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Octupole correlations in collective excitations of neutron-rich N ≈ 56 nuclei
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Octupole correlations in the low-energy collective states of neutron-rich nuclei with the neutron number
N ≈ 56 are studied within the interacting boson model (IBM) that is based on the nuclear density-functional the-
ory. The constrained self-consistent mean-field (SCMF) calculations using a universal energy density functional
and a pairing interaction provide the potential-energy surfaces in terms of the axially symmetric quadrupole
and octupole deformations for the even-even nuclei 86–94Se, 88–96Kr, 90–98Sr, 92–100Zr, and 94–102Mo. The SCMF
energy surface is then mapped onto the energy expectation value of a version of the IBM in the boson condensate
state, which consists of the neutron and proton monopole s, quadrupole d , and octupole f bosons. This procedure
determines the strength parameters of the IBM Hamiltonian, which is used to compute relevant spectroscopic
properties. At the SCMF level, no octupole deformed ground state is obtained, while the energy surface is
generally soft in the octupole deformation at N ≈ 56. The predicted negative-parity yrast bands with the
bandhead state 3−

1 weakly depend on N and become lowest in energy at N = 56 in each of the considered
isotopic chains. The model further predicts finite electric octupole transition rates between the lowest negative-
and the positive-parity ground-state bands.
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I. INTRODUCTION

The ground-state shape and the related spectroscopic prop-
erties of those neutron-rich nuclei in the mass A ≈ 100 region
have been of considerable interest. The low-energy structure
of these nuclei depends on the underlying shell structures
and nuclear forces and is characterized by a subtle interplay
between the single-particle and collective degrees of freedom.
A number of nuclei belonging to this mass region have been
suggested to demonstrate intriguing nuclear shape-related fea-
tures that include the triaxial deformation, the proton Z = 40
and neutron N = 56 subshell gaps, the coexistence of several
different shapes in the vicinity of the ground state [1], the
quantum phase transitions in their shapes [2] represented by a
sudden onset of deformation near the neutron number N ≈ 60.

Of particular interest is the octupole correlations and the
related low-energy negative-parity states. In a simple spherical
shell model, the octupole correlations become enhanced in
particular mass regions in the nuclear mass table, in which the
coupling occurs between the normal and unique parity single-
particle orbitals in a given major oscillator shell that satisfy the
conditions �� = � j = 3h̄, with � and j the quantum num-
bers for a single-particle state. The so-called “octupole magic
numbers” at which the above conditions are met and stable
octupole deformations are supposed to emerge are the neutron
and/or proton numbers 34, 56, 88, 134, . . . [3,4]. Experimen-
tal evidence for the permanent octupole deformations were
found at CERN in the light actinides with (N, Z ) ≈ (134, 88)
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such as 220Rn and 224Ra [5], and 228Th [6] and at ANL in
the lanthanides with (N, Z ) ≈ (88, 56) such as 144Ba [7] and
146Ba [8]. On the other hand, the possible octupolarity in the
lighter-mass regions, such as those with (N, Z ) ≈ (56, 34),
(56,56), and (34,34), has not been as extensively investigated,
both experimentally and theoretically, as in the cases of the
actinides and lanthanides.

In some of the neutron-rich even-even Mo, Zr, Sr, and
Kr isotopes that are in the vicinity of the neutron number
N ≈ 56, low-lying negative-parity states 3− at the excitation
energy Ex ≈ 2 MeV, as well as the bands built on them, have
been suggested experimentally (see, e.g., Refs. [9–16]). In this
case, the negative-parity states are supposed to appear as a
consequence of the coupling between the neutron h11/2 and
d5/2 orbitals. In the neutron-rich nuclei 94,96Kr, in particular,
the 3− states have been newly obtained in an experiment at
RIKEN [16]. With the recurrent interests in the studies of
the octupole shapes and the new data on the negative-parity
states in radioactive nuclei, it would be meaningful to pursue
timely theoretical investigations to address the relevance of
the octupole degrees of freedom in the description of low-
lying nuclear structure in the neutron-rich A ≈ 100 region.

Theoretical approaches to the octupole deformations and
collective excitations include the self-consistent mean-field
(SCMF) framework based on the macroscopic-microscopic
method with Strutinski shell correction [17–19] and the
energy density functionals (EDFs) [20–37], the interacting
boson model (IBM) [38–56], the geometrical collective model
[57–60], the cluster models [61–63], and the nuclear shell
model [64–67]. In particular, the SCMF methods using a
given universal nonrelativistic [34,68] or relativistic [69,70]
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EDF provides a global description of the bulk nuclear mat-
ter and intrinsic properties, as well as collective excitations,
over the entire region of the nuclear mass table. In recent
years, the EDF-based approaches have been extensively used
for the studies of the octupole deformations and collectivity.
A straightforward approach is the beyond-SCMF calcula-
tions with symmetry projections and configuration mixing
within the generator coordinate method (GCM) [20–25,27–
29,33,34,36,71]. The full GCM calculations are, however,
computationally so demanding that some alternative ap-
proaches have also been considered, such as the mapping onto
the quadrupole-octupole collective Hamiltonian [26,30,37]
and onto the interacting-boson Hamiltonian [48–50].

In this article, the octupole correlations and the rele-
vant spectroscopic properties of the low-lying positive- and
negative-parity states in the neutron-rich nuclei near the oc-
tupole magic number N = 56 are investigated within the
framework of the nuclear EDF and the mapped IBM. The
starting point is the axially symmetric quadrupole and oc-
tupole constrained SCMF calculations of the potential-energy
surfaces for those nuclei in which octupolarity is expected
to be enhanced, i.e., 86–94Se, 88–96Kr, 90–98Sr, 92–100Zr, and
94–102Mo. Then, by using the method of Ref. [49], the
quadrupole-octupole SCMF energy surface is mapped onto
the equivalent one in the system of the interacting monopole
s, quadrupole d , and octupole f bosons. The mapping
procedure specifies the strength parameters for the sdf -
IBM Hamiltonian, which in turn gives excitation spectra
and electromagnetic transition rates of both the positive-
and negative-parity states. Previously, the mapped sdf -IBM
framework has been applied to the studies of octupole shape
phase transitions in light actinides and rare-earth nuclei us-
ing the relativistic EDF [48,49]. A number of spectroscopic
calculations have been carried out based on the Gogny-type
EDF [34], and revealed the onset of octupole deformations
and collectivity in various mass regions characteristic of the
octupole deformations [50–54].

In the present study, a version of the sdf -IBM that makes
distinction between the neutron and proton boson degrees of
freedom, denoted hereafter by sdf -IBM-2, is considered since
it is more realistic than a simpler version of the IBM (sdf -,
or spdf -IBM-1) that does not distinguish between the protons
and neutrons. In most of the previous IBM calculations for the
octupole collective states, the simple IBM-1 framework has
been employed. There are a few instances in which the sdf -
IBM-2 has been considered on phenomenological grounds,
e.g., in Refs. [44,46,47,56]. In this study, all the strength
parameters for the sdf -IBM-2 are determined by using the mi-
croscopic input from the constrained SCMF calculations. As a
basis of the SCMF method, the relativistic density-dependent
point-coupling (DD-PC1) EDF [72] is employed. The univer-
sal functional DD-PC1 has been successfully employed in the
spectroscopic studies on the octupole collective modes both at
the static and beyond SCMF levels [31,33,37].

The paper is structured as follows. In Sec. II the theo-
retical procedure in the mapped sdf -IBM-2 calculations is
illustrated. Results of the quadrupole-octupole constrained
potential-energy surfaces, the systematics of the low-energy
spectra for the positive- and negative-parity states, electric

quadrupole, octupole, and dipole transition rates that char-
acterize the octupole correlations in the considered Se, Kr,
Sr, Zr, and Mo nuclei are discussed in Sec. III. In the same
section detailed level structures for the octupole magic nuclei,
i.e., the N = 56 isotones, are analyzed, with a special attention
to the neutron-rich Kr isotopes, where some new experimental
data are available. Finally, Sec. IV gives a summary of the
main results and conclusions.

II. THEORETICAL FRAMEWORK

A. Self-consistent mean-field calculations

The constrained SCMF calculations are performed
within the relativistic Hartree-Bogoliubov (RHB) framework
[69,70,73] using the DD-PC1 interaction for the particle-hole
channel and a separable pairing force of finite range [74] for
the particle-particle channel. The constraints imposed in the
SCMF calculations are on the expectation values of the axially
symmetric quadrupole Q̂20 and octupole Q̂30 moments,

Q̂20 = 2z2 − x2 − y2, (1)

Q̂30 = 2z3 − 3z(x2 + y2), (2)

which are associated with the dimensionless quadrupole β2

and octupole β3 deformations through the relations

β2 =
√

5π

3r2
0A5/3

〈Q̂20〉 , (3)

β3 =
√

7π

3r3
0A2

〈Q̂30〉 , (4)

with r0 = 1.2 fm. The RHB equation is solved in a harmonic-
oscillator basis with the number of oscillator shells NF = 12.
Here the strength of the pairing force V0 = 837 MeV fm3, cor-
responding to an increase of the original value 728 MeV fm3

of Ref. [74] by 15%, is used for both the proton and neutron
pairs. An effect of increasing the pairing strength in the SCMF
calculations is such that the potential-energy surface becomes
less steep. The mapping procedure then provides the IBM
parameters closer to those that would be obtained in the con-
ventional IBM fit and is expected to give a better description
of the experimental excitation energies, especially, those for
nonyrast states. As a further support for the enhancement of
the pairing strength, a global analysis of the separable pairing
force over the entire region of the mass chart based on the
covariant density-functional theory [75] indicated that, in or-
der to account for the empirical odd-even mass staggering, the
strength of the pairing force needs to be scaled with nucleon-
number-dependent factors. In the case of the N ≈ 56 nuclei
considered here, such scaling factors are calculated to be ap-
proximately within the range 1.1–1.2, which is consistent with
the 15% increase of the pairing strength in the present study.
The constrained calculations provide the potential-energy sur-
faces E (β2, β3) as functions of the β2 and β3 deformations.
The corresponding results are shown in Figs. 1 and 2, and will
be discussed in detail in Sec. III A. The β2-β3 energy surface
has a property that it is symmetric with respect to the β3 = 0
axis, i.e., E (β2, β3) = E (β2,−β3), and it is therefore enough
to consider the β3 � 0 sector of the energy surface.
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FIG. 1. Axially symmetric quadrupole and octupole SCMF potential-energy surfaces for the 86–94Se, 88–96Kr, and 90–98Sr isotopes as
functions of the β2 and β3 deformations, computed by the constrained RHB method with the DD-PC1 EDF and the separable pairing force of
finite range. The energy difference between neighboring contours is 0.5 MeV, and the global minimum within the β2-β3 plane is indicated by
the solid circle.

B. Mapping onto the sdf -IBM-2 Hamiltonian

The sdf -IBM-2 is comprised of the neutron and proton
monopole sν and sπ , quadrupole dν and dπ , and octupole
fν and fπ bosons, which are, from a microscopic point of
view [76,77], associated with the correlated pairs of valence
neutrons and protons with spin and parity J = 0+, 2+, and

3−, respectively. The calculations are carried out within the
neutron N = 50–82 and proton Z = 28–50 major shells and,
therefore, the doubly magic nucleus 78Ni is taken as the inert
core. The number of the neutron (or proton) bosons nν (or
nπ ) is conserved for each nucleus, and is equal to half the
number of valence neutron (or proton) pairs. The neutron (or

FIG. 2. Same as Fig. 1, but for the 92–100Zr, and 94–102Mo isotopes.
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proton) sν (sπ ), dν (dπ ), and fν ( fπ ) bosons, denoted nsν
, ndν

,
and n fν (nsπ

, ndπ
, and n fπ ), respectively, satisfy the condition

that nsν
+ ndν

+ n fν = nν (or nsπ
+ ndπ

+ n fπ = nπ ).
Based on the earlier microscopic considerations [76] that

the low-lying structure of medium-heavy and heavy nuclei is
mainly determined by the pairing-like correlations between
identical nucleons and the quadrupole-quadrupole interac-
tions between nonidentical nucleons, the following form of
the sdf -IBM-2 Hamiltonian is adopted:

Ĥ = εd n̂d + ε f n̂ f + κ2Q̂ν · Q̂π + κ3Ôν · Ôπ . (5)

The first (second) term stands for the d ( f ) boson number
operator n̂d = n̂dν

+ n̂dπ
(n̂ f = n̂ fν + n̂ fπ ) with the single d

( f ) boson energy εd (ε f ) relative to the s-boson one. The
single boson energies, εd and ε f , could in principle be dif-
ferent, but are here assumed to be the same for simplicity,
between the neutron and proton bosons. The third term is the
quadrupole-quadrupole interaction with the strength κ2, with
the quadrupole operator given by

Q̂ρ = s†
ρ d̃ρ + d†

ρsρ + χρ (d†
ρ × d̃ρ )(2) + χ ′

ρ ( f †
ρ × f̃ρ )(2) (6)

for neutron ρ = ν and proton ρ = π . χρ and χ ′
ρ are di-

mensionless parameters. The last term in (5) represents the
octupole-octupole interaction between the neutron and proton
bosons with the strength κ3 and the octupole operator is given
as

Ôρ = s†
ρ f̃ρ + f †

ρ sρ + χ ′′
ρ (d†

ρ × f̃ρ + f †
ρ × d̃ρ )(3), (7)

with another dimensionless parameter χ ′′
ρ .

To make a connection between the geometrical structure
of a multifermion systems specified by the β2 and β3 defor-
mations and the boson Hamiltonian (5), the following wave
function for the condensate state [78] of the sν , sπ , dν , dπ , fν ,
and fπ bosons is considered:

|�〉 =
∏

ρ=ν,π

1√
nρ!

(λ†
ρ )nρ |0〉 , (8)

with

λ†
ρ = s†

ρ + β̃2ρd†
ρ,0 + β̃3ρ f †

ρ,0, (9)

and |0〉 the boson vacuum, i.e., the inert core. The amplitudes
β̃2ρ and β̃3ρ in (9) are boson analogs of the quadrupole β2

and octupole β3 deformations, respectively. The expectation
value of the sdf -IBM-2 Hamiltonian gives energy surface of
the boson system specified by the four variables β̃2ν , β̃2π ,
β̃3ν , and β̃3π . However, to treat the energy surface in the full
four-dimensional space is practically so complicated that, in
this study, it is assumed that the neutron and proton bosons
should have the same deformations, i.e., β̃2ν = β̃2π ≡ β̃2 and
β̃3ν = β̃3π ≡ β̃3. The equal deformations for the neutron and
proton bosons may seem practically equivalent to the map-
ping onto the sdf -IBM-1 system. An advantage of using the
sdf -IBM-2 is that it produces more eigenstates than the sdf -
IBM-1, for the latter represents the fully symmetric states
of the former. Therefore, the sdf -IBM-2 is expected to give
a better description of the spectroscopic properties of the
low-lying states, especially the M1 transitions, than in the
sdf -IBM-1. Under the assumption of the equal proton and

neutron deformations, the bosonic potential-energy surface in
the β̃2-β̃3 space is calculated as

〈�|Ĥ |�〉
〈�|�〉

= (nν + nπ )
(
εd β̃2

2 + ε f β̃2
3

)
1 + β̃2

2 + β̃2
3

+ nνnπ(
1 + β̃2

2 + β̃2
3

)2

×
[
κ2

(
2β̃2 −

√
2

7
χνβ̃

2
2 − 2√

21
χ ′

νβ̃
2
3

)

×
(

2β̃2 −
√

2

7
χπ β̃2

2 − 2√
21

χ ′
π β̃2

3

)

+ κ3

(
2β̃3 − 4√

15
χ ′′

ν β̃2β̃3

)(
2β̃3 − 4√

15
χ ′′

π β̃2β̃3

)]
.

(10)

The strength parameters of the boson Hamiltonian (5) to
be determined are {εd , ε f , κ2, χν, χπ , χ ′

ν, χ
′
π , κ3, χ

′′
ν , χ ′′

π }. To
reduce the number of parameters, it is assumed that the di-
mensionless parameters χ ′

ν , χ ′
π , χ ′′

ν , and χ ′′
π are all equal, χ ′

ν =
χ ′

π = χ ′′
ν = χ ′′

π ≡ χ . It is further assumed that the bosonic
deformation β̃λ (λ = 2 or 3) is proportional to the fermionic
counterparts, i.e., β̃ ≡ Cλβλ. Cλ is a constant of proportional-
ity, and is also determined by the procedure described below.

The seven parameters for the sdf -IBM-2 Hamiltonian,
i.e., {εd , ε f , κ2, χν, χπ , κ3, χ} and the two constants C2 and
C3, are determined for each nucleus by mapping the axi-
ally symmetric β2-β3 SCMF potential-energy surface onto
the corresponding bosonic energy surface given by Eq. (10).
Or equivalently, these strength parameters are fine tuned so
that the sdf -IBM-2 energy surface of (10) becomes simi-
lar in topology to the SCMF one and that the approximate
equality

ESCMF(β2, β3) ≈ EIBM(β2, β3) (11)

should be satisfied in the neighborhood of the global mini-
mum. Limiting the range within which the mapping of (11) is
to be made to the vicinity of the global mean-field minimum
is due to the fact that in the SCMF framework, the config-
urations near the global minimum make the most relevant
contributions to determining the low-energy collective states.
On the other hand, the regions very far from the minimum
with large β2 and β3 deformations are more dominated by the
quasiparticle degrees of freedom, which are, by construction,
not taken into account in the present sdf -IBM-2 framework.
For further details of the mapping procedure, the reader is
referred to Refs. [48,49,79,80].

Diagonalization of the mapped sdf -IBM-2 Hamiltonian
with the strength parameters determined by the aforemen-
tioned procedure produces excitation spectra for both parities
and electromagnetic transition rates. For the numerical di-
agonalization of the Hamiltonian, the computer program
ARBMODEL [81] is used.
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FIG. 3. Same as Fig. 1, but for the mapped sdf -IBM-2 potential-energy surfaces for the 86–94Se, 88–96Kr, and 90–98Sr isotopes.

III. RESULTS AND DISCUSSION

A. Potential-energy surfaces

Figures 1 and 2 show contour plots of the axially sym-
metric quadrupole and octupole deformation-energy surfaces
for the even-even nuclei 86–94Se, 88–96Kr, 90–98Sr, 92–100Zr,
and 94–102Mo as functions of the β2 and β3 deformations,
computed by the SCMF method described in Sec. II A. For
any of the nuclei under study, one finds no octupole deformed
ground-state minimum with β3 �= 0. On closer inspection,
the potential-energy surface appears to be most rigid in the
β2 deformation at the N = 56 nucleus among each isotopic
chain, the neutron number corresponding to the empirical
octupole magic number. The potential only gradually becomes
softer along the β3 direction from N = 52 to 56. The β3-
softest potential is obtained for those nuclei with the neutron
number approximately equal to 54 or 56, for which nuclei
the curvature of the energy surface at the global minimum
on the β3 = 0 axis is indeed smallest. These features are
most notably observed in the Se and Kr isotopes, with the
proton number of the former isotopes, Z = 34, identified as
the proton octupole magic number. For the N > 56 nuclei,
the energy surfaces become more rigid, especially in the β3

deformation, and the octupole correlations are expected to be
much less pronounced.

There are some other properties worth remarking of the
SCMF energy surfaces. For the N = 52 isotones, a nearly
spherical minimum is suggested: β2 ≈ 0.05 for 86Se and 88Kr,
and β2 ≈ 0.0 for 90Sr, 92Zr, and 94Mo, the last three nuclei
being in the immediate vicinity of the proton subshell closure
Z = 40. All the N = 54 isotones are here suggested to be soft
in β2 deformation in the interval |β2| � 0.2. In all the isotopic
chains, the prolate-to-oblate shape transition is observed: in
Figs. 1 and 2 a change in the location of the minimum from
the prolate, or nearly spherical, to oblate sides at N = 54 (Kr

and Zr), N = 56 (Se), and N = 58 (Mo). In 96,98Sr and 100Zr,
another prolate minimum with quite a large β2 deformation
(β2 � 0.4) appears. These behaviors are considered a signa-
ture of the onset of intruder deformed configuration that is
suggested to occur around N = 60.

It can be also shown that the SCMF calculations with
the reduced pairing strength V0 = 728 MeV fm3 produce the
energy surfaces that are slightly steeper in both β2 and β3

deformations but that are qualitatively similar to those shown
in Figs. 1 and 2, obtained with the increased pairing strength
V0 = 837 MeV fm3. In addition, the same constrained RHB
calculations, but employing the density-dependent meson-
exchange (DD-ME2) functional [82], another representative
effective interaction in the relativistic EDF framework, give
strikingly similar mean-field results to those in the case of the
DD-PC1 EDF.

Figures 3 and 4 show the mapped sdf -IBM-2 potential-
energy surfaces. As compared with the SCMF energy surfaces
in Figs. 1 and 2, one notices that the basic topology of
the SCMF energy surface, up to typically 2 MeV excitation
from the minimum, is reproduced by the bosonic ones. One
also finds that the sdf -IBM-2 energy surfaces are flat for
higher excitation energies associated with large β2 and β3

deformations, in comparison to the SCMF counterparts. This
difference illustrates that the sdf -IBM-2 space consists of
only limited number of valence nucleons, while the SCMF
model includes all nucleon degrees of freedom.

B. Derived strength parameters

The derived sdf -IBM-2 strength parameters used for the
spectroscopic calculations on the considered Se, Kr, Sr, Zr,
and Mo nuclei are shown as functions of N in Fig. 5. In
Fig. 5(a) one sees that the single-d boson energy εd is mostly
stable for 52 � N � 58, but gradually decreases along the
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FIG. 4. Same as Fig. 3, but for the 92–100Zr, and 94–102Mo isotopes.

Mo chain. A sudden drop from N = 58 to 60 in the de-
rived εd for the Sr and Zr isotopes is partly to account
for the rapid structural change, i.e., onset of strong defor-
mation, suggested empirically in these isotopic chains. The
quadrupole-quadrupole interaction strength κ2 generally de-
creases in magnitude as the number of valence neutrons
increases [cf. Fig. 5(b)]. The parameters χν [Fig. 5(c)] and χπ

[Fig. 5(d)] do not show any strong dependence on N , except
for the χν value for the Mo isotopes. The positive (negative)
sign of the sum χν + χπ determines whether a nucleus is
oblate (prolate) deformed. In many of the considered nuclei,
a weakly deformed mean-field minimum occurs on the oblate
side, hence the value of the sum χν + χπ here has positive
sign and small magnitude. The single f -boson energy ε f is
here basically kept constant or made only gradually change
within the range ε f 	 2.7–3.0 MeV, while it significantly
decreases with N for the Mo isotopic chain [Fig. 5(e)]. The
value of the common parameter χ (= χ ′

ν = χ ′
π = χ ′′

ν = χ ′′
π )

in Fig. 5(f) is determined according to the degree of the β3,
as well as β2, softness of the potential. One sees that the
derived χ value is indeed large in magnitude for 52 � N � 56
as compared with those nuclei with N > 56 for most of the
studied isotopic chains. A fixed value of the octupole-octupole
interaction strength κ3 = 0.12 MeV, determined for a partic-
ular nucleus 92Kr, is here used for all the nuclei under study.
The use of the constant κ3 value is not only for the sake of
simplicity to reduce the number of parameters, but is also to
take into account the facts that the topology of the SCMF
energy surface varies only gradually in the β3 deformation
as a function of the nucleon number, and that the observed
low-lying negative-parity levels also do not show a strong
nucleon-number dependence.

C. Systematics of low-energy spectra

Figure 6 compares the calculated low-energy spectra for
the positive-parity even-spin states 2+

1 , 4+
1 , and 6+

1 of the
considered nuclei with the experimental data [83]. One ob-
serves an overall reasonable agreement with the data, except
perhaps for the Zr isotopes. For the Se, Kr, and Mo isotopes,
both the theoretical and experimental energy levels are grad-
ually lowered with the increasing N . The modest decrease of
the calculated yrast spectra, from 94Kr to 96Kr in particular,
suggests a smooth onset of deformation in agreement with
the experiment [88]. For the Sr and Zr isotopic chains the
present calculation gives a more rapid decrease of these states.
One notices, in the corresponding experimental spectra in
Figs. 6(c) and 6(d), a pronounced peak at the neutron number
N = 56. This indicates the effect of the neutron N = 56 sub-
shell gap due to the filling in the νd5/2 orbital, which is even
more enhanced for the Zr nuclei corresponding to the proton
subshell closure Z = 40. The mapped sdf -IBM-2 does not
reproduce this trend in Zr, mainly because no spherical min-
imum occurs in the axially symmetric quadrupole-octupole
SCMF energy surface for 96Zr (cf. Fig. 2). The SCMF
calculation gives for this nucleus only a weakly deformed
oblate minimum at β2 ≈ −0.2, and consequently the mapped
sdf -IBM-2 yields the collective energy spectrum, character-
ized by the low-lying 2+

1 energy level and by the ratio of
the 4+

1 to 2+
1 excitation energies R4/2 = 2.46. Another notable

feature observed in the Sr and Zr isotopes is a sudden drop of
the energy levels from N = 58 to 60. The present calculation
reproduces well this systematic. As for the N = 52 isotones,
the sdf -IBM-2 generally does not give a very good description
because these nuclei are close to the neutron N = 50 major
shell closure and the model space of the calculation including
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FIG. 5. Values of the strength parameters for the sdf -IBM-2
Hamiltonian, plotted as functions of N . Note that the parameter χ

in panel (f) is defined as χ = χ ′
ν = χ ′

π = χ ′′
ν = χ ′′

π . The octupole-
octupole interaction strength κ3 is kept constant as κ3 = 0.12 MeV
and is not plotted.

only one neutron boson may not be large enough to reproduce
the positive-parity levels of the nearly spherical nuclei. It
is worth noting that the low-lying nuclear structure in the
N ≈ 60 region is often characterized by the occurrence of the
competing intrinsic shapes, and that a more refined calculation
of the relevant spectroscopic properties would need to include
the configuration mixing between the normal and intruder
states [89] within the sdf -IBM.

In Fig. 7, the calculated energy spectra for the low-
lying negative-parity odd-spin states 1−

1 , 3−
1 , 5−

1 , and 7−
1

are shown as functions of N . Of particular interest re-
garding the predicted negative-parity energy spectra is their
parabolic dependence with N with the minimum values at
N = 56 for all the considered isotopic chains, except for Mo.
This result is consistent with the systematic behavior of the
quadrupole-octupole potential-energy surfaces, which exhibit
the β3 softest potential for those nuclei with N ≈ 56. As seen
in Fig. 7, in accordance with the experimental data, the lowest
negative-parity state is here predicted to be I = 3− at the
excitation energy Ex ≈ 2 MeV. Within the calculation, the
1− energy level is rather high and is close to the 5−

1 one.
This level structure is at variance with those observed, e.g.,
in the actinide nuclei with N ≈ 134. In many of the nuclei
in the latter mass region, the low-lying negative-parity band

with the bandhead 1− state appears and forms an approxi-
mate alternating-parity rotational band with the positive-parity
ground-state band. One may notice that the predicted higher-
spin negative-parity states, especially the 7−

1 one, is higher
than the experimental value, most notably, for 94,96Se and
94Kr. It is noted, however, that the observed low-lying 7− state
in these nuclei could be attributed to isomeric state based on
the neutron two-quasiparticle excitations (see, e.g., Ref. [87]),
which are beyond the present sdf -IBM-2 model space.

D. f -boson contributions to wave functions

To interpret the nature of the low-lying states, contributions
of the f bosons to the corresponding sdf -IBM-2 wave func-
tions are studied. As an illustrative example, Fig. 8 shows the
expectation values of the neutron n̂ fν and proton n̂ fπ boson
number operators calculated by using the wave functions for
the low-spin positive-parity states 0+

1 , 2+
1 , 0+

2 , and 2+
2 , and

negative-parity states 1−
1 , and 3−

1 . As one can see in Figs. 8(a)
to 8(d) and 8(g) to 8(j), there is only a small admixture of the
fν and fπ bosons into the low-energy positive-parity states,
with the expectation value n̂ fρ typically 〈n̂ fρ 〉 � 0.2. In the 0+

2
wave functions there appears to be a relatively large f -boson
contributions at N = 56, in particular, for 90Se, 92Kr, and 94Sr,
in which nuclei the octupole correlations are expected to be
most pronounced. For the negative-parity states 1−

1 and 3−
1 ,

the calculated expectation value 〈n̂ fρ 〉 ≈ 0.5 for both proton
and neutron bosons, and hence 〈n̂ fρ + n̂ fρ 〉 ≈ 1. Therefore,
the wave functions for the above negative-parity states contain
approximately one- f boson components.

E. Electromagnetic transition properties

Electromagnetic properties considered in the present the-
oretical analysis are those of the electric-quadrupole E2,
octupole E3, dipole E1, and magnetic-dipole M1 transitions.
The corresponding operators read

T̂ (E2) =
∑

ρ=ν,π

e2,ρQ̂ρ, (12)

T̂ (E3) =
∑

ρ=ν,π

e3,ρÔρ, (13)

T̂ (E1) =
∑

ρ=ν,π

e1,ρD̂ρ, (14)

T̂ (M1) =
√

3

4π

∑
ρ=ν,π

gρ L̂ρ, (15)

where the operators Q̂ρ and Ôρ are the same quadrupole and
octupole operators as in the Hamiltonian (5) with the same
values of the parameters χρ , χ ′

ρ , and χ ′′
ρ , and

D̂ρ = (d†
ρ × f̃ρ + f †

ρ × d̃ρ )(1), (16)

L̂ρ =
√

10(d†
ρ × d̃ρ )(1) +

√
28( f †

ρ × f̃ρ )(1) (17)

are electric- and magnetic-dipole transition operators, respec-
tively. eλ,ρ (λ = 1, 2, 3) in Eqs. (12)–(14) are effective boson
charges, and gρ in (15) is the bosonic gyromagnetic (g) fac-
tor. The neutron and proton effective charges are assumed to
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FIG. 6. Low-energy spectra for positive-parity even-spin states 2+
1 , 4+

1 , and 6+
1 of the considered even-even nuclei 86–94Se, 88–96Kr, 90–98Sr,

92–100Zr, and 94–102Mo. Theoretical and experimental values are represented by the solid and open symbols, which are connected by the solid
and dotted lines, respectively. The experimental data are taken from Refs. [9,10,16,83–87].

be equal, i.e., e1,ν = e1,π ≡ e1, e2,ν = e2,π ≡ e2, and e3,ν =
e3,π ≡ e3, and the fixed effective charges e1 = 0.005 e b1/2,
e2 = 0.06 e b, and e3 = 0.06 e b3/2 are used so as to reason-
ably reproduce the experimental data. The empirical boson g
factors gν = 0μN and gπ = 1μN are adopted by following the
microscopic calculations in the previous (sd-)IBM-2 studies
[94].

Systematic behaviors of the reduced E2, E3, and E1
transition probabilities between the lowest positive- and
negative-parity states, B(E2; 2+

1 → 0+
1 ), B(E3; 3−

1 → 0+
1 ),

and B(E1; 3−
1 → 2+

1 ), are shown in Fig. 9. Results for the
M1 properties are discussed in the next section for individ-
ual nuclei. Both the calculated and experimental 2+

1 → 0+
1 E2

transition rates are weak for 52 � N � 58, with the B(E2)
values typically lower than 20 Weisskopf units (W.u.). The ex-
perimental data show a significant rise of the B(E2; 2+

1 → 0+
1 )

values from N = 58 to 60 in the Sr, Zr, and Mo isotopes, as
a consequence of the onset of strong quadrupole deformation.
The current model calculation is not able to reproduce this
sharp increase of the B(E2; 2+

1 → 0+
1 ) values. The inconsis-

tency could have arisen mainly due to the fact that the present
IBM framework does not include the configuration mixing,
which would be required for dealing with the phenomenon
of shape coexistence. Indeed, the SCMF potential-energy sur-

face, e.g., for 98Sr, indicates a development of a strongly
deformed prolate local minimum at β2 ≈ 0.45 in addition to
the oblate global minimum at β2 ≈ −0.25 (see Fig. 1). For
the Zr and Mo isotopes, on the other hand, the SCMF β2-β3

energy surface shown in Fig. 2 does not exhibit a substantial
variation from N = 58 to 60 along the β2 deformation, or a
pronounced competition between different mean-field min-
ima. It is, therefore, not straightforward to uniquely identify
the major source of the discrepancy between the predicted and
experimental B(E2) systematics in the Zr and Mo chains. It
could be attributed to the lack of the configuration mixing in
the IBM, but may also indicate a deficiency of the employed
EDF or particular choice of the pairing strength. In addition,
only the axially symmetric shape degrees of freedom are
considered here as relevant collective coordinates, while the
triaxial deformation could also play an important role in the
considered mass region.

The B(E3; 3−
1 → 0+

1 ) rates are a direct measure of the
octupole collectivity, and are generally large for those nuclei
that are expected to have an enhanced octupole deformation.
Experimental data for the B(E3; 3−

1 → 0+
1 ) rates are available

[13,15,90] for Zr and Mo nuclei. One finds in Fig. 9(d) that
experimental B(E3; 3−

1 → 0+
1 ) value is particularly large for

96Zr, 57 ± 4 W.u., and slowly increases toward the middle of
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FIG. 7. Same as Fig. 6, but for negative-parity odd-spin states 1−
1 , 3−

1 , 5−
1 , and 7−

1 .

FIG. 8. Expectation values of neutron n̂ fν (upper row) and proton n̂ fπ (lower row) number operators calculated for the (a), (g) 0+
1 , (b), (h)

2+
1 , (c), (i) 0+

2 , (d), (j) 2+
2 , (e), (k) 1−

1 , and (f), (l) 3−
1 states for the considered Se, Kr, Sr, Zr, and Mo nuclei.
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FIG. 9. Evolution of calculated and experimental (a),
(b) B(E2; 2+

1 → 0+
1 ), (c), (d) B(E3; 3−

1 → 0+
1 ), and (e), (f)

B(E1; 3−
1 → 2+

1 ) transition strengths in Weisskopf units (W.u.)
for the Se, Kr, Sr, Zr, and Mo isotopes with 52 � N � 60. The
experimental data are adopted from Refs. [13,15,83,90–93]. Note
that a lower limit is shown for the experimental B(E1) value for 90Sr
in panel (f).

the neutron major shell in the Mo isotopes. The B(E3; 3−
1 →

0+
1 ) rates predicted by the sdf -IBM-2 calculation are approxi-

mately within the range 20–30 W.u. for all the studied isotopic
chains. Note, however, that the calculated values for the Zr and
Mo chains are virtually constant against N , being at variance
with the observed systematic.

The B(E1; 3−
1 → 2+

1 ) transition rate is also a relevant
quantity to the octupole deformation. There are some data
available. Especially, recent measurements for 94Kr and 96Kr
suggested the 1350 and 1390 keV decays, respectively, of
the 3− to 2+

1 states [16]. The calculated B(E1; 3−
1 → 2+

1 )
values shown in Fig. 9(e) are large near the neutron N = 50
major shell gap, and decrease rather rapidly with N toward
N = 60. The measured B(E1; 3−

1 → 2+
1 ) values seem to be

quite different from one isotopic chain to another, whereas the
present calculation gives rather similar values and systematic
behaviors among the five isotopic chains. One should also
note that, since the E1 mode is more of single-particle nature
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FIG. 10. Predicted and experimental low-energy positive- and
negative-parity spectra for 92Kr. The experimental data are taken
from Ref. [12].

than the E2 and E3 ones, the sdf -IBM descriptions in general,
which consist only of collective degrees of freedom, may not
give meaningful predictions for the E1 transition properties.
For a more reliable IBM description of the E1 transition prop-
erties, the dipole p bosons with spin and parity J = 1− could
be introduced as additional degrees of freedom to the boson
model space [40–42]. This extension, however, lies beyond
the scope of the present theoretical analysis.

F. Low-energy spectra for Kr nuclei

Figures 10–12 show detailed low-energy spectra for the
neutron-rich isotopes 92Kr, 94Kr, and 96Kr, respectively. The
positive-parity part of the level scheme consist of the states in
the K = 0+

1 ground-state band and states not classified into
bands. For the negative-parity part only the spectra for the
odd-spin states are shown.

The 92Kr nucleus corresponds to the octupole neu-
tron magic number N = 56, and the corresponding β2-β3

potential-energy surface is soft in β3 deformation (cf. Figs. 1
and 3). As one sees in Fig. 10, the calculation reproduces well
the observed K = 0+

1 band and predicts the 2+
2 states near the

4+
1 state, which is considered as the bandhead of the quasi-γ

or K = 2+
2 band that comprises the 4+

2 , 3+
1 , and 5+

1 states.
The near degeneracy of the members of the quasi-γ band,
i.e., 3+

1 and 4+
2 , indicates the O(6)-like level structure [94].

The 0+
2 and 2+

3 states predicted by the calculation are part
of the K = 0+

2 band. The mapped sdf -IBM-2 gives the low-
lying 3−

1 state at around the excitation energy Ex = 1.5 MeV,
below the 4+

1 state. Remember that, among the considered Kr
isotopes, the lowest 3−

1 level is obtained for 92Kr in the present
calculation [cf. Fig. 7(b)].

Similar results to 92Kr are obtained for the 94Kr (Fig. 11)
and 96Kr (Fig. 12). In these two nuclei, the sdf -IBM-2 en-
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FIG. 11. Same as Fig. 10, but for 94Kr. The experimental data are
taken from Ref. [16].

ergy spectra for the K = 0+
1 band looks rather rotational as

compared with the experimental counterparts, in such a way
that the calculated 2+

1 energy level is more compressed. The
calculated spectra for the positive-parity nonyrast bands in
94,96Kr are also rather high with respect to the K = 0+

1 band,
and especially for 96Kr, overestimate the observed nonyrast
levels. The calculated 3−

1 excitation energies for both 94Kr and
96Kr are, however, in a good agreement with the experimental
values [16], 2015 and 1944 keV, respectively.

Table I lists the predicted B(E2), B(M1), B(E1), and
B(E3) transition strengths, and electric-quadrupole Q(I ) and
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FIG. 12. Same as Fig. 10, but for 96Kr. The experimental data are
taken from Ref. [16].

TABLE I. Calculated B(E2), B(M1), B(E1), and B(E3) values
(in W.u.), and electric quadrupole Q(I ) (in eb) and magnetic dipole
μ(I ) (in μN ) moments for 92,94,96Kr.

92Kr 94Kr 96Kr

B(E2; 2+
1 → 0+

1 ) 17 22 28
B(E2; 4+

1 → 2+
1 ) 24 31 40

B(E2; 6+
1 → 4+

1 ) 25 34 43
B(E2; 0+

2 → 2+
1 ) 0.021 0.46 2

B(E2; 0+
2 → 2+

2 ) 19 29 32
B(E2; 2+

2 → 2+
1 ) 19 16 14

B(E2; 3+
1 → 2+

2 ) 18 23 30
B(E2; 4+

2 → 2+
1 ) 0.11 0.08 0.084

B(E2; 4+
2 → 2+

2 ) 14 18 22
B(E2; 4+

2 → 3+
1 ) 1.5 4.6 10

B(E2; 4+
2 → 4+

1 ) 10 10 9.9
B(E2; 3−

2 → 3−
1 ) 0.16 0.036 0.011

B(E2; 5−
1 → 3−

1 ) 7.2 8.5 11
B(E2; 7−

1 → 5−
1 ) 12 15 21

B(E2; 9−
1 → 7−

1 ) 0.031 18 25

B(M1; 2+
2 → 2+

1 ) 0.00046 0.00028 0.00015
B(M1; 3+

1 → 2+
2 ) 0.00086 0.0004 0.00032

B(M1; 4+
2 → 4+

1 ) 0.0018 0.0011 0.0006
B(M1; 4+

2 → 3+
1 ) 1.8 × 10−5 9.7 × 10−6 6.0 × 10−5

B(M1; 3−
2 → 3−

1 ) 0.015 0.011 0.011

B(E1; 1−
1 → 0+

1 ) 7.8 × 10−5 7.6 × 10−5 9.9 × 10−5

B(E1; 1−
1 → 2+

1 ) 1.0 × 10−5 6.9 × 10−6 3.4 × 10−6

B(E1; 3−
1 → 2+

1 ) 1.3 × 10−4 5.9 × 10−5 3.8 × 10−5

B(E1; 3−
1 → 4+

1 ) 1.2 × 10−7 5.1 × 10−7 1.0 × 10−6

B(E1; 5−
1 → 4+

1 ) 3.7 × 10−4 2.1 × 10−4 1.6 × 10−4

B(E1; 5−
1 → 6+

1 ) 1.0 × 10−6 1.3 × 10−6 4.3 × 10−6

B(E1; 7−
1 → 6+

1 ) 7.9 × 10−4 5.3 × 10−4 4.5 × 10−4

B(E3; 3−
1 → 0+

1 ) 18 20 22
B(E3; 3−

1 → 2+
1 ) 41 43 44

B(E3; 5−
1 → 2+

1 ) 11 10 11
B(E3; 5−

1 → 4+
1 ) 34 39 42

B(E3; 7−
1 → 4+

1 ) 9.8 8.6 9.9
B(E3; 7−

1 → 6+
1 ) 29 34 37

Q(2+
1 ) 0.19 0.34 0.45

μ(2+
1 ) 0.37 0.32 0.32

magnetic-dipole μ(I ) moments for the 92,94,96Kr isotopes.
One can see from the table that the calculated values for
these electromagnetic properties are basically similar among
the three Kr nuclei. The in-band �I = 2E2 transitions, i.e.,
2+

1 → 0+
1 , 4+

1 → 2+
1 , 6+

1 → 4+
1 , 5−

1 → 3−
1 , and 7−

1 → 5−
1 ,

as well as the Q(2+
1 ) values, gradually increase from 92Kr

to 96Kr. These systematics illustrate gradual evolution of
quadrupole collectivity. The available experimental data [92],
B(E2; 2+

1 → 0+
1 ) = 13.6+2.8

−3.3, 19.5+2.2
−2.1, and 33.4+7.4

−6.7 W.u. for
92Kr, 94Kr, and 96Kr, respectively, are reasonably reproduced
by the present sdf -IBM-2 calculation. The data are also avail-
able from Ref. [92] for the Q(2+

1 ) values, −0.61+0.53
−0.45 e b and

−0.26+0.19
−0.16 e b, for 92Kr and 94Kr, respectively, are rather at

variance with the present theoretical values both in sign and
magnitude. The calculated Q(2+

1 ) value for 96Kr is, however,
within error bar of the experimental one [92], 0.15 ± 0.53 e b.
The considered B(E3) values also become gradually larger for
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FIG. 13. Same as Fig. 10, but for the N = 56 isotones (a) 90Se, (b) 94Sr, (c) 96Zr, and (d) 98Mo. The experimental data are taken from
Refs. [85] (90Se), [84] (94Sr), [83] (96Zr), and [10,95] (98Mo).

heavier Kr as the neutron number increases. This is a conse-
quence of the fact that almost constant strength parameters are
used for the Kr isotopes (cf. Fig. 5), and thus these transition
rates increase only monotonically with the boson number.

For completeness, Table I shows some calculated B(M1)
and B(E1) dipole transitions. An interesting feature is
that the calculated B(M1; 3−

2 → 3−
1 ) transition rate is

large �0.01 W.u., while the corresponding B(E2) value
B(E2; 3−

2 → 3−
1 ) < 1 W.u. is small. Experimentally, strong

M1 transitions from the 3−
i (i = 1 or 2) excited state at

Ex ≈ 3.1 MeV to the 3−
1 state have been suggested in some

of the nearly spherical N = 52 isotones, 92Zr and 94,96Mo
[11], and have been identified as the isovector octupole ex-
citation modes. As for the B(E1) rates, the transitions from
the higher-spin negative-parity to lower-spin positive-parity

states are systematically larger than those in the opposite
direction, i.e., from the lower-spin negative-parity to higher-
spin positive-parity states. Similar tendency has been obtained
in the previous sdf -IBM calculations in other mass regions
[45,49], and this staggering pattern in the B(E1) rates can be
partly attributed to the fact that the model space and the E1
transition operator do not include the effect of p-boson degree
of freedom. At any rate, experimental data on the transition
properties is so scarce for the neutron-rich Kr isotopes that
an extensive assessments of the model description and of the
quality of the sdf -IBM-2 wave functions remain to be done.

G. Low-energy spectra for N = 56 isotones

Figure 13 shows the low-energy-level schemes for the N =
56 isotones other than 92Kr, that is, 90Se, 94Sr, 96Zr, and 98Mo.
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TABLE II. Same as Table I, but for 90Se and 94Sr.

90Se 94Sr

B(E2; 2+
1 → 0+

1 ) 14 20
B(E2; 2+

2 → 0+
1 ) 0.29 0.68

B(E2; 2+
2 → 2+

1 ) 18 21
B(E2; 4+

1 → 2+
1 ) 19 29

B(E2; 4+
2 → 2+

1 ) 0.047 0.14
B(E2; 4+

2 → 2+
2 ) 11 17

B(E2; 4+
2 → 4+

1 ) 9.3 12
B(E2; 3+

1 → 2+
1 ) 0.24 0.86

B(E2; 3+
1 → 2+

2 ) 14 21
B(E2; 3−

2 → 3−
1 ) 0.015 0.54

B(M1; 2+
2 → 2+

1 ) 0.001 0.00039
B(M1; 3+

1 → 2+
1 ) 0.00015 0.00012

B(M1; 3+
1 → 2+

2 ) 0.0032 0.00037
B(M1; 4+

2 → 4+
1 ) 0.0025 0.0017

B(M1; 3−
2 → 3−

1 ) 0.014 0.017

B(E1; 1−
1 → 0+

1 ) 1.0 × 10−4 7.6 × 10−5

B(E1; 3−
2 → 2+

1 ) 1.7 × 10−5 8.8 × 10−5

B(E1; 3−
1 → 2+

1 ) 2.0 × 10−4 1.4 × 10−4

B(E1; 3−
1 → 2+

2 ) 5.6 × 10−4 5.5 × 10−4

B(E1; 3−
1 → 4+

1 ) 4.5 × 10−7 2.2 × 10−8

B(E1; 5−
1 → 4+

1 ) 5.3 × 10−4 3.8 × 10−4

B(E1; 7−
1 → 6+

1 ) 1.1 × 10−3 6.9 × 10−4

B(E3; 3−
1 → 0+

1 ) 17 20
B(E3; 3−

1 → 2+
1 ) 42 36

B(E3; 3−
1 → 4+

1 ) 12 6.6
B(E3; 5−

1 → 2+
1 ) 12 13

B(E3; 5−
1 → 4+

1 ) 33 31
B(E3; 7−

1 → 4+
1 ) 11 12

B(E3; 7−
1 → 6+

1 ) 30 19

Q(2+
1 ) 0.087 0.24

μ(2+
1 ) 0.31 0.39

The nucleus 90Se corresponds to both the neutron N = 56
and proton Z = 34 empirical octupole magic numbers. The
SCMF result for this nucleus suggests that it is more or less
soft in the octupole β3 deformation (see Fig. 1). The predicted
low-energy spectrum in Fig. 13 for 90Se resembles the one
for the neighboring isotone 92Kr. For instance, the 4+

1 , 2+
2 ,

and 3−
1 states are nearly degenerate at Ex ≈ 1.5 MeV. In ad-

dition, the calculation predicts the 3−
1 excitation energy to be

Ex = 1597 keV, while, experimentally [85], there is a level
at Ex = 1600 keV with tentatively assigned spin and parity
(3, 4+). As compared with the experimental data [85], the
predicted K = 0+

1 band is rather stretched in energy. Some
calculated B(E2), B(M1), B(E1), and B(E3) transition rates
and the Q(I ) and μ(I ) moments are listed in Table II. Note
that the experimental data for the electromagnetic transition
properties are not available for this nucleus.

For 94Sr, an agreement between the sdf -IBM-2 and the
experimental [83,84] low-energy spectra is generally sat-
isfactory, particularly for the K = 0+

1 band, the bandhead
energy of the quasi-γ band, i.e., 2+

2 , and many of the
negative-parity states. Note that the 6+

2 state is calculated
to be particularly low in energy, being close to the 6+

1

one. The approximate degeneracy arises probably because a
large fraction of the f -boson components is admixed into
its wave function. The calculation gives the low-lying 3−

1
state below the 4+

1 state, and also reproduces the even-
spin negative-parity states 4− and 6−. The predicted 3−

2
energy is, however, much higher than the experimental one.
Note that the spin and parity of the 3−

1 and 3−
2 states

are not firmly established experimentally. Predicted B(E2),
B(M1), B(E1), and B(E3) transition rates and the Q(I ) and
μ(I ) moments for 94Sr are summarized in Table II. The
available experimental data [83] are B(E2; 2+

1 → 0+
1 ) = 8 ±

4, B(E1; 3−
2 → 2+

1 ) = (2.0 ± 0.7) × 10−5, and B(E1; 5−
1 →

4+
1 ) = (1.5 ± 0.7) × 10−5 W.u.

The 96Zr nucleus corresponds to the doubly subshell clo-
sure of N = 56 and Z = 40. As already shown in Fig. 6(d),
the sdf -IBM-2 only produces a collective band structure for
the positive-parity yrast band, whereas, experimentally [93],
the first-excited state is the 0+

2 state at Ex = 1582 keV and
the high-lying 2+

1 state is found at 1750 keV. It was shown
by the Monte Carlo shell-model calculation [93,96] that this
0+

2 is likely to arise from the intruder deformed configuration.
The 0+

2 state obtained by the present sdf -IBM-2 calculation
is quite different in nature, since in the present framework the
intruder excitations and the subsequent configuration mixing
between the normal and intruder states are not taken into ac-
count. However, the mapped sdf -IBM-2 calculation generally
provides a reasonable description of the observed negative-
parity levels.

The electromagnetic transition properties of the low-lying
states in 96Zr computed by the mapped sdf -IBM-2 Hamilto-
nian are shown in Table III, together with the experimental
data [83,93]. Some disagreements between the calculated
and experimental E2 transition properties for 96Zr, especially
those related to the positive-parity states, are mainly due
to the lack of the intruder configuration in the model. The
predicted B(E3) values for the transitions from the odd-spin
negative-parity states are noticeably large, particularly, for the
�I = 1E3 transitions.

The predicted low-energy spectrum for 98Mo, shown in
Fig. 13(d), is basically similar to the one for 96Zr. Comparing
with the experimental data [10,83,95], the predicted K = 0+

1
band suggests a slightly stronger quadrupole collectivity with
the ratio R4/2 = 2.58. The calculated 0+

2 excitation energy
Ex(0+

2 ) = 2178 keV is much higher than the experimental
counterpart Ex(0+

2 ) = 735 keV. Experimentally, the 0+
2 state

is also the first excited state of 98Mo. As already remarked, the
0+

2 level could be lowered by the inclusion of the configuration
mixing between the normal and intruder states. A previous
mapped IBM-2 configuration-mixing calculation, which is
based on a Skyrme-type EDF, showed [95] that the coexis-
tence of a nearly spherical prolate and γ -soft prolate SCMF
minima is present in 98Mo and that the 0+

2 state is character-
ized by the strong mixing between the nearly spherical normal
configuration and the deformed intruder configuration arising
from the proton 2p-2h excitation across the Z = 40 subshell
closure. On the other hand, the observed negative-parity states
up to the 4−

1 state are reasonably reproduced. Some rele-
vant electromagnetic properties for 98Mo resulting from the
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TABLE III. B(E2), B(M1), B(E1), and B(E3) transition rates (in
W.u.), and the electric quadrupole Q(I ) (in e b), and magnetic dipole
μ(I ) (in μN ) moments, predicted by the mapped sdf -IBM-2 for 96Zr
in comparison with the available experimental data [83,93].

sdf -IBM-2 Experiment

B(E2; 0+
3 → 2+

2 ) 11 34 ± 9
B(E2; 2+

1 → 0+
1 ) 21 2.3 ± 0.3

B(E2; 2+
2 → 2+

1 ) 26 >0.16
B(E2; 2+

2 → 0+
2 ) 4.5 36 ± 11

B(E2; 2+
2 → 0+

1 ) 0.31 0.26 ± 0.08
B(E2; 2+

3 → 2+
1 ) 0.079 (5.0 ± 0.7)E + 1

B(E2; 3+
1 → 2+

1 ) 0.43 0.1+0.3
−0.1

B(E2; 4+
1 → 2+

2 ) 0.0016 56+20
−44

B(E2; 4+
1 → 2+

1 ) 29 16+5
−13

B(E2; 4+
2 → 2+

1 ) 0.068
B(E2; 4+

2 → 2+
2 ) 17 <1.6

B(E2; 4+
3 → 2+

1 ) 0.00042 0.4+0.4
−0.4

B(E2; 3−
2 → 3−

1 ) 1.7 <4.2
B(E2; 5−

1 → 3−
1 ) 10 14+5

−14

B(M1; 2+
2 → 2+

1 ) 0.00082 0.14 ± 0.05
B(M1; 2+

3 → 2+
1 ) 0.022 0.04 ± 0.06

B(M1; 3+
1 → 2+

1 ) 9.0 × 10−5 0.18+0.05
−0.09

B(M1; 3−
2 → 3−

1 ) 0.011 <0.0027

B(E1; 1−
1 → 0+

1 ) 1.1 × 10−4

B(E1; 2+
2 → 3−

1 ) 7.1 × 10−4 (2.8 ± 0.9) × 10−3

B(E1; 2+
3 → 3−

1 ) 1.4 × 10−5 (0.0007+0.0004
−0.0007)

B(E1; 4+
1 → 3−

1 ) 5.1 × 10−7 (7.0+0.3
−0.6 )E − 5

B(E1; 4+
3 → 3−

1 ) 8.3 × 10−7 <0.00010
B(E1; 3−

1 → 2+
1 ) 2.1 × 10−4 0.00123 ± 0.00010

B(E1; 3−
2 → 3+

1 ) 1.8 × 10−4 <0.00100
B(E1; 5−

1 → 4+
1 ) 5.3 × 10−4

B(E1; 7−
1 → 6+

1 ) 1.0 × 10−3

B(E3; 3−
1 → 0+

1 ) 21 57 ± 4
B(E3; 3−

1 → 0+
2 ) 0.069

B(E3; 3−
1 → 2+

1 ) 38
B(E3; 5−

1 → 2+
1 ) 17

B(E3; 5−
1 → 4+

1 ) 32
B(E3; 7−

1 → 4+
1 ) 15

B(E3; 7−
1 → 6+

1 ) 28

Q(2+
1 ) 0.17

Q(3−
1 ) −0.42 +2.9 ± 0.5

μ(2+
1 ) 0.4 +0.06 ± 0.14

mapped sdf -IBM-2 calculation are shown in Table IV in
comparison to the available data [83,95]. The agreement with
the experimental data is fair. The calculation suggests strong
�I = 3E3 transitions of the odd-spin negative-parity to the
even-spin positive-parity yrast states.

IV. CONCLUDING REMARKS

Octupole correlations and the related spectroscopic prop-
erties of the neutron-rich A ≈ 100 nuclei near the empirical
octupole magic numbers Z = 34 and N = 56 have been in-
vestigated based on the nuclear density-functional theory and
the mapped sdf -IBM-2 framework. The axially symmetric
quadrupole and octupole constrained SCMF calculations us-

TABLE IV. Same as Table III, but for 98Mo. The experimental
data are taken from Refs. [10,83,95].

sdf -IBM-2 Experiment

B(E2; 2+
1 → 0+

1 ) 18 20.1 ± 0.4
B(E2; 2+

1 → 0+
2 ) 0.35 9.7+1.0

−2.5
B(E2; 2+

2 → 0+
1 ) 0.36 1.02+0.15

−0.12

B(E2; 2+
2 → 0+

2 ) 4.3 2.3+0.5
−0.4

B(E2; 2+
2 → 2+

1 ) 17 48+9
−8

B(E2; 2+
3 → 4+

1 ) 0.037 14 ± 4
B(E2; 2+

3 → 2+
2 ) 0.11 <22

B(E2; 2+
3 → 2+

1 ) 0.19 3.0 ± 0.7
B(E2; 2+

3 → 0+
2 ) 0.36 7.5+0.6

−0.5
B(E2; 2+

3 → 0+
1 ) 0.0033 0.032+0.007

−0.006

B(E2; 2+
4 → 2+

1 ) 0.00031 >0.49
B(E2; 4+

1 → 2+
1 ) 25 42.3+0.9

−0.8

B(E2; 4+
1 → 2+

2 ) 0.023 15.2+3.3
−3.0

B(E2; 6+
1 → 4+

1 ) 26 10.1 ± 0.4
B(E2; 3−

2 → 3−
1 ) 0.5

B(M1; 2+
2 → 2+

1 ) 0.0021 0.0073+0.0023
−0.0017

B(M1; 2+
3 → 2+

2 ) 0.00013 0.0157+0.0027
−0.0034

B(M1; 2+
3 → 2+

1 ) 0.023 0.0032+0.0008
−0.0007

B(M1; 2+
4 → 2+

1 ) 0.0016 >0.019
B(M1; 2+

5 → 2+
2 ) 0.0019 >0.054

B(M1; 3−
2 → 3−

1 ) 0.013

B(E1; 1−
1 → 0+

1 ) 2.5 × 10−4

B(E1; 3−
1 → 2+

3 ) 1.9 × 10−5 (4.9+0.9
−0.7) × 10−5

B(E1; 3−
1 → 4+

1 ) 4.0 × 10−6 (1.02+0.31
−0.24 ) × 10−6

B(E1; 3−
1 → 2+

2 ) 1.8 × 10−4 <5.7 × 10−8

B(E1; 3−
1 → 2+

1 ) 6.8 × 10−4 (1.76+0.28
−0.22) × 10−6

B(E1; 3−
2 → 2+

1 ) 3.8 × 10−5

B(E1; 3−
2 → 2+

2 ) 1.5 × 10−4

B(E1; 5−
1 → 4+

1 ) 1.3 × 10−3

B(E1; 7−
1 → 6+

1 ) 1.9 × 10−3

B(E3; 3−
1 → 0+

2 ) 0.038 <58
B(E3; 3−

1 → 0+
1 ) 21 30+7

−5
B(E3; 3−

1 → 2+
1 ) 25

B(E3; 3−
1 → 2+

2 ) 5.2
B(E3; 3−

2 → 2+
1 ) 0.17

B(E3; 3−
2 → 2+

2 ) 1.8
B(E3; 5−

1 → 2+
1 ) 26

B(E3; 5−
1 → 4+

1 ) 19
B(E3; 7−

1 → 4+
1 ) 25

B(E3; 7−
1 → 6+

1 ) 18

Q(2+
1 ) −0.25 −0.26 ± 0.09

μ(2+
1 ) 0.31 +0.97 ± 0.06

ing the relativistic DD-PC1 EDF and the separable pairing
force of finite range have been carried out to provide the
potential-energy surfaces for the considered even-even nuclei
86–94Se, 88–96Kr, 90–98Sr, 92–100Zr, and 94–102Mo as functions of
the β2 and β3 deformations. At the SCMF level, no nonzero
β3 minimum was obtained on the β2-β3 energy surfaces,
whereas the potential becomes soft in the β3 deformation
around the neutron number N = 56 for each of the considered
isotopic chains. The excitation spectra for the low-lying states
with both parities and the electromagnetic transition rates
have been computed by the diagonalization of the sdf -IBM-2
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Hamiltonian with the strength parameters determined by map-
ping the SCMF energy surface onto the expectation value of
the Hamiltonian in the boson condensate state.

Evolution of the predicted positive-parity yrast spectra has
indicated a smooth onset of quadrupole collectivity in the
Se, Kr, and Mo isotopes, and an abrupt nuclear structural
change at N ≈ 60 in the Sr and Zr chains, as empirically
suggested. The present theoretical analysis put much em-
phasis on the description of the negative-parity states. The
predicted negative-parity odd-spin states show a parabolic
dependence on N centered around N = 56 at which the cor-
responding β2-β3 energy surface becomes softest along the
β3 direction. The lowest negative-parity state 3−

1 has been
predicted to be typically at the excitation energy Ex ≈ 1.5–
2.5 MeV, in a reasonable agreement with experiment. The
detailed comparisons have been made between the calculated
and experimental low-lying energy levels and transition prop-
erties for the N = 56 isotones and some of the neutron-rich
Kr nuclei that are of interest for recent measurements. The
present calculation has produced finite E3 transitions from
the odd-spin negative-parity states to the ground-state band.
These findings indicate the relevance of the octupole degrees
of freedom in the description of the low-energy negative-
parity states in the neutron-rich nuclei near the octupole magic
numbers N = 56 and Z = 34 within the framework of the
sdf -IBM-2.

For a more complete description of the low-energy states
with both parities and their spectroscopy in this mass region,
some extensions of the model will be required. In particular,
the sdf -IBM-2 Hamiltonian has been here determined by
the constrained SCMF calculations based only on the axially
symmetric shape degrees of freedom. On the other hand,
the studied neutron-rich nuclei should have a more complex
low-lying structure characterized, e.g., by the nonaxial defor-
mation and shape coexistence. Indeed, it has been revealed
that the mapped sdf -IBM-2 employed in this paper is not able
to describe the low-lying 0+

2 state and the band built on it for
the N > 56 nuclei. The model would need to be extended in
such a way that it simultaneously handles the octupole boson
degrees of freedom, the triaxial deformation, and the intruder
states and configuration mixing. Work along this direction is
in progress and will be reported elsewhere.
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[70] T. Nikšić, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys. 66,

519 (2011).
[71] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer-Verlag, Berlin, 1980).
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