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Time-dependent generator coordinate method study of fission: Dissipation effects
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Starting from a quantum theory of dissipation for nuclear collective motion introduced by Kerman and Koonin
[Phys. Scr. 10, 118 (1974)], the time-dependent generator coordinate method (TDGCM) is extended to allow for
dissipation effects in the description of induced fission dynamics. The extension is based on a generalization of
the GCM generating functions that includes excited states, and the resulting equation of motion in the collective
coordinates and excitation energy. With the assumption of a narrow Hamiltonian kernel, an expansion in a
power series in collective momenta leads to a Schrödinger-like equation that explicitly includes a dissipation
term, proportional to the momentum of the statistical wave function. An illustrative calculation is performed
for induced fission of 228Th. The three-dimensional model space includes the axially symmetric quadrupole and
octupole shape variables, and the nuclear temperature. When compared with data for photoinduced fission of
228Th, the calculated fission yields demonstrate the important role of the additional term in the Hamiltonian that
explicitly takes into account the dissipation of energy of collective motion into intrinsic degrees of freedom.
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I. INTRODUCTION

Among diverse methods that have been developed over
many decades to describe the dynamics of low-energy induced
fission, the time-dependent generator coordinate method
(TDGCM) [1–5] presents the only microscopic approach that
can be used to model the entire fission process, from the
quasistationary initial state all the way to scission and the
emergence of fission fragments. A recent implementation of
the TDGCM [6,7], based on the Gaussian overlap approx-
imation, has been successfully employed in a number of
fission studies [8–15] that have explored many interesting
subjects, such as the influence of static pairing correlations
on fission yields, the definition of scission configurations,
different approximations for the collective inertia tensor, finite
temperature effects, the role of dynamical pairing degrees of
freedom, and symmetry restoration.

TDGCM presents a fully quantum-mechanical approach
that describes fission dynamics as an adiabatic evolution
of collective degrees of freedom. The nuclear wave func-
tion is represented by a linear superposition of many-body
generator states that are functions of collective coordinates
(shape parameters, pairing degrees of freedom). By employ-
ing the Gaussian overlap approximation (GOA), the GCM
Hill-Wheeler equation of motion for the collective wave
function reduces to a local, time-dependent Schrödinger equa-
tion in the space of collective coordinates. Given an energy
density functional (EDF) or effective interaction, the collec-
tive potential and inertia tensor are determined by constrained
self-consistent mean-field calculations in the space of collec-
tive coordinates. The TDGCM + GOA is particularly suitable

for the slow evolution from the quasistationary initial state to
the outer fission barrier (saddle point). Beyond the saddle-
point fission dynamics becomes dissipative as the nucleus
elongates towards scission. The effect of dissipation is to
heat the system, modify the path in the multidimensional
deformation space, increase the time to scission, and generate
fluctuations in various quantities [16]. However, in contrast
to models based on time-dependent density-functional theory
(TDDFT) [17–25], TDGCM does not contain a one-body
dissipation mechanism because it only takes into account col-
lective degrees of freedom in the adiabatic approximation.

Since dissipation of the energy of collective motion into
intrinsic degrees of freedom plays an important role in
the dynamics of the final stage of the fission process, it
is important to extend the adiabatic TDGCM approach to
explicitly include nucleon degrees of freedom. This is, of
course, very difficult to achieve in a fully microscopic ap-
proach. In the Schrödinger collective-intrinsic model (SCIM)
[3,26], the coupling between collective and intrinsic excita-
tions is taken into account by a generalization of the GCM
based on zero- and two-quasiparticle excitations. Another
interesting microscopic approach is the transport theory of
Ref. [27], in which the slow evolution of the nuclear shape
is treated explicitly, while the fast time-dependent intrin-
sic excitations (multiquasiparticle states) are described in a
statistical approximation. This model is also based on de-
formation constrained self-consistent mean-field calculations
and a generalization of the GCM. The TDGCM extensions
of Refs. [3,26,27] both have solid microscopic foundations,
but they are also extremely complex, and have yet to be
implemented in a realistic calculation of fission dynamics.
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In the present study we revive a microscopic theory of
dissipation for nuclear collective motion, introduced by Ker-
man and Koonin in Ref. [28]. Based on a generalization of
the GCM generating functions to include excited intrinsic
states, and certain statistical assumptions, a quantal equa-
tion of motion was derived in both the collective coordinates
and excitation energy. With the usual assumption of a nar-
row Hamiltonian kernel, a Schrödinger-like equation can be
derived for the statistical collective wave function, including
dissipation. In Ref. [28] the method was illustrated with a sim-
ple one-dimensional model calculation of heavy-ion collision.
Here we employ this method to extend our implementation of
the temperature-dependent TDGCM for induced fission dy-
namics, to include dissipation effects in the collective space of
axial quadrupole and octupole deformations. The formalism is
developed in Sec. II. In Sec. III we present an illustrative cal-
culation of charge yields for induced fission of 228Th. Finally,
Sec. IV contains a short summary and an outlook for future
studies.

II. THEORETICAL FRAMEWORK

The purpose of the present study is to extend the
time-dependent generator coordinate method (TDGCM) by
including energy dissipation and apply the model to the de-
scription of induced fission dynamics. The method is based
on the quantum theory of dissipation for nuclear collective
motion of Ref. [28].

The derivation starts with a trial TDGCM many-body wave
function of the following form:

|�(t )〉 =
∑

n

∫
dq fn(q, t )|nq〉, (1)

where q denotes the set of collective coordinates, n labels
the excited states at each value of the collective coordinate
q, and fn(q, t ) are weight functions. From the time-dependent
variational principle

δ

∫
〈�(t )|[Ĥ − ih̄∂t ]|�(t )〉dt = 0, (2)

the matrix integral Hill-Wheeler equation is obtained,

∑
n′

∫
dq′{Hnn′ (q, q′) fn′ (q′, t )

−Nnn′ (q, q′)[ih̄∂t fn′ (q′, t )]} = 0,

(3)

where Hnn′ (q, q′) = 〈nq|Ĥ |n′q′〉 is the Hamiltonian kernel,
and Nnn′ (q, q′) = 〈nq|n′q′〉 is the norm overlap kernel. It is
useful to express Eq. (3) in terms of another set of functions
gn(q, t ), defined by

gn(q, t ) =
∑

n′

∫
dq′N 1/2

nn′ (q, q′) fn′ (q′, t ). (4)

With this transformation, Eq. (3) takes the form

ih̄∂t gn(q, t ) =
∑

n′

∫
dq′Hnn′ (q, q′)gn′ (q′, t ), (5)

with

Hnn′ (q, q′) =
∑
n1n2

∫
dq1dq2N−1/2

nn1
(q, q1)

× Hn1n2 (q1, q2)N−1/2
n2n′ (q2, q′).

(6)

As noted in Ref. [28], the level density for each value of the
collective coordinate q is high even at relatively low excitation
energies, so that the discrete label n can be separated into
a continuous excitation energy variable ε, and a degeneracy
label λ: ∑

λ, fixed ε

= ρ(q, ε)dε, (7)

where ρ(q, ε) denotes the level density at the point q in the
collective coordinate space. We can then substitute

gn(q, t ) → gλ(q, ε; t ), (8)

Hnn′ (q, q′) → Hλλ′ (q, q′; ε, ε′), (9)

and rewrite Eq. (5) as

ih̄∂t gλ(q, ε; t ) =
∫

dq′Hλλ(q, q′; ε, ε)gλ(q′, ε; t ) +
∑
λ′ �=λ

×
∫∫

dq′dε′Hλλ′ (q, q′; ε, ε′)gλ′ (q′, ε′; t ).

(10)

Following the prescription of Ref. [28], gλ(q, ε; t ) in
Eq. (10) is replaced by its average value gλ(q, ε; t ), and the
statistical wave function ψ (q, ε; t ) is defined as

gλ(q, ε; t ) = ψ (q, ε; t )√
ρ(q, ε)

, (11)

where the bar denotes average on λ. Performing the summa-
tion of Eq. (10) over λ, one obtains

ih̄
∂

∂t
ψ (q, ε; t ) =

∫
dq′h(q, q′; ε, ε)ψ (q′, ε; t ) +

∑
λ′ �=λ

×
∫∫

dq′dε′h(q, q′; ε, ε′)ψ (q′, ε′; t ), (12)

with the statistical Hamiltonian kernels are defined as

h(q, q′; ε, ε) = 1√
ρ(q, ε)

∑
λ

Hλλ(q, q′; ε, ε)
1√

ρ(q′, ε)
,

(13)

h(q, q′; ε, ε′) = 1√
ρ(q, ε)

∑
λ,λ′ �=λ

Hλλ′ (q, q′; ε, ε′)
1√

ρ(q′, ε′)
.

(14)

The usual GCM assumption that the Hamiltonian overlap
kernel decreases rapidly with increasing |q − q′| (in com-
parison to the scale of variations in the statistical wave
function ψ), enables an expansion of Eq. (12) in a power
series in collective momenta P = −ih̄(∂/∂q), leading to a
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Schrödinger-like equation

ih̄∂tψ (q, ε; t ) =
[

h(0)(q; ε) − 1

8h̄2 [P2h(2)(q; ε)]

− 1

2h̄2 Ph(2)(q; ε)P
]
ψ (q, ε; t )

+ i

2h̄

∫ {
P, h(1)(q; ε, ε′)

}
ψ (q, ε′; t )dε′,

(15)
where

h(n)(q; ε, ε′) =
∫

znh(q + z/2, q − z/2; ε, ε′)dz, (16)

z = q − q′, and h(n)(q; ε) ≡ h(n)(q; ε, ε). The curly brackets
in the last term of Eq. (15) denote anticommutation. With the
collective potential defined as

V (q, ε) = h(0)(q; ε) − 1

8h̄2 [P2h(2)(q; ε)], (17)

and the collective mass

M(q, ε) = − 1

h̄2 h(2)(q; ε), (18)

Eq. (15) can be written in the final form

ih̄∂tψ (q, ε; t ) =
[
V (q, ε) + P

1

2M(q, ε)
P
]
ψ (q, ε; t )

+ i

2

∫
{P, η(q; ε, ε′)}ψ (q, ε′; t )dε′. (19)

The dissipation function η(q; ε, ε′) = h(1)(q; ε, ε′)/h̄ is anti-
Hermitian in the variables ε and ε′, so that the Hamiltonian
is still a Hermitian operator. For further details we refer the
reader to Ref. [28].

To describe low-energy induced fission dynamics, we em-
ploy the framework of finite-temperature TDGCM [11,12].
The extension of TDGCM to include finite-temperature ef-
fects presents a first step in going beyond the adiabatic
approximation [5], in the sense that excitations of intrinsic
degrees of freedom are included through the temperature de-
pendence of the generator states [29,30]. The specific value of
the temperature depends on the intrinsic excitation energy of
the fissioning nucleus. Because of constant temperature, how-
ever, this simple model cannot describe dissipation effects.
In the method developed in the present study, the excitation
energy ε appearing in the Schrödinger-like equation (19) is
a function of temperature, and the energy dependent collec-
tive potential V (q, ε), mass M(q, ε), and dissipation function
η(q; ε, ε′) can be expressed in terms of the nuclear tempera-
ture T : V (q, T ) ≡ V (q, ε(T )), M(q, T ) ≡ M(q, ε(T )), and
η(q; T, T ′) ≡ η(q; ε(T ), ε(T ′)). The generator states in the
TDGCM ansatz (1) are determined by thermal occupation
probabilities of quasiparticle states ([1 + eβEk ]−1) at a given
temperature (intrinsic energy) and collective coordinate, and
the dissipation term in Eq. (19) mixes states corresponding to
different temperatures. During the time-evolution of an initial
collective state, this term takes into account the temperature
increase of the fissioning system. We express Eq. (19) in the

form:

ih̄∂tψ (q, T ; t ) =
[
V (q, T ) + P

1

2M(q, T )
P
]
ψ (q, T ; t )

+ i

2

∫
{P,O(q; T, T ′)}ψ (q, T ′; t )dT ′,

(20)
with O(q; T, T ′) = η(q; T, T ′)dε(T )/dT .

In the present study we employ the self-consistent
multidimensionally constrained (MDC) relativistic Hartree-
Bogoliubov (RHB) model [31,32] at finite temperature
[11,29,30]. In a grand-canonical ensemble, the expectation
value of an operator Ô is given by the ensemble average

〈Ô〉 = Tr[D̂Ô], (21)

where D̂ is the density operator

D̂ = 1

Z
e−β(Ĥ−μN̂ ), (22)

Z is the partition function, and β = 1/kBT is the inverse tem-
perature with the Boltzmann constant kB. Ĥ is the Hamiltonian
of the system, μ denotes the chemical potential, and N̂ is the
particle number operator. The entropy of the nuclear system
is S = −kB〈D̂ ln D̂〉. The intrinsic level density ρ is calculated
in the saddle-point approximation [33]

ρ = eS

(2π )3/2D1/2
, (23)

where D is the determinant of a 3 × 3 matrix that contains
the second derivatives of the entropy with respect to β and
ντ = βμτ (τ ≡ p, n) at the saddle point.

The finite temperature relativistic Hartree-Bogoliubov
(FT-RHB) equations are obtained by minimizing the grand-
canonical potential � = 〈Ĥ〉 + T S − μτ 〈N̂〉. In this work the
particle-hole channel is specified by the choice of the rela-
tivistic energy density functional DD-PC1 [34], while pairing
correlations are taken into account in the Bardeen-Cooper-
Schrieffer (BCS) approximation with a finite-range separable
pairing force [35]. The parameters of the pairing interaction
have been adjusted to reproduce the empirical pairing gaps
in the mass region considered in this study [12]. The nuclear
shape is parametrized by the deformation parameters

βλμ = 4π

3ARλ
〈Qλμ〉. (24)

The shape is assumed to be invariant under the exchange of
the x and y axes, and all deformation parameters βλμ with
even μ can be included simultaneously. The self-consistent
relativistic mean-field (RMF + BCS) equations are solved
by an expansion in the axially deformed harmonic-oscillator
(ADHO) basis [36]. In the present study calculations have
been performed in an ADHO basis truncated to Nf = 20 os-
cillator shells.

The internal excitation energy ε(T ) of a nucleus at tem-
perature T is defined as the difference between the total
binding energy of the equilibrium RMF + BCS minimum
at temperature T and at T = 0. The thermodynamical po-
tential relevant for deformation effects is the Helmholtz free
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energy F (T ) = E (T ) − T S, evaluated at constant tempera-
ture T , where E (T ) is the binding energy of the deformed
nucleus, and the deformation-dependent energy landscape
is obtained in a self-consistent finite-temperature mean-field
calculation with constraints on the mass multipole moments
Qλμ = rλYλμ.

In the present case the collective coordinates q correspond
to the quadrupole 〈Q20〉 and octupole 〈Q30〉 mass multipole
moments. The collective potential is, therefore, V (q, T ) =

ε(T ) + F (q, T ), where F (q, T ) is the Helmholtz free energy
normalized to the corresponding value at the equilibrium
RMF + BCS minimum at temperature T . The mass tensor
M(q, T ) is calculated in the finite-temperature perturbative
cranking approximation [37,38]

MC p = h̄2M−1
(1)M(3)M

−1
(1) , (25)

with

[M(k)]i j,T =1

2

∑
μ �=ν

〈0|Q̂i|μν〉〈μν|Q̂ j |0〉
{

(uμuν − vμvν )2

(Eμ − Eν )k

[
tanh

( Eμ

2kBT

)
− tanh

( Eν

2kBT

)]}

+ 1

2

∑
μν

〈0|Q̂i|μν〉〈μν|Q̂ j |0〉
{

(uμvν + uνvμ)2

(Eμ + Eν )k

[
tanh

( Eμ

2kBT

)
+ tanh

( Eν

2kBT

)]}
. (26)

|μν〉 are the two-quasiparticle states with the corresponding
quasiparticle energies Eμ and Eν . v2

μ are the BCS occupation
probabilities, and u2

μ = 1 − v2
μ.

Equation (20) describes nuclear collective motion with
dissipation. In addition to the nondissipative potential and
kinetic-energy terms, the dissipative channel coupling is
proportional to the momentum of the collective wave func-
tion. Even though the dissipation function η(q; ε, ε′) =
h(1)(q; ε, ε′)/h̄ could, in principle, be determined in a fully mi-
croscopic way, in practice this is extremely difficult. Namely,
if one considers even-even nuclei and the collective space
consists of purely static deformations, the generator states
are time-even, and the time-odd linear term h(1)(q; ε, ε′) van-
ishes because of time-reversal invariance [39,40]. To obtain
a nonvanishing contribution on the microscopic level, one
would have to consider generator states on a dynamic path
that includes the collective momentum conjugate to q (dy-
namical GCM [39]). However, this doubles the dimension
of the collective space and a TDGCM calculation in the
space of quadrupole and octupole collective coordinates is
no longer feasible. This is why, in an exploratory study, we
will approximate the dissipation function with a phenomeno-
logical ansatz. As explained in Ref. [28], for complicated
nuclear many-body configurations, the sign of the Hamilto-
nian kernel h(q, q′; ε, ε′) changes randomly with variation
of the internal excitation energies ε and ε′. Following the
central limit theorem, one would expect that the values of the
dissipation function η(q; T, T ′) are random variables whose
probability density corresponds to a Gaussian distribution
centered around zero. Thus we choose the dissipation function
η(q; T, T ′) to be of the form

η(q; T, T ′) =
{

0, β2 < β0
2

η(T, T ′), β2 � β0
2 ,

(27)

where the matrix elements η(T, T ′) are Gaussian random vari-
ables. β0

2 is set to 1.5, which is slightly beyond the second
fission barrier for the example of fission of 228Th, which
will be considered in the next section. The cutoff value β0

2
is introduced, because for induced nuclear fission one only
expects significant dissipation effects in the saddle to scission

phase. Similar to Ref. [28], the root-mean-square value of
the Gaussian distribution of the η(T, T ′) random variables
reads γ {log[ρ(T )] log[ρ(T ′)]}1/2. In this expression ρ(T ) is
the intrinsic nuclear level density calculated at the RMF +
BCS equilibrium minimum at temperature T , while γ is
an adjustable parameter. Note that in Ref. [28] the ansatz
γ [ρ(T )ρ(T ′)]1/2 was used. However, in the realistic example
considered here the level density is much higher, and using the
expression without the log functions leads to numerical insta-
bilities. The precise value of γ is not crucial but, of course, its
strength must be such to produce a noticeable effect.

To model the dynamics of the fission process we follow the
time-evolution of an initial wave packet ψ (q, T, t = 0), built
as a Gaussian superposition of quasibound states gk

ψ (q, T, t = 0) =
∑

k

e (Ek−Ē )2/ (2σ 2 )gk (q, T ), (28)

where the value of the parameter σ is set to 0.5 MeV. The
collective states {gk (q, T )} and the corresponding energies Ek

are solutions of the stationary eigenvalue equation, in which
the original collective potential is replaced by a new potential
V ′(q, T ) that is obtained by extrapolating the inner potential
barrier with a quadratic form. A more detailed description of
this procedure can be found in Ref. [7]. The average energy of
the collective initial state is calculated as

E∗
coll = 〈ψ (q, T, t = 0)|Hcoll|ψ (q, T, t = 0)〉, (29)

where Hcoll = V (q, T ) + P[2M(q, T )]−1P, and the mean en-
ergy Ē in Eq. (28) is adjusted iteratively to obtain the chosen
value of E∗

coll.
The time-evolution is described by Eq. (20), in which the

temperature T is treated as the third coordinate. Following
the prescription of Refs. [6,7], we have discretized the three-
dimensional (3D) space (q, T ) with the continuous Galerkin
finite-element method. This leads to a large set of coupled,
time-dependent Schrödinger-like equations characterized by
sparse overlap and Hamiltonian matrices. The solution is
evolved in small time steps by applying an explicit and unitary
propagator built as a Krylov approximation of the exponential
of the Hamiltonian. The time step is δt = 5 × 10−4 zs (1 zs
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=10−21 s), and the charge and mass distributions are calcu-
lated after 4 × 104 time steps, which correspond to 20 zs. As
in our recent calculations of Refs. [10–14], the parameters
of the additional imaginary absorption potential that takes
into account the escape of the collective wave packet in the
domain outside the region of calculation [7] are the absorption
rate r = 20 × 1022 s−1 and the width of the absorption band
w = 1.0.

The deformation collective space is divided into an inner
region with a single nuclear density distribution, and an ex-
ternal region that contains the two separate fission fragments.

The scission hypersurface that divides the inner and external
regions is determined by calculating the expectation value of
the Gaussian neck operator Q̂N = exp[−(z − zN )2/a2

N ], where
aN = 1 fm and zN is the position of the neck [41]. We define
the pre-scission domain by 〈Q̂N 〉 > 3 and consider the frontier
of this domain as the scission surface. The flux of the proba-
bility current through this hypersurface provides a measure of
the probability of observing a given pair of fragments at time
t [7].

From Eq. (20), the time evolution of the probability density
reads

∂

∂t
|ψ (q, T ; t )|2 = −

∑
i

∂Ji(q, T ; t )

∂qi
+ i

2

{
ψ∗(q, T ; t )

∫
dT ′ ∑

i

{∂qi , ηi(q; T, T ′)}ψ (q, T ′; t )

−ψ (q, T ; t )
∫

dT ′ ∑
i

{∂qi , ηi(q; T, T ′)}ψ∗(q, T ′; t )

}
.

(30)

The two-dimensional scission hypersurface is embedded in
the three-dimensional space (q, T ). However, for each value
of T we have some value of shape coordinates q which cor-
respond to scission contour (here, 〈Q̂N 〉 = 3) and, thus, by
taking these values of the shape coordinates and integrating
along T ′ in the last term of Eq. (30), we would inevitably leave
the scission contour. Hence, in calculations of the integrated
flux through the scission hypersurface we neglect the last term
of Eq. (30), and consider the current

Ji(q, T ; t ) = h̄
∑

j

M−1
i j (q, T )Im

(
ψ∗ ∂ψ

∂qj

)
, (31)

to obtain the usual continuity equation

∂

∂t
|ψ (q, T ; t )|2 = −

∑
i

∂Ji(q, T ; t )

∂qi
. (32)

The flux of the probability current J(q, T ; t ) through the
scission hypersurface provides a measure of the probability
of observing a given pair of fragments at time t . Each in-
finitesimal surface element is associated with a given pair of
fragments (AL, AH ), where AL and AH denote the lighter and
heavier fragments, respectively. The integrated flux F (ξ ; t ) for
a given surface element ξ is defined as [7]

F (ξ ; t ) =
∫ t

t0

dt ′
∫

(q,T )∈ξ

J(q, T ; t ′) · dS, (33)

where J(q, T ; t ′) denotes the current Eq. (31). Note that the
current J(q, T ; t ′) has only components in the β2 and β3

directions. The yield for the fission fragment with mass A is
defined by

Y (A) ∝
∑
ξ∈A

lim
t→∞ F (ξ ; t ). (34)

The set A(ξ ) contains all elements belonging to the scission
hypersurface such that one of the fragments has mass number
A.

III. ILLUSTRATIVE CALCULATION: INDUCED FISSION
DYNAMICS OF 228Th

As an illustrative example, we have performed a TDGCM
calculation of induced fission of 228Th. For this nucleus the
charge distribution of fission fragments exhibits a coexistence
of symmetric and asymmetric peaks [42]. In the first step, a
large-scale MDC-RMF calculation is performed to generate
the potential-energy surface, single-nucleon wave functions,
and occupation factors in the (β2, β3, T ) space. The inter-
vals for the collective variables are −1 � β2 � 7 with a step
�β2 = 0.04; 0 � β3 � 3.5 with a step �β3 = 0.05; and the
temperature is varied in the range 0 � T � 2.0 MeV, with a
step �T = 0.1 MeV.

Figure 1(a) displays the calculated excitation energy of the
equilibrium minimum ε as a function of temperature T . The
excitation energy increases quadratically with temperature, in
accordance with the Bethe formula ε = aT 2. The intrinsic
level density, shown in Fig. 1(b), increases exponentially with
the entropy and, therefore, also with excitation energy. The
change in slope of the excitation energy and the intrinsic level

FIG. 1. (a) Excitation energy of the equilibrium (global) mini-
mum ε as a function of temperature T , and (b) the intrinsic level
density ρ as a function of excitation energy for 228Th, calculated with
the finite-temperature RMF + BCS model based on the DD-PC1
functional and finite-range separable pairing.
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FIG. 2. Free energy manifold of 228Th, calculated with the
RMF+BCS model based on the functional DD-PC1 and finite-range
separable pairing, projected on the quadrupole-octupole axially sym-
metric plane, for different values of the temperature T . In each panel
energies are normalized with respect to the corresponding value at
the equilibrium minimum. Contours join points on the surface with
the same energy, and the separation between neighboring contours is
1 MeV.

density can be associated with the pairing phase transition at
the critical temperature Tc ≈ 0.7 MeV, and a shape transition
at T ≈ 1.2 MeV. The two-dimensional deformation free-
energy surfaces F (T ) = E (T ) − T S, in the collective space
(β2, β3) for selected values of temperature T = 0, 0.4, 0.8,
1.2, 1.6, and 2 MeV, are shown in Fig. 2. Only configurations
with Q̂N � 3 are displayed, and the frontier of this domain
corresponds to the scission contour. The deformation surfaces
for T = 0 and 0.4 MeV are very similar, with a pronounced
ridge separating the asymmetric and symmetric fission val-
leys. For temperatures T � 0.8 MeV this ridge gradually
disappears. For T = 0 MeV, the scission contour starts from
an elongated symmetric point at β2 ≈ 6, and evolves to a min-
imal elongation β2 ≈ 3 as reflection asymmetry increases. For
higher temperatures we notice minor qualitative modifications
of the scission contour.

To begin with, we have performed a two-dimensional (2D)
TDGCM + GOA calculation at fixed temperatures T = 0,
0.8, 1.0, and 1.2 MeV (for a detailed description of the model,
we refer the reader to Ref. [11]). This calculation does not
include dissipation effects. For each temperature, the aver-
age excitation energy of the initial state E∗

coll is chosen 1
MeV above the fission barrier. The resulting charge yields,
normalized to

∑
A Y (A) = 200, are displayed in Fig. 3 in

comparison to the experimental fragment charge distribution
for photoinduced fission of 228Th with photon energies in

FIG. 3. Charge yields for induced fission of 228Th at fixed tem-
peratures: T = 0, 0.8, 1.0, and 1.2 MeV. The average excitation
energy of the initial state E∗

coll is chosen 1 MeV above the fission
barrier. The data for photoinduced fission correspond to photon en-
ergies in the interval 8–14 MeV, and a peak value of Eγ = 11 MeV
[42].

the interval 8–14 MeV [42]. The fission yields are obtained
by convoluting the raw flux with a Gaussian function of the
number of particles, and the width is set to 1.6 units. For
T = 0 MeV the calculation predicts asymmetric peaks located
at Z = 35 and Z = 55, that is, one charge unit away from
the experimental values Z = 36 and Z = 54. Furthermore, the
zero-temperature calculation fails to describe the empirical
yields for symmetric fission, and overestimates the asym-
metric peaks. Increasing the temperature to T = 0.8 MeV
brings the theoretical charge yields in fair agreement with the
experimental values. For even larger values of temperature
T = 1.0 MeV and T = 1.2 MeV, the description of charge
yields deteriorates. In particular, compared with data the sym-
metric peak is more pronounced, while the asymmetric peaks
are underestimated and their position is shifted towards the
symmetric peak. This is consistent with the behavior of the
free-energy surfaces displayed in Fig. 2, where the ridge be-
tween symmetric and asymmetric fission valleys decreases
with temperature for T � 0.8 MeV.

In the next step, a full 3D calculation of induced fission
dynamics of 228Th is carried out in the space of the axial shape
variables (β2, β3), and the temperature T . In Fig. 4, the 2D
projections on the β2-β3 plane of the probability distribution
of the initial wave packet are plotted for different temper-
atures. The average excitation energy of the initial state is
E∗

coll = 11 MeV. In Figs. 5 and 6, we compare the theoretical
predictions for the charge yields with the data for photoin-
duced fission of 228Th [42]. The raw charge yields, normalized
to 200, obtained directly from the collective flux through the
scission hypersurface are displayed in Fig. 5, while in Fig. 6
we show the convolution of the raw yields with a Gaussian
function of width σ = 1.6 charge units. Results obtained
without the inclusion of the dissipation term proportional to
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FIG. 4. 2D projections on the (β2, β3) plane of the probability
distribution of the initial wave packet for induced fission of 228Th,
at different temperatures. The average excitation energy of the initial
state is E∗

coll = 11 MeV.

FIG. 5. Raw charge yields (normalized to 200) for induced fis-
sion of 228Th, calculated in the 3D space of axial deformation
parameters β2, β3, and temperature T . The yields obtained without
(blue bars) and with (red bars) dissipation are shown in comparison
with available data. The results obtained with the inclusion of the
dissipation term, correspond to the mean value of five calculations
with different random matrices η(T, T ′). The resulting standard de-
viations are shown as error bars. The data for photoinduced fission
correspond to photon energies in the interval 8–14 MeV, and a peak
value of Eγ = 11 MeV [42].

FIG. 6. Same as in the caption to Fig. 5 but for the charge yields
obtained by convoluting the raw flux with a Gaussian function of
width σ = 1.6 charge units.

η(q; T, T ′) in Eq. (20) are denoted by blue bars in Fig. 5 and
the blue dot-dashed curve in Fig. 6.

When the dissipation term is included in the Hamiltonian
of Eq. (20) for the statistical wave function, the results de-
noted by red bars in Fig. 5, and the red solid curve in Fig. 6
are obtained. Since the matrix elements of the dissipation
function η(q; T, T ′) Eq. (27) are assumed to be Gaussian
random variables, the calculation has been carried out with
five different random matrices η(T, T ′). The results denoted
mean values, and the corresponding standard deviations are
shown as error bars. Three values of the strength parameter
of the dissipation function have been used in the calculation:
γ = 0.001, 0.01, and 0.05. The best agreement with data is
obtained for γ = 0.01. The results displayed in Figs. 5 and
6 demonstrate that, even though the results obtained without
dissipation qualitatively reproduce the trend of the data, it is
only when dissipation effects are included that experimental
charge yields can be reproduced on a quantitative level. We
note that a single parameter has been adjusted to experimental
results. To illustrate the effect of dissipation on the flux of the
probability current through the scission hypersurface, in Fig. 7
we plot the time-integrated flux through the scission contour
in the β2-β3 plane, for a given value of the temperature T :

B(T ) ∝
∑
ξ∈B

lim
t→∞ F (ξ ; t ). (35)

The set B(ξ ≡ β2, β3) contains all elements of the scission
contour with a given value T . Without dissipation, a parabolic
dependence on temperature is obtained for the time-integrated
flux through the scission contour. The parabola, with the
maximum at T ≈ 0.3 MeV, is consistent with the probabil-
ity distribution of the initial wave packet shown in Fig. 4.
When dissipation is included, only the low-T part of the
time-integrated flux exhibits a parabolic structure with a maxi-
mum at essentially the same temperature. The high-T branch,
however, in this case extends to much higher temperatures.
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FIG. 7. Time-integrated collective flux B(T ) Eq. (35) through the
scission contour, as a function of temperature. See caption to Fig. 5
for the explanation of error bars.

While without dissipation no flux through the scission contour
is obtained for T > 0.8 MeV, dissipation broadens the distri-
bution of the flux and the high-T tail reaches T ≈ 1.5 MeV.
The time-integrated flux nicely illustrates how the inclusion
of dissipation in the time-evolution of the collective wave
function can describe the heating of the fissioning nucleus in
the final saddle to scission phase of fission dynamics.

IV. SUMMARY

Over the last decade various implementations of the
time-dependent generator coordinate method (TDGCM) have
successfully been applied in the description of the fission
process and, in particular, in the calculation of fission yields
[3]. However, since TDGCM only includes collective degrees
of freedom in the adiabatic approximation, standard formula-
tions of this method cannot take into account the dissipation of
the energy of collective motion into intrinsic degrees of free-
dom. Dissipation heats up the fissioning system, can modify
the fission path in the collective space, and affects the time it
takes for a nucleus to reach scission [16].

Starting from a quantum theory of dissipation for nuclear
collective motion [28], in this work we have extended the
temperature-dependent TDGCM for induced fission dynam-
ics, to allow for dissipation effects. The extension is based on a
generalization of the GCM generating functions that includes
excited intrinsic states. Because the level density is high even
at relatively low excitation energies, the discrete label of
excited intrinsic states is replaced by a continuous energy
variable. By introducing a statistical wave function defined
by the average value of the collective wave function and the
level density, an equation of motion is derived in the collective
coordinates and excitation energy. With the usual assumption
that the Hamiltonian overlap kernel decreases rapidly with
distance between the corresponding collective coordinates, an
expansion in a power series in collective momenta leads to

a Schrödinger-like equation that explicitly includes a dissi-
pation term, proportional to the momentum of the statistical
wave function. By expressing the excitation energy in terms
of nuclear temperature, the new model can be formulated in
the framework of temperature-dependent TDGCM, in which
the Helmholtz free energy plays the role of the collective
potential, and the collective inertia is calculated in the finite-
temperature perturbative cranking approximation.

An illustrative calculation has been performed for induced
fission of 228Th, for which the charge distribution of fission
fragments exhibits a coexistence of symmetric and asymmet-
ric peaks. The three-dimensional model space includes the
axially symmetric quadrupole and octupole shape variables,
and the nuclear temperature. The corresponding dissipation
function, even though in principle it could be determined
microscopically, is approximated by a set of Gaussian ran-
dom variables, effective in the region of the collective space
between the second fission barrier and the scission hypersur-
face. When compared with data for photoinduced fission of
228Th [42], the calculated fission yields clearly demonstrate
the important role of the dissipation term in the Hamiltonian
for the statistical wave function. Even though already the
finite-temperature TDGCM without dissipation reproduces
the empirical trend of the data, it is only with the explicit
inclusion of dissipation that theoretical results are obtained in
quantitative agreement with the experimental charge yields.
As a result of dissipation, a high-temperature tail broadens
the distribution of the flux through the scission hypersurface
as function of temperature.

The TDGCM extended with the explicit inclusion of dis-
sipation, and the results of the pilot study of induced fission
dynamics reported in this work, point to a new microscopic
approach that can be employed to quantitatively describe
dissipation of the energy of collective motion into intrinsic
excitations. Obviously, the next step is to go beyond the
statistical ansatz for the dissipation function, and derive it mi-
croscopically from the underlying Hamiltonian. An important
problem is also the definition of the scission hypersurface in
a multidimensional space that includes temperature or intrin-
sic excitation energy. The interplay between dissipation and
pairing degrees of freedom should be explored, as well as the
effect of dissipation on the total kinetic-energy distribution.
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