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The nonlocalized cluster model provides a new perspective for describing nuclear cluster effects and has been
successfully applied in the study of cluster structures in bound states, scattering states, and also resonant states.
However, there is still some room for development when dealing with resonance problems with this new model.
The complex scaling method (CSM) is an important method in research of the resonant states. We combine
CSM with the nonlocalized cluster model [B. Zhou et al., Phys. Rev. Lett. 110, 262501 (2013)] for the first time,
and such combination provides a new way to study the resonance in the nonlocalized cluster model. Here, we
apply the CSM to 8Be as a simple example to illustrate its usages and advantages, while pointing out that the
generalization to more complicated cluster systems is also natural.
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I. INTRODUCTION

In nuclear many-body problems the cluster structures are
very important and have been widely studied through both
experimental and theoretical approaches, among which the
nonlocalized cluster model [1–6] is a crucial one for de-
scribing the cluster phenomenon. In the traditional image of
the localized cluster model, the clusters are located in fixed
positions, while in the nonlocalized model, they can move in
space with the exchange of nucleons and satisfy the Pauli prin-
ciple. This model has been applied to study nuclear structures
of bound states and quasi-bound states (long-lived resonant
states) in various light nuclei, including 6He [7], 8Be [8,9],
9Be [10], 10Be [11], 11Be [12], 9B [13], 10B [14], 10C [14],
12C [1,9,15–19], 16O [1,9,15,18,20], 20Ne [21–24], and so on.
However, at present there still exist some shortcomings when
dealing with resonance problems with this new model.

The complex scaling method [25] (CSM) as an impor-
tant method in research of the resonant states has been
successfully applied in few-body resonance and nonresonant
continuum states, as well as scattering states studied with
Lippmann-Schwinger equation, which can deal with some
nuclear reaction problems. However, in the cluster models the
applications of this method is still relatively rare.

We combine CSM with the nonlocalized cluster model for
the first time, and such combination provides a new way to
study the resonance in the nonlocalized cluster model. Several
methods have already been applied for studying resonance
states within the cluster model, for example, the R-matrix
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method [26–30], the Analytic continuation in the coupling
constant (ACCC) method [31,32], etc., where the R-matrix
method determines the location and width resonance state
by calculating the phase shift-energy curve, while the ACCC
method adds an artificial attractive pseudopotential δ × V (δ
is a constant) into the original Hamiltonian and determines
the resonance state by adjusting the coupling constant δ.
The CSM utilized in this work is a direct method, which
associates the resonance position and width directly to the
real and imaginary parts of the complex energy, and they
are obtained simultaneously by solving a complex scaled
Schrödinger equation. In Sec. II we will give a more detailed
description of the complex scaling method and show how to
combine it with the nonlocalized cluster model.

As a simple test here we would like to consider the res-
onances of 8Be, which is considered to have a strong α

cluster effect. Such an α-α system has rich physical proper-
ties and is important for understanding many crucial nuclear
reactions in astrophysics. The low-lying resonances of 8Be
have been measured; we will use them to confirm and
validate our method. Various theoretical works have been
proposed to study different aspects of the nature of 8Be,
such as the resonating group method (RGM) [33,34], the
generator coordinate method (GCM) [26,35,36], the Tohsaki-
Horiuchi-Schuck-Röpke (THSR) wave function [8,9], the
cluster effective field theory [37,38], the complex-scaled clus-
ter model [39–42], and so on. In this work we choose the
THSR wave function as the basis function in the nonlocal-
ized cluster; model, the THSR wave function was originally
introduced to illustrate the 3α-condensate-like characteristics
of the Hoyle state (0+

2 state) of 12C [6] and has been developed
successfully to study more complicated systems containing
more α clusters. With all these successful experiences of
studying the α-α and more complicated cluster systems we
are able to extend our method further to the three and more α
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systems, which may contain exotic structures such as gaslike
α condensates [1], linear chain structure [15], etc. Also, these
exotic structures may correspond some more interesting char-
acteristics of the resonance states.

In Sec. II we formulate the THSR framework of the general
cluster model and then specify it for 8Be. The interaction
model and the relevant matrix element are also formulated
in this section but the details are given in the Appendix. In
the last part of Sec. II we introduce the complex scaling
method and apply it to the THSR framework. Eventually we
provide the GCM as a comparison with THSR and make a
computational test using GCM. We demonstrate the relevant

numerical results in Sec. III and discuss them in the final
section. Also, in the final section we give a brief description of
the possible extensions and prospects of our approach. Several
computational details about the THSR wave function are all
given in the Appendix.

II. THEORETICAL FORMALISM

The THSR wave function can be expressed as a superposi-
tion of Brink wave functions, which are used in the generator
coordinate method, �B(R1, . . . , Rn) [8]:

�nα (βx, βy, βz ) =
∫

d3R1 · · · d3Rn exp

{
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)}
�B(R1, · · · , Rn),

�B(R1, · · · , Rn) = det{φ0s(r1 − R1)χσ1τ1 · · · φ0s(r4n − Rn)χσ4nτ4n}, (1)

where χστ is the spin-isospin wave function. But the wave function above corresponds to the intrinsic state of the cluster
condensation without certain angular momentum; therefore we need to make the angular momentum projection as follows:
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where 
 is the Euler angle, DJ
MK is the Wigner D function, R̂(
) is the rotation operator, and R(
) represents the 3 × 3 rotation

matrix corresponding to the rotation operator R̂(
). Here we make use of the relation φ0s(R(
)r − R) = φ0s(r − R−1(
)R),
which can be obtained obviously from the expression of the 0s harmonic oscillator wave function (Gaussian wave packet).

By transforming R1 and R2 into the center-of-mass coordinate RG and the relative coordinate R,

R1 = RG + R/2, R2 = RG − R/2, (3)

the THSR wave function of the 2α system is written as
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∫
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where XG = (X1 + X2)/2 and r = X1 − X2; here Xi denotes the center-of-mass coordinate of the ith α cluster αi. If we let RG

be zero and so avoid the integration of RG in Eq. (4), we obtain a new wave function denoted by �2α (βx, βy, βz ):
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By neglecting the center-of-mass wave function in Eq. (5) we can define a internal wave function, which is denoted by
�′

2α (βx, βy, βz ) [the constant factor in equation (5) is not important]:

�′
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}
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]
. (6)

In this work we only handle the case of axially symmetric deformation with the z axis being the symmetry axis, namely βx =
βy �= βz. In this case, we can do the replacements as follows in the angular momentum projection:∫

d
 �⇒ 4π2
∫

d cos(ζ ), DJ∗
MK (
) �⇒ dJ

00(ζ ) = PJ ( cos(ζ )),

R̂(
) �⇒ R̂y(ζ ), R(
) �⇒ Ry(ζ ), (7)

where PJ ( cos(ζ )) is the Legendre polynomial and we will use it instead of dJ
00(ζ ) in the following formulations. The correct

internal wave function with good angular momentum can be defined as

�′J
2α (βx = βy, βz ) =

∫
d cos(ζ )PJ ( cos(ζ ))R̂y(ζ )�′

2α (βx = βy, βz ). (8)

The matrix element of a translationally invariant operator Ô with the spin projected wave function �′J
2α (βx = βy, βz ) is calculated

as 〈
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∣∣Ô∣∣�′J

2α (βx = βy, βz )
〉

〈
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2α
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In the actual calculation we want to use an expression like Eq. (5) instead of (6) to determine the matrix elements because of
the simpler technique of GCM. However, on account of the center-of-mass motion in the wave function �2α (βx = βy, βz ), the
Hamiltonian H we use in this work is written as

H = T − TG + VN + VC, (10)

where T is the total kinetic energy, TG is the center-of-mass kinetic energy, VN is the effective two-body nuclear interaction
energy, and VC is the Coulomb interaction energy. We adopt the Volkov No. 1 potential as the effective two-body nuclear
potential, which has the form [43]
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2
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(
− r2

i j

a2
n

)
, (11)

where the parameters Vn and an are a1 = 1.60 fm, a2 = 0.82 fm, V1 = −83.34 MeV, V2 = 144.86 MeV and M is the Majorana
exchange parameter. The Coulomb interaction can be written as
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e2

ri j
, (12)

where the isospin z component equals tz = +1/2 for the proton and tz = −1/2 for the neutron. Consequently the matrix element
for the spin projected �2α (βx = βy, βz ) has the same form as Eq. (9):〈
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FIG. 1. The schematic momentum spectrum of a transformed
Hamiltonian H (r, θ ).

Applying the method of complex scaling to a single-particle
problem, we can obtain a similarity transformation from the
conventional Hamiltonian as follows:

H (r, θ ) = U (θ )H (r)U (θ )−1, (15)

where U(θ ) is defined as

U (θ ) f (r) = exp

(
i
3

2
θ

)
f (r exp(iθ )), 0 < θ < π/2. (16)

With this scaled Hamiltonian a corresponding complex
Schrödinger equation can be written as

H (r, θ )�(r, θ ) = E (θ )�(r, θ ). (17)

According to the so-called ABC theorem [44,45], after this
transformation a bound state eigenvalue of H remains still
an eigenvalue of H (θ ); a resonance pole E − i�/2 of the
Green operator of H is an eigenvalue of H (θ ); the continuous
spectrum of H is rotated down into the complex plane by
the angle θ (the schematic momentum spectrum is shown in
Fig. 1). More details about the momentum spectrum can be
found in [46,47]. Additionally an important point is that the
wave functions of resonant states become square integrable,
therefore the whole variety of approximation methods devel-
oped for bound states can be exactly applied to resonant states.
For example, one can expand over a set of linearly inde-
pendent real square-integrable functions χi(r) with complex
coefficients ci(θ ) to approximate the wave function �(r, θ ),

�(r, θ ) =
N∑

i=1

ci(θ )χi(r), (18)

where the unknown coefficients ci(θ ) can be determined by a
generalized variational principle:

δ

[∫
dr�̄i(r, θ )∗H (r, θ )� j (r, θ )

/∫
dr�̄i(r, θ )∗� j (r, θ )dr

]

= 0.

(19)

The bar on the wave function means the complex conjugate
of the angular factor. For coefficients we obtain the matrix
function

N∑
j=1

(Hi j (θ ) − ENi j )c j (θ ) = 0, (20)

where

Hi j (θ ) =
∫

drχ̄i(r)∗H (r, θ )χ j (r),

Ni j =
∫

drχ̄i(r)∗χ j (r). (21)

Equivalently these matrix elements can be expressed as matrix
elements of the unrotated real operator H (r) or 1 between the
basis functions after complex rotation:

χi(r, θ ) = U (θ )−1χi(r) = exp

(
− i

3

2
θ

)
χi(r exp(−iθ )).

(22)

Since we expand the wave function over finite basis func-
tions to solve the Schrödinger equation approximately, the
ABC theorem is also fulfilled only approximately. A direct
consequence is that no eigenvalue which is completely in-
dependent of θ exists, and the energy of the resonant state
will also move along trajectories in the complex plane as a
function of θ . A natural but heuristic criterion of estimation
for a resonance energy is the minimal rate of change with
respect to θ . Actually this had been suggested and confirmed
in many papers; the procedure above also can be justified by
an extension of the virial theorem [48].

In our case the complex scaling can be introduced by
letting the generator coordinate be Rθ = eiθ R in the GCM
framework or letting the deformation parameter be βθ = eiθβ

in THSR framework. In detail the complex wave function of
GCM reads �B(eiθ R1, . . . , eiθ Rn), while the complex THSR
wave function can be written as∫

d3R1 · · · d3Rn exp

⎛
⎝−

∑
k=x,y,z

R2
k

(eiθβk )2

⎞
⎠�B(R1, . . . , Rn).

In addition, we need to use the c-product (bi-orthogonal
product) instead of the normal inner product to calculate the
matrix elements [49].

If we use complex scaled operators instead of complex
scaled wave functions, the calculation scheme becomes dif-
ferent but equivalent:

T → exp(−2iθ )T,

V (r) → V (r exp(iθ )),

b → exp(−iθ )bm (23)

and then the generator coordinates R and deformation pa-
rameters β remain real for GCM and THSR frameworks,
respectively. In this way the schemes of the calculation in
two frameworks are unified and the only difference is the
superposition parameter of the wave functions.

III. NUMERICAL RESULTS

The binding energy of a single alpha particle which is
independent of the Majorana parameter M of the Volkov No. 1
force takes the lowest value Eα=−27.08 MeV for the param-
eter b = 1.37 fm [8]. We want to select a more appropriate
value for parameter b and fix it in the subsequent calculations,
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FIG. 2. Contour map of the energy surface of the ground state
(0+ state) of 8Be in the two-parameter space, βx = βy and βz . The lo-
cations of the two minimal values have been marked in the figure. A
single THSR wave function gives the lowest energy −54.07 MeV at
βx = βy ≈ 2.0 fm and βz ≈ 12.4 fm. Another local minima −54.04
MeV at βx = βy ≈ 4.8 fm and βz ≈ 0.7 fm is very close to the lowest
energy.

therefore at first we can calculate the spherical state with two
parameters b and βx = βy = βz = β, which is without the
spin projection. After calculation we find that the value of
parameter b at the energy minimum is about 1.36 fm, which
is a little bit smaller than the b value of the free alpha particle.
We fix the value of parameter b to 1.36 fm in the subse-
quent calculations and only change the parameter β to plot
the contour map of energy. As the strength of the Majorana
parameter chosen for 8Be, we adopt the value M = 0.573,
because with this value the lowest binding energy of the 0+
state takes the value −54.07 MeV as seen in Fig. 2; that is,
about 0.10 MeV higher than the two-alpha threshold energy,
2Eα=−54.17 MeV, which is consistent with the experimental
value 0.0918 MeV above the 2α threshold.

It can be seen from Fig. 2 that, for the 0+ state, a single
THSR wave function gives the lowest energy, −54.07 MeV,
when the deformation parameter β is taken as βx = βy ≈
2.0 fm and βz ≈ 12.4 fm. In addition to this point, there is a
local minima −54.04 MeV when the parameter is βx = βy ≈
4.8 fm and βz ≈ 0.7 fm, which is very close to the lowest
energy. The excited states above the 0+ state have no energy
minima at the present parameters, so we do not discuss them
further than the corresponding energy contour maps shown
in Figs. 3 and 4. Since the THSR wave function as a super-
position of the Brink wave function is only an approximate
solution, we can use more than one THSR wave function to
obtain more accurate ground state energy, but of course the
contribution at these two local minima is the largest. Figure 5
shows the convergence curve of the ground state energy after
superimposing multiple THSR wave functions, and for com-
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FIG. 3. Contour map of the energy surface of the 2+ state of 8Be
in the two-parameter space, βx = βy and βz.

parison we also plot such curve obtained from superimposing
multiple GCM wave functions. The energy converges to about
−54.074 MeV when there are enough basis functions, and the
lowest energy −54.073 MeV derived from a single THSR
wave function is actually very similar to this result, which
also reflects the good approximation of the single THSR wave
function.

After the computation above in this section, the required
calculation of the THSR and GCM approaches in the real
number field for 8Be is complete, and on top of this prepara-
tion we can move on to the introduction of the CSM, namely
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FIG. 4. Contour map of the energy surface of the 4+ state of 8Be
in the two-parameter space, βx = βy and βz.
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FIG. 5. Energy of the 0+ state converges to about −54.074 MeV
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turning to the complex number field. Here we first give the
calculation of CSM in the GCM framework and show the
calculated resonant state energy. Finally we give the corre-
sponding calculations and results in the THSR framework.
For the sake of clarity we will use the 4+ state as an example
below to illustrate the details of the calculation.

The number of the basis functions used in the complex
scaled GCM framework is 35, and these generator coordi-
nates Ri (i = 1, 2, . . . , 35) are spaced evenly in the interval
[1, 35] fm. Of course we can choose another distribution of
the generator coordinates; however, a test calculation about
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x
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convergence will prove that our choice is appropriate. We fix
the value of θ and let the maximum value Rmax of the generator
coordinate increase from a value less than 35 fm to 35 fm (the
generator coordinates are still evenly spaced in the interval
[1, Rmax] fm) and calculate the resonance energy. As shown in
Fig. 6 (for THSR, Fig. 7), the energy will converge with the
increase of the number of the basis functions. Using 35 basis
functions already meets our needs of accuracy completely,
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FIG. 8. Complex energy spectrum for the 4+ state with GCM
wave functions. The blue square, red circle, and orange triangle
correspond to θ = 20◦, 23◦, 26◦ respectively. It can be seen that the
energy values of the resonant state at these three angles basically
coincide.
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FIG. 9. The θ trajectory with GCM wave functions in the
case of the 4+ state. The generator coordinates are taken as
1, 2, 3, . . . , 35 (fm). θ varies from 15◦ to 31◦ by steps of 0.5◦. The
subplot shows the variation of the derivative of the energy with angle.
The minimum value is at about θ = 18.6◦. The resonance energy at
this stabilization point is what we look for.

and we display the complex energy spectrum with different
angles in Fig. 8. Now let us determine the precise position
and width of the resonance. We fix the number of the basis
functions to 35 and draw the trajectory of resonance energy in
the complex plane as a function of θ in Fig. 9; it shows that the
rate of variation of energy with angle becomes minimum at a
certain angle, and the corresponding energy is what we expect.
Similarly, for the THSR framework we show the complex
energy spectrum with different angles in Fig. 10 and draw
the trajectory of resonance energy in the complex plane as a
function of θ in Fig. 11.
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FIG. 10. Complex energy spectrum for the 4+ state with THSR
wave functions. The blue square, red circle, and orange triangle
correspond to θ = 20◦, 23◦, 26◦ respectively.
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FIG. 11. The θ trajectory with THSR wave functions in the case

of the 4+ state. The parameters are chosen as βz = 10−6 fm, β2
x

b2 =
1

10 , 1, 2, 3, . . . , 7. θ varies from 25◦ to 48◦ by steps of 0.5◦. The
resonance has been marked in the figure.

Using the same procedure, we choose a set of THSR wave
functions as basis functions to repeat the calculations above
for the 4+ state.

The advantage of using the THSR wave function is that
only fewer basis functions are needed to get almost as good
results as the GCM; here we adopt the parameters βz =
10−6 fm, β2

x
b2 = 1

10 , 1, 2, 3, . . . , 7. Fixing βz and changing only
βx = βy is just for illustration and formal clarity, for example
we can exchange the two parameters βz and βx or take a
more complex selection approach instead of fixing a certain
parameter, but, no matter how, we can obtain almost the same
resonance energy with different selections. Furthermore, the
advantage of taking βz to a value very close to 0 is that it
increases the speed of the calculation.

As for the other states the calculation methods are identical
and the results are listed in Table I. The result for the 0+ state
is not shown in the table; here we would like to point out that
in our approach we cannot get the extremely small resonance
width of 0+ states, whose value measured in the experiment is
about 5.57 × 10−6 MeV. But for the broad resonant states we
can achieve pretty good accuracy.

IV. CONCLUSIONS

In order to apply the complex scaling method to the micro-
scopic cluster model to solve problems concerning resonant
states, we use 8Be as a simple example to illustrate the specific
computational details and advantages of this method. This
method is a direct approach to solve the position and the width
of the resonant state energy simultaneously. We make some
changes to the existing code of the cluster model to introduce
the complex scale part, which means that for the GCM frame-
work the generation coordinates need to be changed, while
for the THSR framework the deformation parameters β need
to be changed. Here the complex-scaling rotational operator
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TABLE I. The complex energies E = Er − i�/2 of some resonances of 8Be. The zero of the energy scale is the threshold energy of
two-alpha particle, namely −54.17 MeV. The experimental values are taken from NNDC [50].

Experimental values GCM THSR

L Er (MeV) � (MeV) Er (MeV) � (MeV) Er (MeV) � (MeV)

0 0.0918 5.57 ×10−6 0.0975 0.0976
2 3.030 1.513 2.6283 1.2440 2.6237 1.2471
4 11.35 ≈3.5 11.0854 4.9738 11.0846 4.9731

acts on the relative coordinate r between two α clusters, which
means the decay width obtained is the α-cluster decay width
rather than the total one. For 8Be this framework is totally
available but it may not be suitable for a system without a
clear division of cluster components. We would like to point
out the this work is our preliminary attempt and we may
discuss this problem in more detail in our subsequent work.
The computational results show the stability of solutions for
broad resonance and the feasibility of extending it to more
complex cluster systems.

The wave function used for superposition in this work is
either the THSR wave function or the GCM wave function,
but we can also choose a hybrid wave function of the THSR
and GCM wave functions (hybrid Brink-THSR).

As for the approximation utilized to solve the problem,
this work belongs to the stabilization method. It expands the
trial wave function in terms of a set of square-integrable basis
functions and picks the energy of the resonant state using
the stability condition: when the energy of the resonant state
varies most slowly with the rotation angle θ , it is the precise
determination we expect.

Using the complex scaled THSR wave function, this work
could be extended to resonant states of light nuclei that are
slightly heavier than 8Be, such as 12C, 16O, and 20Ne, which
have more complex cluster structures and energy spectra, but
the treatment should remain almost the same as 8Be. For these
light nuclei, there have been many advances in recent studies

using the THSR wave function; for example, the proposed
container model based on the THSR wave function can well
explain the rotation band energy spectrum and other infor-
mation of the light nuclei. Based on these well-established
methods and models, it is possible to introduce complex
scaling methods for the study of the resonance states with
some modifications. A major advantage of this approach is its
compatibility with existing cluster model programs, and the
original program version can be considered as a special case
of the complex scaled one. In addition, it is possible to apply
the complex scaling method to heavy and even superheavy
nuclei with rich cluster structures, and one possible way may
be combining it with the quartet model [51–57] to deal with
some alpha cluster problems for heavy and superheavy nuclei.
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APPENDIX

In the following we give the most general form of the overlap and Hamiltonian kernels, i.e., the deformation parameters
βx(= βy) and βz are not the same in the bra and ket; here we use the ′ to denote such difference. If the deformation parameters
are all the same in the bra and ket then the relevant equations will return to the case of the single THSR wave function. When ζ

is 0, we obtain the corresponding kernels of the intrinsic state without the angular momentum projection.
For 8Be the formula of the overlap is

〈�2α (βx = βy, βz )|R̂y(ζ )|�2α (β ′
x = β ′

y, β
′
z )〉 =

∫
d3Rd3R′ exp

⎡
⎣−

⎛
⎝ ∑

k=x,y,z

R2
k

2β2
k

+
∑

k=x,y,z

(Ry(ζ )R′)2
k

2β ′2
k

⎞
⎠
⎤
⎦ × 〈�B(R)|�B(R′)〉

= (2π )3β2
x β ′2

x βzβ
′
z(N0 + N1 + N2), (A1)

where

N0 = 2√(
α2

1 + α′2
1 + 1

)[(
α2

1 + α′2
1 + 1

)(
α2

2 + α′2
2 + 1

) + γ
] ,

N1 = −8√(
3
4α2

1α
′
1

2 + α2
1 + α′

1
2 + 1

)[(
3
4α2

1α
′
1

2 + α2
1 + α′

1
2 + 1

)(
3
4α2

2α
′
2

2 + α2
2 + α′

2
2 + 1

) + γ

4

] ,
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N2 = 6(
α2

1α
′
1

2 + α2
1 + α′

1
2 + 1

)√(
α2

2α
′
2

2 + α2
2 + α′

2
2 + 1

) . (A2)

In the above relations, we introduced variables, α1, α′
1, α2, α′

2, and γ , defined as α1 = βx

b , α′
1 = β ′

x
b , α2 = βz

b , α′
2 = β ′

z

b , γ =
(α2

1 − α2
2 )(α′

1
2 − α′

2
2) sin2(ζ ). Here we need to note that if βx(= βy) = βz [or β ′

x(= β ′
y) = β ′

z], then numerically we cannot
complete a valid angular momentum projection. However, physically the spin projection state still exists in the equal parameter
case, therefore we can make the limiting procedure of βx(= βy) → βz to numerically calculate.

The formula of the kinetic energy is obtained by using the relation

〈
�B(R)|T − TG|�B(R′)

〉 = h̄

mb2

(
3

4
(A − 1) + ν

2

d

dν

)
〈�B(R)|�B(R′)〉, (A3)

where ν = 1
2b2 and A is the nucleon number of 8Be. Thus the formula of the kinetic energy is

〈�2α (βx = βy, βz )|(T − TG)R̂y(ζ )|�2α (β ′
x = β ′

y, β
′
z )〉

=
∫

d3Rd3R′ exp

⎡
⎣−

⎛
⎝ ∑

k=x,y,z

R2
k

2β2
k

+
∑

k=x,y,z

(Ry(ζ )R′)2
k

2β ′2
k

⎞
⎠
⎤
⎦ × 〈�B(R)|T − TG|�B(R′)〉

= (2π )3β2
x β ′2

x βzβ
′
z

h̄

mb2

{
21

4
(N0 + N1 + N2) − N0

4

[
3
(
α2

1 + α′2
1

) + 2

α2
1 + α′2

1 + 1
− α2

1 + α′2
1 + 1 + α2

2 + α′2
2 + 1(

α2
1 + α′2

1 + 1
)(

α2
2 + α′2

2 + 1
) + γ

]

− N1

4

[
3α2

1α
′2
1 + 3

(
α2

1 + α′2
1

) + 2
3
4α2

1α
′2
1 + α2

1 + α′2
1 + 1

+
(

3
4α2

2α
′2
2 − 1

)(
3
4α2

1α
′2
1 + α2

1 + α′2
1 + 1

)
(

3
4α2

1α
′2
1 + α2

1 + α′2
1 + 1

)(
3
4α2

2α
′2
2 + α2

2 + α′2
2 + 1

) + γ

4

+
(

3
4α2

1α
′2
1 − 1

)(
3
4α2

2α
′2
2 + α2

2 + α′2
2 + 1

)
(

3
4α2

1α
′2
1 + α2

1 + α′2
1 + 1

)(
3
4α2

2α
′2
2 + α2

2 + α′2
2 + 1

) + γ

4

]
− N2

4

(
2

2α2
1α

′2
1 + α2

1 + α′2
1

α2
1α

′2
1 + α2

1 + α′2
1 + 1

+ 2α2
2α

′2
2 + α2

2 + α′2
2

α2
2α

′2
2 + α2

2 + α′2
2 + 1

)}
.

(A4)

In this work we make use of the Volkov interactions as the two-body force, so VN reads as follows:

VN = 1

2

8∑
i �= j

{(1 − M ) − MPσ Pτ }i j

2∑
n=1

Vn exp

(
− r2

i j

a2
n

)
. (A5)

Here we adopt Volkov No. 1 interaction, and the parameters Vn and an are a1 = 1.60 fm, a2 = 0.82 fm, V1 = −83.34 MeV,
V2 = 144.86 MeV. In the following formula we used the variables defined as Xd = 8 − 10M, Xe = 10M − 2, Un = b2

a2
n+2b2 . The

formula of the two-body nuclear interaction energy is as follows:

〈�2α (βx = βy, βz )|VN R̂y(ζ )|�2α (β ′
x = β ′

y, β
′
z )〉

=
∫

d3Rd3R′ exp

⎡
⎣−

⎛
⎝ ∑

k=x,y,z

R2
k

2β2
k

+
∑

k=x,y,z

(Ry(ζ )R′)2
k

2β ′2
k

⎞
⎠
⎤
⎦ × 〈�B(R)|VN |�B(R′)〉

= (2π )3β2
x β ′2

x βzβ
′
z

2∑
n=1

Vn

(
a2

n

a2
n + 2b2

)3/2[
4(Xd + Xe)

(
N0

2
+ N1

4
+ N2

6

)
+ 4Xd√

2Unα
2
1α

′2
1 + (

1 + Un
2

)(
α2

1 + α′2
1

) + 1

× 1√[
2Unα

2
1α

′2
1 + (

1 + Un
2

)(
α2

1 + α′2
1

) + 1
][

2Unα
2
2α

′2
2 + (

1 + Un
2

)(
α2

2 + α′2
2

) + 1
] + (

Un − 2
)2 γ

4

+ 4Xe√(Un
2 + 3

4

)
α2

1α
′2
1 + (

1 + Un
2

)(
α2

1 + α′2
1

) + 1

× 1√[(Un
2 + 3

4

)
α2

1α
′2
1 + (

1 + Un
2

)(
α2

1 + α′2
1

) + 1
][(Un

2 + 3
4

)
α2

2α
′2
2 + (

1 + Un
2

)(
α2

2 + α′2
2

) + 1
] + (

Un + 1
)2 γ

4

+ 4(Xe − 2Xd )√( 3Un
2 + 3

4

)
α2

1α
′2
1 + (

1 + Un
2

)(
α2

1 + α′2
1

) + 1
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× 1√[( 3Un
2 + 3

4

)
α2

1α
′2
1 + (

1 + Un
2

)(
α2

1 + α′2
1

) + 1
][( 3Un

2 + 3
4

)
α2

2α
′2
2 + (

1 + Un
2

)(
α2

2 + α′2
2

) + 1
] + (

Un − 1
)2 γ

4

+ 4(Xd − 2Xe)√(
Un + 1

)
α2

1α
′2
1 + (

1 + Un
2

)(
α2

1 + α′2
1

) + 1

× 1√[(
Un + 1

)
α2

1α
′2
1 + (

1 + Un
2

)(
α2

1 + α′2
1

) + 1
][(

Un + 1
)
α2

2α
′2
2 + (

1 + Un
2

)(
α2

2 + α′2
2

) + ]) + U 2
n

γ

4

− 8(Xd + Xe)√(Un
2 + 3

4

)
α2

1α
′2
1 + (

1 + Un
2

)
α2

1 + α′2
1 + 1

× 1√[(Un
2 + 3

4

)
α2

1α
′2
1 + (

1 + Un
2

)
α2

1 + α′2
1 + 1

][(Un
2 + 3

4

)
α2

2α
′2
2 + (

1 + Un
2

)
α2

2 + α′2
2 + 1

] + γ

4

− 8(Xd + Xe)√(Un
2 + 3

4

)
α2

1α
′2
1 + (

1 + Un
2

)
α′2

1 + α2
1 + 1

× 1√[(Un
2 + 3

4

)
α2

1α
′2
1 + (

1 + Un
2

)
α′2

1 + α2
1 + 1

][(Un
2 + 3

4

)
α2

2α
′2
2 + (

1 + Un
2

)
α′2

2 + α2
2 + 1

] + γ

4

+ 8(Xd + Xe)√(Un
2 + 1

)
α2

1α
′2
1 + (

1 + Un
2

)
α2

1 + α′2
1 + 1

× 1√[(Un
2 + 1

)
α2

1α
′2
1 + (

1 + Un
2

)
α2

1 + α′2
1 + 1

][(Un
2 + 1

)
α2

2α
′2
2 + (

1 + Un
2

)
α2

2 + α′2
2 + 1

]
+ 8(Xd + Xe)√(Un

2 + 1
)
α2

1α
′2
1 + (

1 + Un
2

)
α′2

1 + α2
1 + 1

× 1√[(Un
2 + 1

)
α2

1α
′2
1 + (

1 + Un
2

)
α′2

1 + α2
1 + 1

][(Un
2 + 1

)
α2

2α
′2
2 + (

1 + Un
2

)
α′2

2 + α2
2 + 1

]
]
. (A6)

As for the Coulomb interaction energy, we represent it as a superposition of Gaussian functions:

VC = 1

2

8∑
i �= j

(
1

2
+ tzi

)(
1

2
+ tz j

)
e2

ri j
= 1

2

8∑
i �= j

(
1

2
+ tzi

)(
1

2
+ tz j

)
2e2

√
π

∫ ∞

0
dη exp

( − r2
i jη

2
)
. (A7)

Using this equation we can obtain the matrix elements of Coulomb interaction by changing the variables used in VN in the
following way:

a2
n −→ 1

η2
,

2∑
n=1

Vn

(
a2

n

a2
n + 2b2

)3/2

−→ 2e2

√
π

∫ ∞

0

(
1

1 + 2b2η2

)3/2

dη,

Xd −→ 2,

Xe −→ −1. (A8)

It is convenient to use a new variable ξ (the range of integration over ξ is from 0 to 1) in the integration:

ξ 2 = 2b2η2

1 + 2b2η2
,

√
1

2b2
dξ =

(
1

1 + 2b2η2

)3/2

dη. (A9)
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The kernels obtained above can be integrated with the weight of PJ ( cos(ζ )) to obtain the corresponding kernels after the angular
momentum projection. The integration in this step can be calculated directly by the analytical method or solved numerically.
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