. Fusion and/or capture cross section

To investigate the effects of RMF nuclear density dis-
tributions obtained from different parameter sets on the
fusion mechanism, next the fusion and/or capture cross sec-
tion for systems (a) 48Ca + 248Cm, (b) 26Mg + 248Cm, and
(c) 58Fe + 244Pu is calculated within the �-summed Wong
model using nuclear potentials calculated by eight combina-
tions of NN interaction and RMF density, namely NL1-NL1,
NL1-NL3, NL1-TM1, NL1-DDME2, NL3-NL1, NL3-NL3,
NL3-TM1, and NL3-DDME2, and plotted in Fig. 7 as func-
tions of center-of-mass energy Ec.m. (MeV). The available
experimental data (black spheres) [69,70] are also given for
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FIG. 6. The variation of total potential VT (in MeV) as a function of radial distance R (in fm) for (a) 48Ca + 248Cm, (b) 26Mg + 248Cm, and
(c) 58Fe + 244Pu calculated by fixing the NN potential for NL1 and NL3 parameter sets. NL3-TM1 signifies that the R3Y NN potential using
the NL3 parameter set and density distributions using TM1 parameters within the folding procedures are used to obtain the nuclear potential.
The same procedure is followed for other cases as labeled in the figure.

the comparison. Comparison of the cross sections calculated
using different nuclear potentials shows that the TM1 density
distributions decrease the cross section, whereas the NL1
densities increase the fusion and/or capture cross section.
Also, the difference between the cross sections increases due
to different nuclear potential at lower barrier energies. It be-
comes more prominent as we increase the mass number of the
projectile nuclei. For the 26Mg + 248Cm [Fig. 7(b)] system,
the plots of the cross section for different nuclear potentials

almost overlap with each other, whereas a larger difference is
observed for the 58Fe + 244Pu [Fig. 7(c)] system resulting in
the formation of SHN Z = 120. This shows that the structure
effects become more and more crucial as we move towards
the heavier mass region of the periodic table. Comparison
between the experimental and theoretical data shows that,
for the 26Mg + 248Cm system, the NL1-NL1 combination is
observed to be more suitable than the others. However, for the
case of 48Ca + 248Cm, a nice fit is observed for NL3-TM1 with

TABLE I. The barrier position RB (in fm) and barrier height VB (in MeV) for all 24 considered reactions obtained by fixing one effective
NN interaction and varying the nuclear density distributions. NL1-NL3 signifies that the R3Y NN potential obtained for the NL1 parameter
set is folded with the RMF densities obtained for the NL3 parameter set.

NL1-NL1 NL1-NL3 NL1-TM1 NL1-DDME2 NL3-NL3 NL3-NL1 NL3-TM1 NL3-DDME2

System RB VB RB VB RB VB RB VB RB VB RB VB RB VB RB VB

31Al + 197Au 12.8 108.63 12.7 109.56 12.7 109.88 12.8 108.99 12.7 110.13 12.8 109.18 12.6 110.45 12.7 109.53
39K + 181Ta 12.8 147.56 12.7 148.67 12.8 148.94 12.7 147.99 12.6 149.44 12.7 148.31 12.6 149.90 12.7 148.72
46K + 181Ta 13.0 144.60 12.9 145.73 12.9 146.15 13.0 145.03 12.9 146.44 13.0 145.28 12.8 146.85 12.9 145.71
64Ni + 238U 13.9 253.12 13.8 254.91 13.7 255.69 13.8 253.80 13.7 255.98 13.8 254.14 13.7 256.76 13.8 254.82
48Ca + 238U 13.6 183.85 13.5 185.22 13.5 185.79 13.6 184.38 13.5 186.09 13.6 184.68 13.4 186.65 13.5 185.20
48Ca + 154Sm 12.7 133.44 12.5 134.64 12.5 135.15 12.6 133.90 12.5 135.34 12.6 134.11 12.4 135.85 12.5 134.56
48Ca + 248Cm 13.8 190.08 13.7 191.46 13.6 191.99 13.7 190.60 13.6 192.34 13.7 190.92 13.6 192.87 13.7 191.44
26Mg + 248Cm 13.1 119.30 13.0 120.42 13.0 120.71 13.1 119.73 13.1 120.96 13.1 119.93 12.9 121.37 13.0 120.35
40Ca + 257Fm 13.6 200.59 13.5 201.97 13.5 202.51 13.5 201.12 13.4 202.93 13.5 201.53 13.4 203.51 13.5 202.05
46Ti + 248Cf 13.5 216.61 13.5 218.21 13.4 218.87 13.5 217.23 13.4 219.25 13.5 217.62 13.4 219.90 13.5 218.21
46Ti + 249Cf 13.6 216.26 13.5 217.84 13.4 218.47 13.5 216.85 13.4 218.86 13.5 217.24 13.4 219.51 13.5 217.85
48Ca + 254Fm 13.8 197.58 13.7 199.01 13.7 199.55 13.8 198.10 13.6 199.90 13.7 198.43 13.6 200.48 13.7 199.00
50Cr + 242Cm 13.5 232.12 13.4 233.90 13.4 234.60 13.5 232.79 13.4 235.00 13.5 233.17 13.3 235.72 13.4 233.87
50Ti +249 Cf 13.7 214.40 13.6 215.99 13.6 216.58 13.7 214.99 13.5 216.98 13.6 215.35 13.5 217.61 13.6 215.98
50Ti + 252Cf 13.8 213.32 13.7 214.88 13.6 215.46 13.7 213.91 13.6 215.88 13.7 214.28 13.6 216.46 13.7 214.88
54Cr + 248Cm 13.8 227.41 13.7 229.06 13.7 229.69 13.8 228.02 13.6 230.06 13.7 228.37 13.6 230.73 13.7 229.02
58Fe + 244Pu 13.8 240.88 13.7 242.62 13.7 243.34 13.8 241.53 13.7 243.69 13.8 241.89 13.6 244.43 13.7 242.57
64Ni + 235U 13.8 254.33 13.7 256.17 13.7 256.97 13.8 255.01 13.7 257.22 13.8 255.33 13.7 257.98 13.7 256.07
66Ni + 236U 13.9 252.59 13.8 254.33 13.8 255.06 13.9 253.23 13.7 255.30 13.8 253.52 13.7 256.08 13.8 254.21
50Ti + 254Cf 13.8 212.65 13.7 214.18 13.7 214.74 13.8 213.22 13.7 215.15 13.7 213.57 13.6 215.74 13.7 214.18
54Cr + 250Cm 13.8 226.68 13.7 228.25 13.7 228.89 13.8 227.26 13.7 229.28 13.8 227.61 13.6 229.90 13.7 228.22
60Fe + 244Pu 13.9 239.54 13.8 241.25 13.8 241.98 13.9 240.17 13.7 242.27 13.8 240.51 13.7 243.05 13.8 241.19
72Zn + 232Th 14.0 263.01 13.9 264.78 13.9 265.53 13.9 263.65 13.8 265.71 13.9 263.90 13.8 266.52 13.9 264.60
76Ge + 228Ra 14.0 274.19 13.9 276.06 13.9 276.89 14.0 274.87 13.9 277.05 13.9 275.12 13.8 277.93 13.9 275.87
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FIG. 7. The cross section σ (mb) calculated with the �-summed Wong model using the R3Y NN potential for (a) 48Ca + 248Cm, (b)
26Mg + 248Cm, and (c) 58Fe + 244Pu. NL3-TM1 signifies that the R3Y NN potential using the NL3 parameter set and density distributions
using the TM1 parameter set are used within the folding procedures to obtain the nuclear potential. The same procedure is followed for other
cases as labeled in the figure.

the experimental cross section. All these observations indicate
that even a small difference in the density distributions at the
surface region significantly impacts the fusion and/or capture
cross section. Also, this effect becomes more prominent as we
move towards the superheavy region of the nuclear chart.

C. Fixing density and varying the R3Y NN potential

The double folding optical potential depends upon the nu-
clear density distributions and the effective nucleon-nucleon
interaction. In the previous subsection, we investigated the
effect of different nuclear density distributions on the optical
nuclear potential and, consequently, on the fusion charac-
teristics. To examine the effects of nucleon-nucleon (NN)
interaction on the fusion barrier characteristics, we further
fixed the nuclear densities and then changed the effective
NN interaction in the double folding approach and studied
the fusion characteristics. First, the R3Y NN interaction po-
tential obtained for NL1, NL3, and TM1 parameter sets and
the DDR3Y NN potential obtained for DDME2 parameter
set are integrated over the nuclear densities obtained for the
NL1 parameter set. Then the same procedure is repeated
with densities obtained for the NL3 parameter set. Again we
get eight nuclear potentials denoted as NL1-NL1, NL3-NL1,
TM1-NL1, DDME2-NL1, NL1-NL3, NL3-NL3, TM1-NL3,
and DDME2-NL3. All the notations have the same meanings
as mentioned in the previous subsection. The calculations
for the total interaction potential and the fusion and/or cap-
ture cross section are then carried out using these nuclear
potentials.

1. Total interaction potential

Figure 8 displays the barrier region of the total interaction
potential at � = 0h̄ as a function of radial separation. As
observed in the previous subsection, it is found here again
that the NL1-NL1 combination gives the lowest value of
the fusion barrier. The highest barrier is observed for the

DDME2-NL3 combination, where the R3Y NN potential is
density dependent. The inclusion of in-medium effects in mi-
croscopic the R3Y NN potential in terms of density-dependent
nucleon-meson coupling parameters is observed to signifi-
cantly raise the potential barrier. Also, the relativistic R3Y
NN potential calculated with the TM1 parameter set, which
accounts for the isoscalar vector ω meson’s self-coupling, is
observed to increase the potential barrier height compared
to the NL3 and NL1 parameter sets. It is worth mentioning
that the modification in the fusion barrier height caused by
changing the effective NN interaction is comparatively more
significant than the one observed by changing the density
distributions. The values of barrier heights and positions for
all 24 considered reactions systems are listed in Table II. On
replacing the R3Y NN potential obtained for NL1 with that
obtained for TM1 for a fixed density distribution, the barrier
height increases by ≈1.5 MeV. The barrier height further
increases by up to 5 MeV on replacing the R3Y NN potential
obtained for the TM1 parameter set with the DDR3Y NN
potential obtained for the DDME2 parameter set using the
relaxed density approximation. This difference in the barrier
heights given by R3Y and DDR3Y NN potentials is slightly
more when folded with the NL3 density as compared with
the NL1 density. Also the changes in the barrier characteris-
tics w.r.t. the RMF parameter sets become more significant
as the mass of the compound nucleus increases. For further
exploration of the consequences of different relativistic force
parameter sets in terms of NN potential, the fusion and/or
capture cross section for all eight combinations of nuclear
potential given in Fig. 8 are investigated.

2. Fusion and/or capture cross section

The fusion and/or capture cross section for the systems
(a) 48Ca + 248Cm, (b) 26Mg + 248Cm, and (c) 58Fe + 244Pu
is obtained as a function of center-of-mass energy and is
represented in Fig. 9. The effect of the interaction potential
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FIG. 8. The variation of total potential VT (in MeV) as a function of radial distance R (in fm) for (a) 48Ca + 248Cm, (b) 26Mg + 248Cm, and
(c) 58Fe + 244Pu calculated by fixing the density for NL1 and NL3 parameter sets. The notation NL3-NL1 signifies that the R3Y NN potential
from the NL3 parameter set and density distributions from the NL1 parameters are used in the folding procedure to obtain the nuclear potential.
The same procedure is followed for other cases as labeled in the figure.

characteristics are observed directly in the fusion and/or
capture cross section. We obtained the highest cross sec-
tion for the combination NL1-NL1, whereas the lowest cross
section was observed for the DDME2-NL3 parameter set.
Also, the DDR3Y NN potential obtained for the DDME2
parameter set gives a lower cross section compared to the
medium-independent R3Y NN potential obtained for nonlin-
ear NL1, NL3, and TM1 parameter sets. This indicates that
the inclusion of in-medium effects in the microscopic NN

potential decreases the cross section. The structure effects of
the interaction potential are observed to be diminished at ener-
gies greater than the fusion barrier. For system 48Ca + 248Cm
[Fig. 9(a)], the DDR3Y NN potential obtained for the DDME2
parameter set folded with the NL1 density give a better fit to
the experimental data. However for a system with a lighter
projectile, i.e., 26Mg + 248Cm [Fig. 9(b)], the parameter set
NL1 gives better results. The effects of varying the effective

TABLE II. The barrier position RB (in fm) and barrier height VB (in MeV) for all 24 considered reactions obtained by fixing the nuclear
density distributions and varying the NN interaction. TM1-NL1 signifies that the R3Y NN potentials obtained for the TM1 parameter set are
folded with RMF densities obtained for the NL1 parameter set.

TM1-NL1 DDME2-NL1 TM1-NL3 DDME2-NL3

System RB VB RB VB RB VB RB VB

31Al + 197Au 12.7 109.85 12.4 112.07 12.6 110.79 12.3 113.00
39K + 181Ta 12.6 149.24 12.3 152.39 12.5 150.37 12.2 153.54
46K + 181Ta 12.9 146.19 12.6 149.21 12.8 147.34 12.5 150.36
64Ni + 238U 13.7 255.73 13.4 260.91 13.6 257.55 13.3 262.76
48Ca + 238U 13.5 185.78 13.2 189.40 13.4 187.18 13.1 190.84
48Ca + 154Sm 12.5 134.92 12.2 137.55 12.4 136.13 12.1 138.77
48Ca + 248Cm 13.6 192.07 13.3 195.78 13.5 193.47 13.2 197.20
26Mg + 248Cm 13.0 120.62 12.7 122.97 12.9 121.75 12.6 124.10
40Ca + 257Fm 13.4 202.77 13.1 206.64 13.3 204.15 13.0 208.04
46Ti + 248Cf 13.4 218.93 13.1 223.15 13.3 220.54 13.0 224.78
46Ti + 249Cf 13.4 218.55 13.1 222.77 13.3 220.15 13.0 224.38
48Ca + 254Fm 13.6 199.62 13.3 203.42 13.5 201.07 13.3 204.89
50Cr + 242Cm 13.4 234.56 13.1 239.13 13.3 236.37 13.0 240.96
50Ti + 249Cf 13.5 216.62 13.3 220.79 13.5 218.24 13.2 222.43
50Ti + 252Cf 13.6 215.56 13.3 219.71 13.5 217.15 13.2 221.31
54Cr + 248Cm 13.6 229.76 13.3 234.28 13.5 231.43 13.3 235.95
58Fe + 244Pu 13.7 243.37 13.4 248.19 13.6 245.15 13.3 249.99
64Ni + 235U 13.6 256.91 13.3 262.12 13.6 258.79 13.2 264.01
66Ni + 236U 13.7 255.14 13.4 260.41 13.6 256.90 13.3 262.22
50Ti + 254Cf 13.7 214.85 13.4 218.99 13.6 216.47 13.3 220.57
54Cr + 250Cm 13.7 229.01 13.4 233.51 13.6 230.66 13.3 235.17
60Fe + 244Pu 13.7 241.98 13.4 246.81 13.7 243.72 13.3 248.55
72Zn + 232Th 13.8 265.64 13.5 271.33 13.7 267.42 13.4 273.14
76Ge + 228Ra 13.8 276.92 13.5 282.85 13.7 278.81 13.4 284.75
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FIG. 9. The cross section σ (mb) calculated with the �-summed Wong model using the R3Y NN potential for (a) 48Ca + 248Cm, (b)
26Mg + 248Cm, and (c) 58Fe + 244Pu. First, the NL1 density is folded with all four parameter sets (NL1, NL3, TM1, and DDME2), and then the
procedure is repeated for the NL3 density. NL3-NL1 signifies that the R3Y NN potential from the NL3 parameter set and density distributions
from the NL1 parameters within the folding procedure are used to obtain the nuclear potential. The same procedure is followed for other cases
as labeled in the figure.

NN interaction are observed to be more prominent than those
of the nuclear density distributions.

Comparing the barrier characteristics and the fusion and/or
capture cross sections obtained for M3Y and R3Y NN
potentials folded with nuclear density distributions for four
different parameters sets, it is concluded that relativistic
R3Y NN potentials give a better prediction to the experi-
mental data. Also, as compared to the TM1 and DDME2
parameter sets, which were introduced to include the self-
coupling of the vector ω mesons and density dependence
of nucleon-meson couplings, respectively [44,61], the NL1
and NL3 parameter sets give better overlap with the ex-
perimental data for the fusion and/or capture cross section.
Moreover, NL1 is superior to NL3 in addressing the ex-
perimental cross sections. However, in the case of nuclear
matter properties, the NL1 parameter set produces a large
value of the asymmetry parameter [42,43]. Moreover the NL1
parameter set also fails to fit the neutron skin thickness of
the nuclei away from the β-stability line [58,59]. On the
other hand, the parameter set NL3 improves the value of
the asymmetry parameter without increasing the number of
phenomenological parameters. In the present study, the NL3
parameter set gives a better fit to the fusion and/or capture
cross section as compared to the TM1 parameter set, which
includes the self-coupling terms of the vector meson in the
RMF Lagrangian [44]. Taking all these facts into account,
it can be concluded that the parameter set NL3 is suitable
for describing the bulk and fusion characteristics of finite
nuclei (including heavy and superheavy nuclei with higher
N/Z ratio) and properties of infinite nuclear matter. The TM1
parameter set, which was introduced to incorporate the vector
self-coupling to soften the equation of state of nuclear mat-
ter [44], gives a comparatively repulsive nuclear potential in
terms of nuclear density distributions and the effective NN
interaction potential, which consequently underestimates the
fusion and/or capture cross section. The inclusion of density

dependence in the R3Y NN potential within the relativistic
Hartree-Bogoliubov approach for the DDME2 parameter set
is observed to decrease the cross section w.r.t. the density-
independent R3Y NN potentials obtained for NL1, NL3,
and TM1 parameter sets. In the present analysis, we have
considered only the isospin asymmetric reaction systems, i.e.,
target-projectile combinations forming a neutron-rich com-
pound nucleus. A systematic study with isospin symmetric
(N = Z) reaction systems will be carried out in the near future.

IV. SUMMARY AND CONCLUSIONS

A systematic study is carried out in order to study the effect
of nuclear density distributions and the effective NN interac-
tion on the fusion barrier characteristics. The fusion barrier
properties and cross section of 24 different target-projectile
combinations containing the even-even 48Ca + 154Sm,
48Ca + 238U, 48Ca + 248Cm, 26Mg + 248Cm; even-odd
46K + 181Ta; and odd-odd 31Al + 197Au and 39K + 181Ta
systems as well as systems leading to the synthesis of super-
heavy isotopes of Z = 120, 40Ca + 257Fm, 48Ca + 254Fm,
46Ti + 248Cf, 46Ti + 249Cf, 50Ti + 249Cf, 50Ti + 252Cf,
50Cr + 242Cm, 54Cr + 248Cm, 58Fe + 244Pu, 64Ni + 238U,
64Ni + 235U, 66Ni + 236U, 50Ti + 254Cf, 54Cr + 250Cm,
60Fe + 244Pu, 72Zn + 232Th, and 76Ge + 228Ra, are investi-
gated within the relativistic mean field formalism. The nuclear
density distributions for all the interacting nuclei are obtained
by employing the RMF formalism for NL1, NL3, TM1
parameter sets and the RHB approach for the DDME2 pa-
rameter set. The effective NN interactions are obtained using
the well-known M3Y potential and the relativistic R3Y and
DDR3Y potentials. The R3Y NN potential is obtained for the
three considered relativistic mean-field parameter sets (NL1,
NL3, and TM1) and the DDR3Y NN potential is obtained
within the RHB approach for the DDME2 parameter set.
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In the first step, the comparison of M3Y, R3Y, and DDR3Y
NN potentials is carried out by calculating the fusion barrier
characteristics using the nuclear potential within the double
folding approach. It is concluded that the relativistic R3Y and
DDR3Y NN interaction potentials give a relatively better fit
to the experimental data than the M3Y potential. It is also
observed that the NL1 and NL3 parameter sets give a better fit
to the experimental data than the TM1 and DDME2 parameter
sets. However for systems 46K + 181Ta, 48Ca + 248Cm, and
64Ni + 238U, the TM1 parameter set works better. Second, the
effective NN interaction is fixed, and then the nuclear density
distributions are changed in the folding procedure to study
their effect on the fusion characteristics. It is noticed that
the nuclear densities obtained for parameter sets NL3, TM1,
and DDME2 give comparatively repulsive nuclear potentials
and consequently decrease the fusion and/or capture cross
section. In the last step, we studied the effects of the effective
NN interaction on the fusion characteristics by fixing the
nuclear densities. We find that the TM1 parameter set gives
a repulsive R3Y NN interaction potential and thus decreases
the fusion probability. All these observations lead to the con-
clusion that the inclusion of the vector self-coupling term
(∝ ω4) in the RMF Lagrangian increases the magnitude of
the repulsive core of the NN interaction, which consequently
underestimates the cross section. Moreover, the DDR3Y NN
potential calculated in terms of density-dependent nucleon-
meson couplings within the relativistic Hartree-Bogoliubov

(RHB) approach for the DDME2 parameter set is observed to
give a higher barrier height and lower fusion cross section as
compared to the medium-independent R3Y NN potential ob-
tained within the RMF formalism for NL1, NL3 and TM1
parameter sets. From the comparison of the theoretical cross
section with the available experimental data, it is concluded
that both the densities and R3Y NN potential obtained for
NL1 and NL3 parameters give comparatively better overlap
than the TM1 and DDME2 parameter sets. However, if we
consider the overall description of bulk properties and fusion
characteristics of finite nuclei and the properties of infinite
nuclear matter, the NL3 becomes the favorable choice. It is
worth mentioning that the shape degrees of freedom, i.e., the
nuclear deformations for the interacting nuclei, are not con-
sidered in the present analysis. Hence, the results may change
slightly without affecting the predictions by including nuclear
shape degrees of freedom within the relativistic mean-field
formalism, which will be carried out shortly.
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