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Fusion processes in collisions of 6Li beams on heavy targets
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We discuss a recently introduced model to evaluate complete and incomplete fusion in collisions of weakly
bound nuclei. We propose a modification of the imaginary potential to deal with cross sections at energies
well below the Coulomb barrier, and discuss the relation between the cross sections provided by a continuum
discretized coupled-channel calculation and the ones measured in actual experiments. The new version of the
model is used to make predictions of fusion cross sections in collisions of 6Li with a few heavy targets, and the
results are compared to the available data. The overall agreement between theory and experiment is quite good.

DOI: 10.1103/PhysRevC.105.054601

I. INTRODUCTION

Low-energy collisions of weakly bound nuclei have been
attracting considerable interest in the last few decades [1–5].
In such collisions, breakup is a very important reaction mech-
anism, which has a large cross section and exerts strong
influence on elastic scattering and typical nuclear reactions,
like fusion, inelastic scattering, and particle transfer. Special
attention has been given to the effect of the breakup channel
on fusion [1,4–6] and reaction cross sections [7]. There are
two main methods to assess this effect. The first is to com-
pare experimental fusion cross sections to cross sections of
calculations that neglect the breakup channels. The differ-
ence between these cross sections is then attributed to the
breakup effect. The second method is to compare fusion data
on weakly bound systems with data on tightly bound ones. In
this case, it is necessary to eliminate trivial differences arising
from system size and the height of the Coulomb barrier. This
can be achieved by reducing the data, by the fusion function
method [8,9] or another method available in the literature (see,
e.g., Ref. [10]).

Owing to its low breakup threshold, a weakly bound pro-
jectile has a large probability of breaking up into two or
more fragments, under the action of the combined Coulomb
and nuclear fields of the target. This gives rise to different
fusion processes. The first is the usual fusion of the whole
projectile with the target, present also in collisions of tightly
bound nuclei. This process is known as direct complete fusion
(DCF). In addition, there are other fusion processes following
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breakup. In the case of projectiles that break up into two
fragments, say c1 and c2, there are two incomplete fusion
(ICF) processes. In the first ICF1, fragment c1 fuses with the
target whereas c2 emerges from the interaction region. In the
second, ICF2, the two fragments exchange their roles. Finally,
there is the possibility that the two fragments fuse with the
target sequentially. This process is called sequential complete
fusion (SCF). DCF and SCF, which lead to the same com-
pound nucleus (CN), cannot be distinguished experimentally.
Only their sum, called complete fusion (CF), is an observable
quantity. The sum of all fusion processes, namely, CF + ICF,
is known as total fusion (TF).

Most of the fusion data available for weakly bound pro-
jectiles correspond to TF. Nevertheless, a few experiments
involving some particular heavy target provide individual CF
and ICF cross sections. These cross sections are available for
collisions of 6Li and/or 7Li projectiles with 209Bi [11,12],
159Tb [13–15], 144,152Sm [16–18], 165Ho [19], 198Pt [20,21],
154Sm [22], 90Zr [23], 124Sn [24], and 197Au [25] targets.
Some data on the fusion of 9Be with medium-heavy and heavy
nuclei are also available [12,26–36]. As the present version
of our model is limited to projectiles that break up into two
fragments, and 9Be breaks up into two alpha particles and a
neutron, these collisions are not discussed here. In collisions
of weakly bound projectiles with light- and intermediate-
mass targets, the situation is much more complicated. In this
case, the CNs produced in CF and ICF evaporate protons,
so that the decay chains for the two fusion processes are
intermixed. Then it is not possible to distinguish CF and ICF
events.

Developing realistic theories to describe the fusion process
in collisions of weakly bound nuclei is also a great challenge.
The earliest theories to evaluate individual CF and ICF cross
sections were based on classical [11,37–40] or semiclassical
[41,42] physics. Thus, important quantum mechanical ef-
fects were not properly accounted for. Later, several quantum

2469-9985/2022/105(5)/054601(17) 054601-1 ©2022 American Physical Society

https://orcid.org/0000-0001-7735-1835
https://orcid.org/0000-0001-7649-6725
https://orcid.org/0000-0002-1748-350X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.105.054601&domain=pdf&date_stamp=2022-05-05
https://doi.org/10.1103/PhysRevC.105.054601


J. LUBIAN et al. PHYSICAL REVIEW C 105, 054601 (2022)

mechanical calculations based on the continuum discretized
coupled-channel (CDCC) method were reported [43–51].
Some of them [43–45] could only evaluate the TF cross sec-
tion, without determining the individual contributions from
CF and ICF processes. This limitation was eliminated in the
method of Refs. [46,47]. However, this method could not be
applied to weakly bound nuclei that break up into fragments
of comparable masses. More recently, Lei and Moro [52] and
Parkar et al. [51] used indirect methods to determine cross
sections for individual fusion processes. The former’s authors
obtained CF cross sections for the 6,7Li + 209Bi systems by
subtracting from the total reaction (TR) cross sections the
contributions of elastic breakup (EBU), inclusive nonelastic
breakup (NEB), and inelastic scattering. The TR and the
EBU cross sections were obtained through CDCC calcula-
tions, the NEB cross sections for the two fragments were
obtained by the participant-spectator model of Ichimura et al.
[53], and the inelastic scattering cross section was evaluated
by standard coupled-channel calculations. In this way, they
were able to reproduce fairly well the CF data on the two
systems. Parkar et al. [51] used a different procedure. First,
they performed three CDCC calculations using combinations
of different short-range imaginary potentials. Then, compar-
ing the absorption cross sections of these calculations, they
determined the CF and ICF cross sections. Their method was
applied to the 6,7Li + 198Pt and 209Bi systems, and the results
were shown to be in reasonable agreement with the data.
There are also other promising models [50,54,55] that are not
yet in the stage of making realistic predictions for fusion cross
sections of weakly bound nuclei.

Very recently [48,49], we proposed a CDCC-based method
to evaluate CF and ICF cross sections. This method was ap-
plied to collisions of 7Li with a few heavy targets and the
results were compared with the available data. The overall
agreement between theory and experiment was very good,
except at energies well below the Coulomb barrier, where
the theoretical cross section overpredicted the data. Our cal-
culations are consistent with the assumption that the breakup
process is responsible for the suppression of CF, observed in
collisions of weakly bound projectiles (see, e.g., Ref. [12]).
On the other hand, this assumption is contradicted by other
works [56,57], that conclude that the suppression mechanism
is the direct stripping of a cluster. However, we believe that
this disagreement is only apparent, as it results from the dif-
ferent treatments of the continuum in each work (this issue
will be addressed in Sec. III A).

In the present paper, we introduce some refinements in the
method of our previous works [48,49], and apply the improved
version to collisions of 6Li with some heavy targets. Particular
attention is given to the CF cross sections at energies well
below the Coulomb barrier, where our previous calculations
overpredicted the data. As the breakup threshold of 6Li is 1
MeV lower than that of 7Li, the influence of the low bind-
ing energy on the fusion processes is expected to be more
pronounced. The paper is organized as follows. In Sec. II,
we introduce our theoretical model. We describe our CDCC
calculations, and show how calculated fusion probabilities can
be used to predict fusion cross sections of actual experiments.
In Sec. III, we evaluate CF and ICF cross sections in collisions

FIG. 1. Schematic representation of the vector coordinates in a
collision of a projectile (P) composed of two clusters (c1 and c2) with
a target (T).

of 6Li projectiles with 209Bi, 197Au, 124Sn, and 198Pt targets,
and compare the predictions of our method with the available
data. Finally, in Sec. IV, we present our conclusions and
discuss future extensions of our method.

II. THE THEORETICAL APPROACH

To calculate CF and ICF cross sections in collisions of 6Li,
we adopt the method of Refs. [48,49], with a slight modifica-
tion [see the discussion after Eq. (31)]. The method describes
fusion reactions in collisions of a projectile (P) with a target
(T ), assuming that the former is composed of two clusters,
c1 and c2, which in the present case are, respectively, 2H and
4He. A description of the method is presented below.

Adopting a reference frame on the center of mass of the
target, the reaction dynamics can be expressed in terms of two
vector coordinates: the vector joining the centers of the two
clusters, r, and the one going from the center of mass of the
target to that of the projectile, R. Alternatively, one can use
the position vectors of c1 and c2, r1 and r2. These coordinates
are represented in Fig. 1. They are related to r and R by the
equations

r1 = R + A2

AP
r, r2 = R − A1

AP
r. (1)

Above, A1 = 2 and A2 = 4 are the mass numbers of the two
clusters, and AP = 6 is the mass number of the projectile. In
the ground state of 6Li, the clusters c1 and c2 are bound, with
the separation energy (breakup threshold) B = 1.47 MeV.

The collision dynamics is determined by the full Hamilto-
nian of the system, given by

H(R, r) = h(r) + T̂R + V (R, r) − i W (R, r). (2)

Above, h(r) is the intrinsic Hamiltonian describing the motion
of the clusters within the projectile, T̂R is the kinetic energy
operator associated with the projectile-target relative motion,
and V (R, r) is the real part of the interaction between the
projectile and the target. Finally, −W (R, r) is the imaginary
potential that accounts for the influence of the fusion channels,
which are not explicitly included in channel expansion. One
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should keep in mind that, to simulate the effects of fusion, the
imaginary potential should be very strong and have a short
range. That is, it must ensure total absorption in the inner
region of the barrier, and be negligible elsewhere.

In the case of 6Li, the intrinsic Hamiltonian has only one
bound state, the ground state, φ0. The remaining eigenstates of
h(r), φε, are in the continuum (the breakup channels). They
are labeled by the positive energy of the relative motion of
the clusters (for simplicity, we omit other quantum numbers
needed to specify the scattering states), ε. However, if one ex-
pands the full wave function over this set of states, one gets an
infinite number of coupled equations. To avoid this problem,
we use the CDCC approach [58,59], where the continuum
is approximated by a set of N orthonormal wave packets
(bins), φn (n = 1, . . . , N ). Then, the total wave function of the
system, � (+) (R, r), can be written as

� (+) (R, r) = �0(R, r) + �BU(R, r), (3)

where

�0(R, r) = ψ0(R) ⊗ φ0(r) (4)

is the wave function of the elastic channel, and

�BU(R, r) =
N∑

n=1

ψn(R) ⊗ φn(r) (5)

is the breakup wave function within the CDCC approxima-
tion.

Inserting Eqs. (3)–(5) into the full Schrödinger equation of
the system, namely,

H(R, r) � (+) (R, r) = E � (+) (R, r),

and taking the scalar product with each of the intrinsic states,
one gets the set of N + 1 coupled equations

[E − H00(R)] ψ0(R) =
N∑

m=1

U0m(R) ψm(R) (6)

and

[En − Hnn(R)] ψn(R) =
N∑

m �=n

Unm(R) ψm(R), n = 1, . . . , N.

(7)
Above, En = E − εn is the relative energy in channel n and
Unm(R) are the matrix elements of the total projectile-target
interaction. These matrix elements are written as

Unm(R) = Vnm(R) − i Wnm(R), (8)

with

Vnm(R) =
∫

d3r φ∗
n (r) V (R, r) φm(r), (9)

Wnm(R) =
∫

d3r φ∗
n (r) W (R, r) φm(r). (10)

The diagonal matrix elements, Unn, play the role of optical
potentials in the channel Hamiltonians,

Hnn = T̂R + Unn(R), n = 0, . . . , N, (11)

TABLE I. Depth, radius, and diffusivity parameters of the volu-
metric (V0, r0, a0) and spin-orbit (V SO

0 , rSO
0 , aSO

0 ) terms of v12(r) (taken
from Ref. [44]). Energies are given in MeV and lengths are given in
fm.

V0 r0 a0 V SO
0 rSO

0 aSO
0

6Li (g.s.) −78.46 1.15 0.7
6Li (res) −80.0 1.15 0.7 2.5 1.15 0.7

whereas the off-diagonal matrix elements couple the elastic
to the breakup channel, and also the breakup states among
themselves.

The absorption cross section is given by the well-known
expression [48,49,60]

σabs = K

E

N∑
n,m=0

〈ψn|Wnm |ψm〉, (12)

where K is the wave number of the relative motion associated
with the energy E . This expression plays a key role in calcu-
lations of fusion cross sections in collisions of weakly bound
projectiles (see Sec. II B).

A. Nuclear interactions in the CDCC calculations

The theory of Refs. [48,49] is a three-body model, where
the target and the two clusters forming the projectile are
treated as structureless particles. Thus, the interactions be-
tween the two clusters, v12(r), between c1 and the target,
V 1T (r1), and between c2 and the target, V 2T (r2), are essential
ingredients of the model. These interactions are discussed
below.

1. The intrinsic interaction and continuum discretization

The intrinsic Hamiltonian of Eq. (2) is

h(r) = − h̄2

2μ12

∇2
r + v12(r), (13)

where μ12 = m0 A1A2/(A1 + A2 ), with m0 standing for the nu-
cleon mass, is the reduced mass associated with the relative
motion of the clusters within the projectile. The potential
v12(r) is parametrized by a Woods-Saxon function, with pa-
rameters fitted to reproduce the binding energy of the ground
state of 6Li (B = 1.47 MeV), and its main resonances. In this
procedure, it is necessary to use different parameters for the
bound state and for the resonances. We adopt the parameters
of Diaz-Torres et al. [44], which are listed in Table I. The
experimental energies and widths of the main resonances of
6Li are shown in Table II, in comparison with the energies
and widths calculated with these potentials.

In our calculations, the interactions were expanded in mul-
tipoles, keeping multipolarities up to λmax = 4. The continuum
discretized states (bins) were generated by scattering states of
the two clusters, with orbital angular momenta up to lmax = 3h̄,
and total angular momenta up to jmax = 4h̄. The discretization
was performed in the energy space, taking into account the
resonances of 6Li. Finer meshes were used in the neighbor-
hood of sharp resonances. We used the mesh represented in
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TABLE II. Experimental and theoretical energies and widths of
the main resonances of 6Li (taken from Ref. [44]). The theoretical
values were calculated with the parameters of the previous table.

l jπ E th
res 	th

res E exp
res 	exp

res

2 3+ 0.717 0.020 0.716 0.024
2 2+ 3.14 1.88 2.84 1.7
2 1+ 4.06 3.5 4.18 1.5

Fig. 2. With this mesh and cutoff parameters (λmax, jmax, and
lmax), we got very good convergence in all calculations in the
present paper.

2. The real projectile-target interaction

The standard procedure in CDCC calculations is to write
the real part of the projectile-target potential as a sum of
interactions between the clusters c1 and c2 with the target.
That is,

V (R, r) = V (1T)(r1) + V (2T)(r2). (14)

The off-diagonal matrix elements of this potential couple
the elastic channel to the continuum, and the continuum
discretized states among themselves. On the other hand, its
diagonal matrix elements are the real potentials in the channel
Hamiltonians, on the left-hand side of Eqs. (6) and (7). In
particular,

V00(R) =
∫

d3r |φ0(r)|2 [V (1T)(r1) + V (2T)(r2)], (15)

where r1 and r2 are related with R and r by Eq. (1), is the
real potential in the elastic channel, which determines the
Coulomb barrier. Throughout the present paper, we adopt

FIG. 2. Schematic representation of the discretization mesh used
in our calculations. The resonances of Table II are also indicated
(blue curves).

TABLE III. Barrier radii (R00
B ), curvature parameters (h̄ω00), and

heights (V 00
B ) of V 00

B (R) and barrier heights of VPT (R) (V PT0
B ), for the

6Li + 124Sn, 6Li + 197Au, 6Li + 198Pt, and 6Li + 209Bi systems. The
last line shows the reduction of the barrier height due to the low
breakup threshold of 6Li.

Target 124Sn 197Au 198Pt 209Bi

R00
B (fm) 10.8 11.6 11.7 11.7

h̄ω00 (fm) 3.6 4.2 4.2 4.3
V 00

B (MeV) 18.4 27.1 26.7 28.2
V PT

B (MeV) 19.7 28.8 28.4 29.9
�VB (MeV) 1.3 1.7 1.7 1.7

the São Paulo potential [61,62] (SPP) for the real part of
the nuclear interactions between the clusters and the target.
For the Coulomb interaction, we adopt the usual proce-
dure in nucleus-nucleus collisions, used, for example, in
Refs. [48,49].

Owing to the low breakup threshold of the projectile, the
wave function φ0 has a long tail. For this reason, the barriers
of V00(R), denoted by V 00

B , are systematically lower than those
of the SPP between the projectile and the target, neglecting
the cluster structure. The latter potential and its Coulomb
barrier are denoted by VPT (R) and V PT

B , respectively. The
barrier lowering effect arising from the low breakup threshold
is illustrated in Table III, for several targets. It shows V 00

B ,
V PT

B , and the reduction of the barrier height due to the cluster
structure of the projectile (the static effect of the low breakup
threshold), �VB. For the three heaviest targets, which are very
similar, one finds �VB = 1.7 MeV. For the lighter 124Sn target,
the reduction is 0.4 MeV lower. The table shows also the
radius and curvature parameters of the parabolic expansion
of V00(R), denoted by R00

B and h̄ω00.
The influence of the barrier lowering on fusion is illus-

trated in Table IV, where we show fusion cross sections of
one-channel calculations with the two real potentials, with
short-range absorption. In both calculations, the imaginary
potential is represented by a negative Woods-Saxon function
with strength W0 = 50 MeV, radius parameter rw = 1.0 fm,
and diffusivity aw = 0.2 fm. The targets are the same of the
previous table. In each case, the cross sections are calculated
at the collision energy Ec.m. = V 00

B + 10 MeV. One concludes
that the reduction of the Coulomb barrier enhances the fusion
cross sections by ≈30%.

a. Bound-continuum couplings. The continuum discretized
bins, |φn), are linear combinations of scattering states of the
clusters c1 and c2. However, the cluster state |φ0) is just an

TABLE IV. Cross sections of one-channel calculations with V00

(σ00) and VPT (σPT ). For each system, the cross section is evaluated
at the collision energy Ec.m. = V 00

B + 10 MeV.

Target 124Sn 197Au 198Pt 209Bi

σ00 (mb) 1244 1094 1106 1136
σPT (mb) 964 815 931 830
σ00/σPT 1.3 1.3 1.2 1.4
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approximation for the actual ground state of 6Li, |φg.s.). One
can write

|φg.s.) = α |φ0) + β|φ⊥) (with α2 + β2 = 1), (16)

where |φ⊥) is a state orthogonal to |φ0), which does not have
the cluster structure. Thus, matrix elements of the coupling
interaction between |φ⊥) and |φn) vanish. Although |φ0) is
close to |φg.s.), the coefficient α is not exactly equal to 1.
This statement is supported by the fact that large cross sec-
tions for one-nucleon transfer reactions have been observed
in collisions of 6Li with different targets [63–66]. Thus, this
coefficient must be somewhat lower than 1. We point out
that spectroscopic amplitudes are also used in calculations
of transfer cross sections [67–70], and a similar procedure
is adopted in cluster decays of a heavy nucleus. In the latter
case, it appears as a preformation probability in calculations
of half-lives (see, e.g., Refs. [71,72]).

Surely, setting α = 1 is a reasonable approximation, at
least for a qualitative calculation. However, if one aims at
obtaining accurate descriptions of data, one should allow for
smaller values of α. In this case, matrix elements of the cou-
pling interaction between the elastic channel and bins (n �= 0)
should be written

V0n(R) = α (φ0| V |φn), (17)

Vn0(R) = α (φn| V |φ0). (18)

For simplicity, we are assuming that the spectroscopic ampli-
tude, α, is real. Since the precise value of α is unknown, we
treat it as an adjustable parameter of the order of 1, varying
within the interval 1 � α � 0.5.

3. The imaginary potential

Different imaginary potentials have been used in CDCC
calculations of fusion cross sections. Hagino et al. [46] and
Diaz-Torres and Thompson [47] adopted a strong absorp-
tion potential with a short range, depending exclusively on
the projectile-target distance, R. It was parametrized by the
Woods-Saxon (WS) function:

WPT (R) = W0

1 + exp [(R − Rw )/aw]
, (19)

where Rw = rw [A1/3

P + A1/3

T ], with the parameters W0 = 50
MeV, rw = 1.0 fm, and aw = 0.1 fm.

Other CDCC calculations [44,48,49,51] used the sum of
short-range imaginary potentials:

W (R, r) = W (1)(r1) + W (2)(r2), (20)

where W (1)(r1) and W (2)(r2) absorb the clusters c1 and c2,
respectively. These potentials were parametrized by the WS
functions:

W (i) (ri ) = W0

1 + exp[(ri − R(i)
w )/aw]

, i = 1, 2, (21)

with W0 = 50 MeV, R(i)
w = rw [A1/3

i + A1/3

T ], with short-range
radius and diffusivity parameters (rw = 1.0 fm, aw = 0.1 fm).
The potential of Eq. (20) has the advantage of allowing for the
absorption of each cluster, individually, which is suitable for

FIG. 3. Fusion excitation functions for the 6Li + 198Pt system
obtained by one-channel calculations using the potentials V00 − iWPT

and V00 − iW00. For comparison, the data of Shrivastava et al. [20] are
also shown.

calculations of separate cross sections for the different fusion
processes. Note that this imaginary potential is not diagonal
in channel space. Its diagonal matrix element for the ground
state of 6Li,

W00(R) =
∫

d3r |φ0(r)|2 [W (1)(R, r) + W (2)(R, r)], (22)

plays the role of the imaginary part of the optical potential in
the elastic channel.

The imaginary potential of Eqs. (20) and (21) was used
to evaluate CF and ICF cross sections in collisions of 7Li
with several targets, and the results were compared to the
available data [49]. The overall agreement between theory
and experiment was quite good. However, the theoretical CF
cross sections became much larger than the data at energies
well below the Coulomb barrier (Ec.m. � V 00

B − 4 MeV). This
shortcoming was traced back to the long tail of the imaginary
potential of Eq. (22), resulting from the extended range of φ0.
This tail gives rise to absorption around the barrier radius and
beyond, which cannot be associated with fusion. In collisions
of 6Li, the situation is expected to be much worse. Owing to
the lower breakup threshold of 6Li, φ0 has a much longer
tail, so that W00(R) reaches far beyond the barrier radius.
Then, at energies well below the Coulomb barrier, where the
classical turning point is much larger than the barrier radius,
σabs is dominated by absorption outside the Coulomb barrier.
Since the imaginary potential is meant to account for fusion,
the cross section calculated with the imaginary potential of
Eq. (22) is not reliable in this energy region. A quantitative
discussion of this problem is presented below.

At energies well below the Coulomb barrier, σSCF is much
smaller than σDCF. In this way, the CF cross section reduces to
the much simpler cross section of a one-channel calculation
with the potential U (R) = V00(R) − i W00(R). This has been
explicitly shown in the case of 7Li projectiles (see the log-
arithmic plots in Figs. 8–11 of Ref. [49]). The consequence
of the spurious behavior of W00 at long distances is illus-
trated in Fig. 3. It shows fusion excitation functions for the
6Li + 198Pt system, obtained by one-channel calculations with
the complex potentials V00 − iW00 and V00 − iWPT , where WPT
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is the imaginary potential of Eq. (19). The cross sections for
these potentials are denoted by σ 00

F (red dashed line) and σ PT
F

(solid blue line), respectively. Above the Coulomb barrier,
the fusion cross sections of the two one-channel calculations
are extremely close. Further, one notices that the CF data are
appreciably lower than the results of the two calculations in
this energy range, exhibiting the above-barrier suppression,
extensively discussed in the literature (see, e.g., Ref. [4]). The
situation is completely different at energies well below the
Coulomb barrier. In this region, σ PT

F converges to the CF data,
whereas σ 00

F is a few orders of magnitude larger.
The origin of the unrealistically large values of σ 00

F at
energies well below the Coulomb barrier may be traced
back to long-range absorption. To prove it, we resort to the
partial-wave projected version of Eq. (12). In one-channel
calculations the sum over channels reduces to the contribution
from the elastic channel (n = m = 0), and one can write [60]

σabs =
∑

J

σ (J ), with σ (J ) = π

K2
(2J + 1) P (J ), (23)

where K is the wave number and P (J ) is the absorption
probability in a collision with angular momentum J . It is given
by

P (J ) = 4K

E

∫
dr W (R) |u0J (R)|2, (24)

where u0J (R) is the corresponding radial wave function and
W (R) is the modulus of the imaginary potential.

To determine the region in the R space that gives dominant
contributions to the absorption probabilities, we inspect the
integrand of Eq. (24) for the imaginary potentials, W (R) =
W00(R) and WPT (R). These integrands are denoted by I00(R)
and IPT (R), respectively. We consider two collision energies:
Ec.m. = 19.8 MeV (≈9 MeV below the barrier) and Ec.m. =
43.6 MeV (≈15 MeV above the barrier). In each case, the
integrand is evaluated at the angular momentum that gives the
largest contribution to the absorption cross section, namely,
J = 3h̄ for Ec.m. = 19.8 MeV, and J = 22h̄ for Ec.m. = 43.6
MeV. These integrands are shown in Fig. 4. To help the com-
parison between I00(R) and IPT (R), which may have different
orders of magnitude, they are renormalized as to have maxima
equal to 1.

For the above-barrier energy [Fig. 4(a)], I00(R) and IPT (R)
have different shapes, but they share the common feature of
being concentrated within the inner region of the barrier. The
broader shape of I00(R) results from the slowly decreasing
tail of W00(R). On the other hand, the fast decreasing tail of
WPT (R) leads to a sharp peak in IPT (R). Note that the small
width of this peak is compensated by its larger maximum
(it cannot be seen in the figure because the two curves are
renormalized), so that the two integrals are very close. This
has a simple physical interpretation. At energies well above
the barrier, the incident wave is fully transmitted through the
barrier and completely absorbed by any of the two imag-
inary potentials. Then, the cross sections σ 00

F and σ PT
F are

very close. The situation is quite different at Ec.m. = 19.8
MeV [Fig. 4(b)]. IPT (R) remains concentrated within the inner
region of the barrier, whereas I00(R) is negligible there. It
is relevant only at large distances, beyond the radius of the

FIG. 4. The integrands IPT (J ) and I00(J ) for the 6Li + 198Pt sys-
tem, for the collision energies (a) Ec.m. = 19.8 MeV and (b) Ec.m. =
43.6 MeV. They are evaluated at the angular momenta J = 3h̄ and
22h̄, respectively. See the text for details.

Coulomb barrier. Therefore, the resulting absorption proba-
bility cannot be associated with any fusion process.

In summary, the imaginary potential W = W (1) + W (2)

[Eq. (20)] is essential for a proper calculation of the con-
tributions from the unbound channels to the different fusion
processes. However, it leads to very wrong CF cross sec-
tions at sub-barrier energies. On the other hand, the potential
WPT of Eq. (19) describes very well the CF cross sections in
this energy region, but it cannot account for the fusion of a
single fragment.

In the present paper we adopt phenomenological imagi-
nary potentials for the bound and unbound spaces satisfying
two conditions. The first is that of being strong enough to
absorb completely the incoming current that overcomes the
barrier of the potential between the fusing partners, that is,
the projectile-target potential in the case of DCF, and the
fragment-target potentials, in the cases of ICF and SCF. The
second condition is that of being negligible around and be-
yond the barrier radius. To satisfy these conditions, we adopt
the following procedures.

(1) We use the imaginary potential WPT to evaluate matrix
elements of the imaginary potential between bound channels.

(2) We use the imaginary potential W = W (1) + W (2) to
evaluate matrix elements of the imaginary potential between
CDCC bins.
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(3) As in Refs. [48,49], we neglect matrix elements of the
imaginary potential between bound and unbound channels.

Formally, the complex potential acting on the elastic chan-
nel in a one-channel calculation can be derived by Feshbach’s
formalism [73]. One introduces a projector onto the elastic
channel, P , and a projector onto a set of channels that have
strong influence on elastic scattering, Q. Then, the effective
potential acting on the elastic channel is given by

Ueff = P U P + P U Q [GQQ] QU P, (25)

where GQQ is the Green’s function in the Q subspace. The
first term in the above equation is the potential in the elastic
channel when all couplings are neglected, and the second
is a polarization potential accounting for the influence of
nonelastic channels on elastic scattering. This procedure has
been used to derive complex polarization potentials associated
with different direct reactions (a recent review can be found in
Ref. [74]).

The above procedure can be extended to coupled-channel
descriptions of heavy ion scattering. In this case, the elas-
tic channel and a set of nonelastic channels are taken into
account explicitly, whereas other channels are left out of
the coupled equations. In our CDCC calculations, the bound
channels (B) and the continuum discretized channels (C) are
explicitly included in the calculations, and they are associated
with projectors PB and PC , respectively. On the other hand,
there are important channels that have been left out of the
coupled equations, namely, CF, ICF1, and ICF2, together with
all intermediate channels populated in the thermalization pro-
cesses. These channels are associated with a projector Q. The
imaginary parts of the polarization potentials acting on the B
and C spaces are then given by

WB = Im{PB U Q [GQQ]QU PB},
WC = Im{PC U Q [GQQ] QU PC}. (26)

However, the above equations are not very useful because
the projector Q involves many intrinsic degrees of freedom,
and it is defined in a space of extremely large dimension.
Thus, its calculation is prohibitively complicated, even within
approximations. For this reason, practical one-channel and
coupled-channel calculations of fusion cross sections adopt
phenomenological imaginary potentials consistent with the
nature of the fusion processes and the main trends of the data.

B. CF, ICF, and TF cross sections

The CDCC calculation leads to the following cross sec-
tions:

σDCF = π

K2

∑
J

(2J + 1)PDCF(J ), (27)

σ (1)

F = π

K2

∑
J

(2J + 1)P (1)(J ), (28)

σ (2)

F = π

K2

∑
J

(2J + 1)P (2)(J ). (29)

Above, PDCF is the probability of direct absorption of the
whole projectile by the target. It results from the action of
WPT on bound channels (only the elastic channel in collisions

of 6Li). On the other hand, P (i) is the probability of absorption
of fragment ci, following breakup. It results from the action of
W (i) on unbound channels. These probabilities are discussed
in the appendices of Ref. [49].

However, the above cross sections are not the ones deter-
mined in experiments. First, σDCF is the cross section for direct
complete fusion, whereas an experiment can only measure
σCF, which includes also the contribution from SCF. Besides,
σ (1)

F and σ (2)

F are inclusive cross sections for the capture of
one of the fragments, independently of what happens to the
other. In this way, SCF is included in both σ (1)

F and σ (2)

F .
Thus, the sum σ (1)

F + σ (2)

F , which is frequently assumed to give
σTF (see, e.g., Refs. [48,49]), is in fact an overestimate of
this cross section, where the contribution of SCF is counted
twice.

The fact that a CDCC calculation is unable to account for
sequential fusion processes is not surprising. Multistep pro-
cesses are properly handled in coupled-channel calculations
when all intermediate states are included in channel space,
and their coupling matrix elements are taken into account.
However, these conditions are not satisfied by SCF. In this
case, neither the intermediate state after the capture of the
first fragment nor the final state after the capture of the second
is explicitly included in the calculations. The simulation of
fusion by imaginary potentials can account for the depletion
of flux in each channel, but it cannot describe the sequential
fusion of two fragments. Thus, the CDCC approach alone
cannot describe the SCF and ICF processes. Therefore, it
is necessary to introduce some model to relate P (1)(J ) and
P (2)(J ) to ICF and SCF probabilities. We adopt the model of
Refs. [48,49], with a slight modification, as described below.

We treat P (1)(J ) and P (2)(J ) as probabilities for independent
events, and use classical statistics. The ICF1, ICF2, and SCF
probabilities are assumed to be given by

P ICF1(J ) = P (1)(J ) × [1 − P (2)(J )], (30)

P ICF2(J ) = P (2)(J ) × [1 − P (1)(J )], (31)

PSCF(J ) = P (1)(J ) × P (2)(J ). (32)

Note that Eq. (32) does not have the factor 2 appearing in the
SCF probability of Refs. [42,48,49]. The discrepancy arises
from the different expressions adopted for the TF probability.
In these works, it is given by

PTF(J ) = PDCF(J ) + PTF
C (J ), (33)

where PTF
C represents the sum of all fusion processes following

breakup (contribution from bin states to fusion):

PTF
C (J ) = P (1)(J ) + P (2)(J ). (34)

The SCF probability is then obtained from Eq. (33), by sub-
tracting PDCF(J ) and the ICF probabilities of Eqs. (30) and
(31). In this way, one gets Eq. (32) multiplied by a factor 2.
However, as argued above, Eq. (33) double counts the contri-
bution from SCF. To fix it, we start from Eqs. (30)–(32). Then,
as it is done in experiments, one obtains the TF summing
the contributions from the three fusion processes. In this way,
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one gets

PTF(J ) = PDCF(J ) + PSCF(J ) + P ICF1(J ) + P ICF2(J )

= PDCF(J ) + P (1)(J ) + P (2)(J ) − P (1)(J ) × P (2)(J ).

The above expression does not double count SCF.
The theoretical cross sections for the different fusion pro-

cesses are then given by

σSCF = π

K2

∑
J

(2J + 1)PSCF(J ), (35)

σICF1 = π

K2

∑
J

(2J + 1)P ICF1(J ), (36)

σICF2 = π

K2

∑
J

(2J + 1)P ICF2(J ), (37)

and the observable CF, ICF, and TF cross sections are

σCF = σDCF + σSCF, (38)

σICF = σICF1 + σICF2, (39)

σTF = σCF + σICF. (40)

We point out that our new expression for the SCF proba-
bility [Eq. (32)] does not contain the factor 2, included in the
7Li fusion calculations of Refs. [48,49]. One then wonders
how the results of those works would be affected by the
removal of this factor. The contribution from SCF to the CF
cross section strongly depends on the breakup threshold. In
collisions of 7Li (B = 2.45 MeV) at above-barrier energies
it is responsible for ≈10% of the CF cross section, whereas
at sub-barrier energies SCF is negligible. Then, the removal
of the factor 2 would not lead to appreciable changes in the
fusion cross sections of Refs. [48,49].

In collisions of 6Li (B = 1.47 MeV) at above-barrier en-
ergies, the contributions from DCF and SCF are of the
same order. On the other hand, SCF is negligible below the
Coulomb barrier. Thus, in the case of 6Li, removing factor 2
leads to an appreciable reduction of the CF cross section above
the barrier. However, we point out that the spectroscopic am-
plitude also influences the cross sections. This amplitude is
expected to be of the order of 1 (something between 0.5 and
1.0), but its precise value is not known. Then, we used it as
a free parameter, varying it within this range. In this way,
changes arising from the absence of factor 2 can be partly
compensated by changing the spectroscopic amplitude.

III. APPLICATION: 6Li COLLISIONS WITH
HEAVY TARGETS

Now we use the theory of the previous sections to study CF
and ICF in collisions of 6Li projectiles with the heavy targets
124Sn, 197Au, 198Pt, and 209Bi. To determine the cross sections,
we evaluate the probabilities P (1)(J ), P (2)(J ), and P (DCF)(J ),
given in the Appendix of Ref. [49]. The numerical calcu-
lations were performed by the code CF-ICF (unpublished),
using intrinsic and radial wave functions obtained running the
CDCC version of the FRESCO code [75].

The real part of the projectile-target interaction is given by
Eq. (15), with V (i)(ri) (i = 1, 2) given by the SPP between
fragment ci and the target.

For the imaginary potential, we adopted the prescription of
Sec. II A 3. In the elastic channel (the only bound channel
for 6Li) we take the potential WPT (R) of Eq. (19), with the
parameters: W0 = 50 MeV, rw = 1.0 fm, and aw = 0.2 fm.
They are not exactly the same as in Ref. [47], but they lead to
very similar results [76]. For the continuum-discretized space,
we used the imaginary potential of Eq. (20), with W (1)(r1) and
W (2)(r2) given by Woods-Saxon functions with parameters
W0 = 50 MeV, rw = 1.0 fm, and aw = 0.2 fm.

All calculations were performed with the spectroscopic
amplitude [see Eqs. (16) and (18)] α = 0.7, which leads to
the best overall description of the data.

A. CF cross sections

Figure 5 shows the theoretical CF cross sections for colli-
sions of 6Li with 124Sn [Figs. 5(a) and 5(b)], 197Au [Figs. 5(c)
and 5(d)], 198Pt [Figs. 5(e) and 5(f)], and 209Bi [Figs. 5(g) and
5(h)], in comparison with the data of Refs. [11,12,21,25,77].

The overall agreement between theory and experiment is
excellent. It is particularly good at sub-barrier energies, even
well below the Coulomb barrier, where the cross sections are
as low as 10−4 mb. This means that collective excitations of
the target do not play an important role in the reaction dynam-
ics, and that the SPP is a suitable potential to represent the real
part of the optical potential. Above the Coulomb barrier, the
agreement is also very good, except for the 6Li + 209Bi system
at the three data points with the highest energies, where the
theoretical cross section falls slightly below the data.

Nowadays, it is well established that CF data on weakly
bound systems at above-barrier energies are suppressed in
comparison to predictions of barrier penetration models. The
same conclusion is reached when one compares reduced CF
data on weakly bound systems with those on tightly bound
ones. However, the reaction mechanism responsible for the
suppression is still under discussion [48,49,52,56,78]. In this
discussion, the treatment of the continuum plays a central role.
In our CDCC calculations, the continuum is approximated
by bins formed by scattering states of the two fragments
of the projectile. In Refs. [52,56], the fragment captured by
the target is dominantly in an unbound state. Thus, neither
of the projectile’s fragments is bound to the target. Therefore,
the space spanned by such states is the same as the breakup
space of the CDCC calculation. The difference between the
approaches of Refs. [52,56] and of Refs. [48,49] is that they
use different bases to describe the continuum. As a matter of
fact, a more realistic basis for the continuum would be the
two-center molecular states adopted by Moschini and Diaz-
Torres [79]. However, quantum mechanical calculations using
this basis are very difficult to implement.

B. ICF and TF cross sections

Figure 6 shows ICF and TF cross sections calculated by
our method, in comparison to the available data. The systems
are the same as in Fig. 5. Inspecting the figure, one concludes
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FIG. 5. Theoretical CF cross section in collisions of 6Li with several heavy targets. The cross sections calculated by our model are compared
with the data of Refs. [77] (6Li + 124Sn), [25] (6Li + 197Au), [21] (6Li + 198Pt), and [11,12] (6Li + 209Bi).

that the overall agreement between theory and experiment
is reasonably good. A detailed discussion of each system is
presented below.

The ICF and TF cross sections for the 6Li + 124Sn system
are shown in Figs. 6(a) (linear scale) and 6(b) (logarithmic
scale). First, we notice that the theoretical ICF and TF cross
sections are essentially the same at energies well below the
Coulomb barrier. The reason is that in this region the fusion
cross section is completely dominated by ICFd . Owing to its

low mass, the transmission coefficient for this cluster to reach
the strong absorption region is much larger than those for the
heavier α cluster or the whole projectile.

The theoretical cross sections are compared with the data
of Parkar et al. [77], obtained by on-line and off-line γ -ray
detection techniques. The authors measured ICFd and ICFα

cross sections for several collision energies, but in two dif-
ferent experiments. Then, the beam energies were not always
the same. In this way, the ICF cross section (sum of ICFd and
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FIG. 6. Same as the previous figure but for TF and ICF cross sections. The data were extracted from the same references of the previous
figure.

ICFα) was not available at energies where only one of the ICF
processes has been measured. For this reason, only three data
points could be included in Fig. 6. The agreement between
theory and experiment is good at the two lowest energies, but
the theoretical prediction at the highest energy is larger than
the experimental values.

The ICF and TF cross sections for the 6Li + 197Au are
shown in Figs. 6(c) and 6(d). The cross sections calculated by

our model are compared to the data of Palshetkar et al. [25],
obtained by on-line and off-line γ -ray detection techniques.
As in the case of 6Li + 124Sn, the ICFd and ICFα cross sec-
tions were determined in two different experiments. Then, the
figure includes only experimental cross sections at energies
where both ICFd and ICFα cross sections have been mea-
sured. The agreement between theory and experiment is very
good, except for the two data points with the lowest energies.
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At these energies the theory underestimates the data. As we
will show later in this section, this discrepancy arises from
deuteron transfer, which is a reaction mechanism neglected in
our calculations.

Now we consider the 6Li + 198Pt system. Theoretical cross
sections obtained by our model are shown in Figs. 6(e)
and 6(f), in comparison to experimental cross sections of
Shrivastava et al. [21]. The data were obtained in a highly sen-
sitive experiment using off-beam γ -ray detection techniques,
which allowed measurements of cross sections well below
the Coulomb barrier. However, this experiment could measure
only CF and ICFd cross sections. The isotopes formed by α

capture followed by neutron evaporation deexcite exclusively
by prompt γ -ray emission, which cannot be detected off-line.
For this reason, the figure shows cross sections (both theoret-
ical and experimental) for ICFd and CF + ICFd , instead of
ICF and TF. The agreement between theory and experiment
is excellent, except at sub-barrier energies. As for the 197Au
target, this can be traced back to deuteron transfer (see the
next sub-section).

Finally, we discuss ICF and TF for the 6Li + 209Bi system.
The theoretical cross sections are compared to the data of
Dasgupta et al. [11,12], obtained by detection of the alpha
particles emitted by the evaporation residues of the compound
nuclei. Clearly, the theoretical cross sections are systemati-
cally higher than their experimental counterparts. However,
the ICF and TF data are only lower bounds to the actual data.
The reason is that the experiment misses the contribution from
the 209Po isotope, which could not be measured owing to its
very long half-life (≈200 yr). According to statistical model
estimates [12], this contribution is expected to be important at
all beam energies of the experiment.

1. ICFd vs direct transfer reactions

In the experiment of Palshetkar et al. [25], the ICFd cross
section for the 6Li + 197Au system was determined through
the detection of the γ rays emitted in the deexcitation of the
Hg isotopes, produced by ICFd followed by neutron evap-
oration. However, these isotopes could also be formed by
stripping reactions, where a proton or a deuteron is transferred
to the target. A similar situation occurs in the measurements of
the ICFd cross section for the 6Li + 198Pt system, performed
by Shrivastava et al. [21]. In this case, ICFd leads to 200Au and
lighter gold isotopes (after evaporation of neutrons), and these
isotopes can also be formed by stripping reactions. The contri-
bution from stripping reactions to the experimental ICFd cross
section, which are not taken into account in our calculations,
might be responsible for low ICF cross sections predicted by
our model at sub-barrier energies, in comparison to the data.

To access the contribution of p and d stripping to the data
of the 6Li + 198Pt and 6Li + 197Au systems, we evaluated the
cross sections for these two processes, performing coupled
reaction channel (CRC) calculations using the FRESCO code
[75,80]. The calculations were performed in the prior repre-
sentation, with complex remnants and the nonorthogonality
terms. Since the sole purpose of these calculations was to
provide an estimate of these stripping cross sections, we set
all spectroscopic amplitudes equal to 1.

In the calculations of p transfer, the initial state was mod-
eled by a valence proton orbiting around a 5He core. Its wave
function was obtained by solving the Schrödinger equation for
a state with the experimental spin and parity, in a WS potential
with depth fitted to reproduce the separation energy of the p
within 6Li. In the final partition, we considered the 27 states
with lowest energies in the spectrum of the (p + T ) nucleus
(T standing for target), and followed a similar procedure. Each
intrinsic wave function was approximated by the solution of
the Schrödinger equation for a WS potential, with the experi-
mental spin and parity, and the depth of the potential was fitted
to reproduce the experimental energy.

In the calculations of d transfer, the initial state was the
same one used in our CDCC calculations of breakup and
fusion cross sections. In the final partition, we adopted the
extreme cluster model for the states of the (d + T ) nucleus,
and followed a similar procedure. We considered the 14 states
with lowest energies, and approximated them by cluster states
with the same spin and parity, where the deuteron interacted
with the target through a WS potential. The depth of this
potential was fitted to reproduce the experimental excitation
energy.

In our CRC calculations, we adopted the São Paulo poten-
tial [61,62] to represent the real part of the optical potentials
in all partitions, and assumed that their imaginary parts had
the same radial dependence. In this way, the optical potentials
could be written as

U (R) = [1 + λ i]V (R). (41)

For the final partition, we adopted the strength parameter
λ = 0.78, which was successfully used to describe elastic
scattering and total reaction cross sections in optical model
calculations [81,82]. For the initial partition, we used a weaker
imaginary potential, since the incident flux lost to transfer
channels was explicitly taken into account in the CRC calcu-
lations. Then, we set λ = 0.60. This approach has been used
in two-neutron transfer [83–89], two-proton transfer [88], and
alpha-transfer [90] calculations, that described the data quite
well.

Following the procedures described above, we performed
CRC calculations of p- and d-stripping cross sections for the
6Li + 197Au and the 6Li + 198Pt systems. The results turned
out to be extremely small. For both systems they were at least
three orders of magnitude lower than the ICFd cross section of
our model. Therefore, they cannot be responsible for the large
discrepancies between the predictions of our model and the
data at sub-barrier energies.

However, there is still one reaction mechanism that might
give a relevant contribution to the measured d-capture cross
section: the sequential stripping of a deuteron. In this pro-
cess, a valence neutron is transferred to the target, giving
rise to the intermediate partition [5Li, (n + T )], and then a
valence proton is stripped from the projectile, leading to the
final partition, [4He, (d + T )]. Despite being a second or-
der process, it may have a larger cross section than those
of the two previously discussed first order processes. This
could happen owing to the combination of two factors. First,
the neutron-transfer probability tends to be large, since it is
not hindered by a Coulomb barrier. Second, the kinematic
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FIG. 7. d-capture cross sections for the collisions of 6Li with (a) 197Au, (b) 198Pt, (c) 124Sn, and (d) 124Sn targets. The figure shows
theoretical ICFd and sequential d-transfer cross sections, as well as the sum of the two (the d-capture cross section), in comparison to the
data of Refs. [11,12,21,25,77]. For each system, the sub-barrier and above-barrier regions are separated by a thin vertical line. See the text for
details.

conditions for proton transfer in the intermediate partition
are much more favorable than in the initial partition. For the
6Li + 197Au system, the Q value for the direct stripping of a
proton is 2.67 MeV, whereas the Q value for the transition
from the intermediate partition ([5Li, 198Au]) to the final par-
tition ([4He, 199Hg]) is 9.22 MeV. This difference is of great
importance, since it is well known that cross sections for trans-
fer of a charged particle are strongly enhanced by a high Q
value [91,92]. The situation for the 6Li + 198Pt system is very
similar. In this case, the corresponding Q values are 2.045 and
9.11 MeV. To check the importance of the above discussed
process, we performed CRC calculations of d-transfer cross
sections for the 6Li + 197Au and 6Li + 198Pt systems. In the
intermediate partition, we considered states of the (n + T )
nucleus with excitation energies up to 1 MeV. To keep the
numerical calculations feasible, the number of states in the
final partition was reduced to 14. The imaginary part of the
optical potential in the intermediate partition was given by
Eq. (41), with λ = 0.78.

Figure 7 shows results of our calculations for the
6Li + 197Au [Fig. 7(a)] and 6Li + 198Pt [Fig. 7(b)] systems.
The green dotted lines and the red dashed lines are the the-
oretical cross sections for sequential d transfer and for ICFd ,
respectively. The black solid line is the sum of the two, rep-
resenting an estimate of the d-capture cross section. Since the
experiments cannot distinguish the two reaction mechanisms,
the data should be compared to the black solid line. However,
we should have in mind that this sum is just a rough estimate
of what would be obtained in a realistic calculation involving
breakup and transfer channels simultaneously (which could

not be performed with the available computer resources). The
situations for the two systems are very similar. At energies
well below the Coulomb barrier, the d-transfer cross sec-
tion is very important, and when it is added to the ICFd

cross section the theoretical predictions are consistent with the
data. On the other hand, the importance of the contribution
from this process to the theoretical d-capture cross section
decreases with the collision energy, becoming irrelevant above
the Coulomb barrier. Thus, it is very likely that the difference
between the predicted ICF cross section and the low-energy
data arises from stripping reactions that contribute to the mea-
sured cross sections.

The above discussion of contributions from transfer pro-
cesses to the measured d-capture cross section was based on
the 6Li + 197Au and 6Li + 198Pt systems, where our model
underestimates the data at sub-barrier energies. However,
transfer processes could also contribute to the d-capture cross
sections of the 6Li + 124Sn and 6Li + 209Bi systems. To check
this possibility, we carried out similar CRC calculations for
these systems. As for the 6Li + 197Au and 6Li + 198Pt reac-
tions, the p transfer and the d transfer were found to be
extremely small. The contribution from sequential d transfer
starting by proton transfer was also negligible. The reasons
were the same as explained above for the 6Li + 197Au and
6Li + 198Pt systems. Then, the only relevant process was the
sequential d transfer consisting of a n transfer followed by a
p transfer.

Figure 7 shows results of our calculations for the
6Li + 124Sn [Fig. 7(c)] and 6Li + 209Bi [Fig. 7(d)] systems.
One observes that the d-transfer cross sections are very
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small above the Coulomb barrier (the region at the right-
hand side of the thin vertical lines), where the experimental
data were measured. In fact, the d-transfer cross section is
smaller than the ICFd cross section even at sub-barrier en-
ergies. This is quite different from the situation for the
6Li + 197Au and 6Li + 198Pt systems, where there are data
at sub-barrier energies and the d-transfer cross section be-
comes larger than the ICFd cross sections in this energy
region. These differences illustrate the strong dependence of
transfer processes on the nuclear structure of the collision
partners.

C. ICFd and ICFα components of σICF

Now we calculate the individual contributions from the
ICFd and ICFα processes to the ICF cross section, and com-
pare the predictions of our model to the available data. In fact,
this kind of data is scarce for the systems studied in this paper.
They are available only for the 6Li +124Sn and 6Li +197Au
systems. As mentioned in the previous section, the ICFα cross
section for 6Li +198Pt could not be measured by the off-line γ -
ray technique used in the experiment of Shrivastava et al. [21].
The situation was still worse in the experiment of Dasgupta
et al. [11,12], for the 6Li +209Bi system. In this case, ICFα and
ICFd give rise to 213At and 211Po, respectively. These isotopes
evaporate neutrons and deexcite by α decay. Detecting these α

particles and identifying the emitter through their energies and
half-lives, it would be possible to measure cross sections for
the ICF process. However, the decay chains of 213At and 211Po
get mixed at 210At, as this isotope decays by the emission
of β+, leading to 210Po. Then, the experiment cannot distin-
guish ICFd from ICFα . For this reason, the experiment of
Refs. [11,12] did not report individual ICFd and ICFα cross
sections.

Figure 8 shows the predictions of our model for σICFd

(green solid lines) and σICFα
(purple dashed lines) for the sys-

tems studied in this paper. The available data are also shown.
Results for the 6Li + 124Sn system are shown in Figs. 8(a) and
8(b). The predictions of our theory are not in good agreement
with the data of Parkar et al. [77]. Although the ICFd data
points are not far from the theoretical curve, the theoretical
ICFα cross section is much larger than the data, at all collision
energies. Qualitatively, the overall trend of the two ICF pro-
cesses predicted by our model is consistent with the data. The
ratio

Rα/d = σICFα

σICFd

is less than 1 in the whole energy range. However, the the-
oretical prediction for this ratio is much larger than the one
indicated by trends of the data.

Theoretical d-capture and ICFα cross sections for the
6Li + 197Au system are compared to the data of Palshetkar
et al. [25] in Figs. 8(c) and 8(d). In this case, the agreement
between theory and experiment is much worse. Although
the data points at some particular energies are close to the
corresponding theoretical curve, the general trends of the
calculated d-capture and ICFα cross sections are very dif-
ferent from the experimental ones. As it happened for the

6Li + 124Sn system, our model predicts Rα/d < 1 at all col-
lision energies, whereas the ratio of the two experimental
cross sections is less than 1 at sub-barrier energies but it is
larger than 1 above the Coulomb barrier [see dotted lines in
Figs. 8(c) and 8(d)].

Results for the 6Li + 198Pt and 6Li + 209Bi systems are
shown in Figs. 8(e)–8(h). One finds that the theoretical d-
capture cross section for the former system is in excellent
agreement with the data, as already shown in the previous
figure. We could not compare the remaining theoretical cross
section to the experiment, since no further ICF data are avail-
able for these systems. However, one can observe that the
general trends of the theoretical curves for the two systems are
the same. In both cases Rα/d < 1 in the whole energy interval
of our calculations.

The overall trend of the theoretical ICF cross sections can
be better understood if the ratio Rα/d (x) is plotted against the
dimensionless energy variable of the fusion function reduction
method [8,9]:

x = E − V 00
B

h̄ω00
. (42)

Above, V 00
B and h̄ω00 are the barrier parameters of V00(R),

given in Table III. This is done in Fig. 9, for the 6Li + 124Sn,
6Li + 197Au, 6Li + 198Pt, and 6Li + 209Bi systems. One con-
cludes that, according to our model, this ratio has a very weak
dependence on the target. However, one should keep in mind
that this conclusion is valid for one particular weakly bound
projectile (6Li), colliding with heavy targets within a limited
mass interval (124 < AT < 209). Further, one notices that this
ratio grows consistently with the collision energy, with a slight
oscillation in the neighborhood of x = 0. For −1 < x < 4, it
varies in the range [0.1, 0.6].

IV. CONCLUSIONS

We have presented a refined version of a recently pro-
posed method [48,49] to calculate cross sections for the fusion
processes taking place in collisions of weakly bound nuclei.
Improving the treatment of the direct absorption of the whole
projectile by the target, we eliminated the overestimation
of the CF cross section at sub-barrier energies. Further, we
have emphasized the difference between cross sections calcu-
lated by the CDCC method and the ones measured in actual
experiments. The procedures to evaluate CF and ICF cross
sections using results of CDCC calculations were then redis-
cussed. The method was used to evaluate CF and ICF cross
sections in collisions of 6Li projectiles with 124Sn, 197Au,
198Pt, and 209Bi targets, and our results were compared to the
available data.

The overall agreement between the calculated CF cross
sections and the data was excellent, in the whole energy range
of the calculations. An important point is that the agreement
is equally good at energies well below the Coulomb barrier,
where our previous calculations for 7Li overestimated the
data [49]. Note that the targets considered in our calculations
do not have collective states that would enhance sub-barrier
fusion. Since SCF is negligible in this energy range, the good
agreement between theory and experiment is an indication

054601-13
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FIG. 8. Theoretical and experimental ICFd and ICFα cross sections in collisions of 6Li with 124Sn, 197Au, 198Pt, and 209Bi targets. The
data are from Refs. [11,12,21,25,77]. In the cases of 197Au and 198Pt, σICFd is replaced by the d-capture cross section, which includes also the
contribution from the sequential d transfer.

that the São Paulo potential leads to a realistic Coulomb
barrier.

The ICF and TF cross sections calculated by our model
were in reasonable agreement with the data, except for the
data points of the 6Li + 197Au and 6Li + 198Pt systems at ener-
gies well below the Coulomb barrier. In these cases, our model
underpredicted the experimental cross sections. However, we
have shown that these discrepancies can be traced back to con-
tributions from sequential strippings of the projectile, which

lead to the same nucleus as in the ICFd process. We remark
that ICF data for the systems studied in the present paper
are scarce in the literature. In collisions with 198Pt, only the
ICFd cross section has been measured, and in the case of
209Bi only lower bounds to the ICF cross section have been
reported.

We have investigated also the contributions from the ICFd

and ICFα processes to the ICF cross sections. We concluded
that the theoretical ICFd cross section is systematically higher

054601-14
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FIG. 9. Ratios of theoretical cross sections for the two ICF pro-
cesses as functions of the reduced collision energy [8,9], for the
6Li + 124Sn, 6Li + 197Au, 6Li + 198Pt, and 6Li + 209Bi systems.

than the ICFα one. The ratio Rα/d = σICFα
/σICFd varies be-

tween 0.1 and 0.6, growing monotonically with the collision

energy. Further, our model predicted that the dependence
of this ratio on the target is very weak, at least for the
heavy targets in the mass range considered in this paper.
In this regard, the predictions of our model are not consis-
tent with the data. The experimental ratio for 124Sn grows
monotonically with E but it is much smaller than the one
obtained in our calculations. In the case of 197Au, the ex-
perimental ratio is below 1 at sub-barrier energies, but it
grows very rapidly with E , becoming larger than 1 at E ≈ 30
MeV. We believe that these discrepancies call for further
investigations.
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