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Ab initio calculation of the β decay from 11Be to a 10Be + p resonance

M. C. Atkinson ,1 P. Navrátil ,1 G. Hupin ,2 K. Kravvaris,3 and S. Quaglioni3
1TRIUMF, Vancouver, British Columbia, Canada V6T 2A3

2Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
3Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA

(Received 27 March 2022; accepted 9 May 2022; published 26 May 2022)

The exotic β-delayed proton emission is calculated in 11Be from first principles using chiral two- and three-
nucleon forces. To investigate the unexpectedly large branching ratio measured in Ayyad et al. [Phys. Rev.
Lett. 123, 082501 (2019)], we calculate the proposed (1/2+, 1/2) proton resonance in 11B using the no-core
shell model with continuum. This calculation helps to address whether this enhancement is caused by unknown
dark decay modes or an unobserved proton resonance. We report a branching ratio of bp = (1.3 ± 0.5) × 10−6,
suggesting that its unexpectedly large value is caused by an unobserved proton resonance in 11B.
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I. INTRODUCTION

Nuclear β decay is well-recognized as a process sensi-
tive to nuclear structure [1]. When considering neutron-rich
nuclei, a particularly interesting β-decay reaction known as
β-delayed particle emission is possible [2]. Specifically, β-
delayed proton emission is a rare process in which the parent
nucleus undergoes β decay into a proton-unbound state from
which the proton is emitted. Due to energy conservation, this
exotic process is forbidden unless Sn < (mn − mp − me)c2 ≈
782 keV, where Sn is the neutron separation energy and mn,
mp, and me are the neutron, proton, and electron rest masses,
respectively [2]. The 11Be nucleus is a halo nucleus with a
neutron separation energy of 0.5016 MeV, making it an ideal
candidate for such a decay. It has been suggested that this
particular process can shed some light on the neutron lifetime
puzzle in that it could reveal an exotic dark-decay mode [3].

The β decay of the ground state of 11Be into the continuum
was originally calculated using a cluster expansion resulting
in a small branching ratio, bp = 3.0 × 10−8 [2]. This small
branching suggested it was extremely rare compared to other
β-decay branches such as the ground state (bp = 0.547) or
one of the many excited states in 11B (e.g., bp = 0.314 to the
1/2−

1 excited state, bp = 0.0647 to the 1/2+
1 excited state, etc.)

[4]. To further investigate this β-delayed proton emission,
Riisager et al. indirectly measured the decay of 11Be to 10Be
[5]. This experiment revealed a large branching ratio of bp =
8.3(9) × 10−6, 2 orders of magnitude larger than the previous
theoretical calculation. Thus, two possible explanations were
proposed for this discrepancy: either the halo neutron decays
to an unobserved proton resonance in 11B or there are other
unobserved, exotic neutron decay modes such as dark-decay
modes [5]. Seven years later, in 2019, Ayyad et al. directly
observed the 11Be β-delayed proton emission in an experi-
ment performed at TRIUMF. The corresponding experimental
branching ratio of bp = 1.3(3) × 10−5 is consistent with the

large branching ratio observed in the previous indirect exper-
iment [6]. This branching ratio equates to B(GT) = 5.5+8.3

−3.3
which falls under the theoretical limit of 3 for the β-decay of
a free neutron within one standard deviation [7]. Furthermore,
because this experiment involved direct detection, the ejected
proton distribution was used to locate the possible proton res-
onance in 11B. The resonance was found to have spin 1/2 (or
3/2), positive parity, and isospin 1/2 with an excitation energy
of 197 keV. This measurement supported the first explanation:
the existence of an unobserved resonance in 11B.

There have been several theoretical investigations of the
proposed 10Be +p resonance with differing results. The au-
thors of Ref. [8], using a shell model embedded in the
continuum, conclude that the branching ratio of β-delayed
α emission, the predicted resonance width, and the observed
β-delayed proton emission in Ref. [6] cannot be reconciled
within their calculations. Another shell-model analysis of this
system claims that the experimentally observed branching ra-
tio is impossible to explain [3]. The halo effective field theory
analysis in Ref. [9] supports the existence of the proposed
proton resonance.

In this work, we address the β-delayed proton emission in
11Be from first principles using the no-core shell model with
continuum (NCSMC) [10–13]. First, we carry out 10Be +p
scattering calculations to search for the proposed resonance
in 11B. Second, we develop the framework to consistently
compute β-decay matrix elements within the NCSMC ap-
proach and evaluate the β-decay branching ratio from the
ground state of 11Be to the 10Be +p channel. The NCSMC
is well-suited to describe this particular decay since it not
only accurately describes the structure of light nuclei but also
properly profiles the continuum in the low-energy regime. In
Sec. II, we briefly introduce the NCSMC and the microscopic
Hamiltonian adopted in the present study. Main results are
presented in Sec. III and conclusions are given in Sec. IV.
Details of the calculation of the NCSMC formalism for the
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calculation of β-decay matrix elements are given in the Ap-
pendix.

II. THEORY

The β-decay operator of the Jπ=1/2+, T =3/2 ground
state of 11Be to a Jπ=1/2+, T =1/2 proton-unbound 10Be +p
state is purely driven by the (reduced) matrix elements of the
Gamow-Teller (GT) operator due to the change in isospin [1]:

B(GT) = 1
2

∣∣〈� 1
2

+ 1
2

11B

∥∥ ĜT
∥∥�

1
2

+ 3
2

11Be

〉∣∣2. (1)

Here we consider the leading-order GT operator

ĜT =
A∑

i=1

σ̂ iτ̂
+
i ,

where σ̂ i is the single-particle Pauli operator and τ̂+
i is the

single-particle isospin-raising operator [1]. The evaluation of
Eq. (1) requires a framework such as the NCSMC where
bound and scattering wave functions are consistently calcu-
lated. The ansatz for the NCSMC initial (final) state is a
generalized cluster expansion [13]:

∣∣�Jπ T
A

〉 =∑
λ

cJπ T
λ |AλJπT 〉 +

∑
ν

∫
drr2 γ Jπ T

ν (r)

r
Âν

∣∣
Jπ T
νr

〉
.

(2)

The first term is an expansion over no-core shell-model
(NCSM) [14] eigenstates of the aggregate system |AJπT 〉
(either 11Be in the intial state or 11B in the final state) cal-
culated in a many-body harmonic oscillator (HO) basis. The
second term is an expansion over microscopic cluster channels
Âν |
Jπ T

νr 〉 which describe the clusters (either 10Be +n in the
initial state or 10Be +p in the final state) in relative motion:∣∣
Jπ T

νr

〉 = [( |10Be α1Iπ1
1 T1〉

∣∣N 1
2
+ 1

2

〉 )(sT )
Y�(r̂10,1)

](Jπ T )

× δ(r−r10,1)

rr10,1
, (3)

where |10Be α1Iπ1
1 T1〉 and |N 1

2
+ 1

2 〉 are the eigenstates of 10Be
and N , respectively, with N representing n for the initial
state (11Be) and p for the final state (11B). The cluster chan-
nels enable the description of scattering states as well as
weakly bound extended (halo) states in the NCSMC. The 10Be
eigenstate (also calculated within the NCSM) has angular mo-
mentum I1, parity π1, isospin T1, and energy label α1. Here r
denotes the distance between the clusters and ν is a collective
index of the relevant quantum numbers. The coefficients cJπ T

λ

and relative-motion amplitudes γ Jπ T
ν (r) are found by solving a

two-component, generalized Bloch Schrödinger equation de-
rived in detail in Ref. [13]. The Âν term is the intercluster
antisymmetrizer:

Âν =
√

(A − 1)!

A!

(
1 +

∑
P �=id

(−1)pP

)
,

where the sum runs over all possible permutations of nucleons
P (different from the identical one) that can be carried out
between the target cluster and the projectile, and p is the

number of interchanges characterizing them. The resulting
NCSMC equations are solved using the coupled-channel R-
matrix method on a Lagrange mesh [11,15].

We start from a microscopic Hamiltonian including the
nucleon-nucleon (NN) chiral interaction at next-to-next-to-
next-to-next-to leading order (N4LO) with a cutoff of =500
MeV developed by Entem et al. [16,17], denoted as NN-
N4LO(500). In addition to the two-body interaction, we
include a three-body (3N) interaction at next-to-next-to lead-
ing order (N2LO) with simultaneous local and nonlocal
regularization [18–21]. The whole interaction (two- and three-
body) is referred to as NN-N4LO(500) + 3Nlnl. A faster
convergence of our NCSMC calculations is obtained by soft-
ening the Hamiltonian through the similarity renormalization
group (SRG) technique [22–25]. The SRG unitary transfor-
mation induces many-body forces that we include up to the
three-body level. Four- and higher-body induced terms are
small at the λSRG = 1.8 fm−1 resolution scale used in the
present calculations [26]. Concerning the frequency of the
underlying HO basis, we choose h̄� = 18 MeV for which
the ground-state energies of the investigated nuclei present
minimum. For technical reasons, we are not able to reach basis
sizes beyond Nmax = 7 for 11B and 11Be.

We note that the present calculations are the first applica-
tion of the NCSMC approach to the description of β-decay
transitions. While the present calculation is implemented
solely for the GT operator, the formalism is also valid for the
Fermi (as well as the spin part of M1) one-body operator. We
are able to calculate the relevant matrix elements without ap-
proximations (as opposed to the radiative capture calculations
in, e.g., Ref. [26]) and evaluate the transition kernels [i.e., ma-
trix elements entering the integrals in Eq. (A1)] using a similar
technique applied to calculate Hamiltonian interaction/norm
kernels. See the Appendix for the full derivation of the NC-
SMC GT matrix element utilizing second quantization.

III. RESULTS

A. NCSMC calculations for 11Be and 11B

We start by performing NCSM calculations for 10,11Be and
11B. The obtained eigenvalues and eigenvectors serve as input
for the NCSMC. For the expansion in Eq. (2), we used the
10Be 0+ ground state and the first-excited 2+ state, the lowest
12 (10) positive-parity (negative-parity) eigenstates for 11Be,
and 20 (12) positive (negative) eigenstates for 11B with J
ranging from 1/2 to 11/2. We chose to include only the first
0+ and 2+ states of 10Be since a previous calculation of 11Be
showed that the inclusion of more 10Be had little impact on
the NCSMC results [27]. The number of 11Be NCSM states
included were chosen such that multiple 1/2+ and 1/2− states
could contribute to the ground and first-excited states in the
NCSMC calculation. As for the number of 11B NCSM states
included in the calculation, we wanted to calculate all three
1/2+ states in the NCSMC to investigate the proposed 1/2+
resonance. Furthermore, since we are looking for a resonance,
we included enough 11B states such that the excitation ener-
gies ranged up to about 7 MeV above the 10Be +p threshold.
The resulting NCSMC energy spectra of 11Be and 11B are
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FIG. 1. Calculated and experimental levels of 11Be. Only states
corresponding to experimentally bound states with respect to the
10Be +n threshold (horizontal red dashed line) are shown. The left
column shows the original ab initio NCSMC calculation in Nmax = 7
space. The phenomenological adjusted calculation is presented in the
middle column. See the text for details.

shown in Figs. 1 and 2, respectively. We present only states
corresponding to experimentally bound states with respect to
the 10Be +p (for 11B) and 10Be +n (for 11Be) thresholds.

The low-lying level ordering in 11Be is important because
the energies of the 1/2+ and 1/2− states are inverted com-
pared to what would be expected from a standard shell-model
picture. Our chosen interaction reproduces this parity inver-
sion in the resulting NCSMC levels, as can be seen in Fig. 1.
In previous NCSMC calculations using different interactions,
the parity inversion could be reproduced with the nonlocal
N2LOsat interaction [28] but not using interactions with local
3N [27]. Since the NN-N4LO(500) + 3Nlnl interaction repro-
duces this peculiarity of 11Be, we feel that (i) the nonlocality

FIG. 2. Calculated and experimental levels in 11B. Selected states
corresponding to experimentally bound states with respect to the
10Be +p threshold (horizontal red dashed line) are shown. The SRG
evolved NN-N4LO(500) + 3Nlnl interaction was used. The left col-
umn shows the original ab initio NCSMC calculation in Nmax = 7
space. The phenomenolgically adjusted calculation is presented in
the middle column. See the text for details. The isospin of all shown
states is T = 1/2.

of the 3N interaction is an important feature for the description
of exotic nuclei (i.e., it leads to a better reproduction of the
extended nuclear density) and (ii) the selected interaction is
appropriate for calculating the 11Be β decay. The present
description is still showing discrepancies with data as the
1/2+ state is less bound than in experiment and the experi-
mentally very weakly bound 1/2− state is obtained just above
the 10Be +n threshold.

The lowest negative-parity 11B levels are well reproduced
in our calculations with an underprediction of the splitting
between the 3/2− ground state and the 1/2− first-excited state,
indicating a weaker spin-orbit strength of the employed inter-
action. The lowest 5/2− and 7/2− states as well as the 3/2−

2
and 5/2−

2 states match well the experimental energies. The ex-
perimental 3/2−

3 state at 8.56 MeV (not shown in Fig. 2) with

0 1 2 3 4 5 6 7 8

0
50

100
150
200
250
300 Nmax = 7

(c)

1/2+, 3/2
)

1/2+, 1/2
)

1/2−, 3/2
)

3/2+, 1/2
)

0
50

100
150
200
250 Nmax = 7

(b)

1/2+, 3/2
)

1/2+, 1/2
)

1/2−, 3/2
)

−50

0

50

100

150
Nmax = 5(a)

1/2+, 3/2
)

1/2+, 1/2
)

1/2−, 3/2
)

Ec.m. [MeV]

δ
[d

eg
]

δ
[d

eg
]

δ
[d

eg
]

FIG. 3. NCSMC-calculated 10Be +p diagonal phase shifts. The
solid lines correspond to the 2S1/2 (or 2P1/2) channels while the
dashed and dotted curves correspond to the 4D1/2 and 6D1/2

channels, respectively. The vertical dashed line indicates the ex-
perimentally predicted location of the (1/2+, 1/2) resonance at
197 keV. (a) NCSMC-calculated phase shifts using Nmax = 5 basis
size. (b) NCSMC-calculated phase shifts using Nmax = 7 basis size.
(c) Phenomenologically adjusted, NCSMCpheno, phase shifts such
that the (1/2+, 1/2) resonance coincides with the experimentally
predicted resonance at 197 keV. The (3/2+, 1/2) resonance is the
result of shifting the degenerate states to the corresponding experi-
mental levels (see Fig. 2). See the text for details. Ec.m. is the kinetic
energy of 10Be +p in the center-of-mass frame.
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FIG. 4. NCSMC-calculated 10Be +p eigenphase shifts. The ver-
tical dashed line indicates the experimentally predicted location of
the (1/2+, 1/2) resonance at 197 keV. (a) NCSMC-calculated phase
shifts using Nmax = 5 basis size. (b) NCSMC-calculated phase shifts
using Nmax = 7 basis size. The solid lines correspond to the first
eigenphase shift while the dashed and dotted curves correspond to
the second and the third eigenphase shift, respectively. The sharp
resonance in the (1/2+, 1/2) solid line in panel (b) is not shifted by π

for clarity. Ec.m. is the kinetic energy of 10Be +p in the center-of-mass
frame.

a pronounced α-cluster structure is, however, overpredicted
in the present NCSMC calculations [29]. Similarly, the lowest
positive-parity states appear more than 2.5 MeV too high. This
is, in part, a consequence of the missing 7Li +α mass partition
in the calculations that we were not able to include for tech-
nical reasons. The 7Li +α threshold appears experimentally
2.56 MeV below the 10Be +p threshold. The focus of this
work is, in particular, on the T =1/2 1/2+ and 3/2+ states in
11B. As seen in Fig. 2, we obtain one T =1/2 1/2+ bound state
and the lowest 3/2+ state is just above the 10Be +p threshold.

In addition to bound-state energy spectra, the NCSMC
provides the low-energy phase shifts and eigenphase shifts for
the 10Be +p channel (see Figs. 3 and 4, respectively). To show
the effect of increasing the basis size, both the Nmax = 5 and
Nmax = 7 results are presented in Figs. 3(a) and 3(b), respec-
tively, and similarly for the eigenphase shifts in Fig. 4. The
(1/2−, 3/2) and (1/2+, 3/2) phase shifts, isobaric analogs of
the two bound states in 11Be, are plotted to emphasize the
parity inversion discussed in the previous paragraph. Both
the Nmax = 5 and Nmax = 7 calculations reproduce the parity
inversion in that the (1/2+, 3/2) resonance is lower in energy
than the (1/2−, 3/2) resonance. The separation between these
two resonances is more pronounced in the more converged
result of Nmax = 7 [see Fig. 3(b)].

Shifting focus to the (1/2+, 1/2) phase shifts, two res-
onances are present—one broad and one sharp. Thus, the
NCSMC supports the existence of a (1/2+, 1/2) resonance
in the 10Be +p system. However, the energy of either

TABLE I. NCSM spectroscopic factors calculated from the over-
lap between select 11B states and 10Be, 10B, and 7Li states. The
first column displays the Jπ of each considered T = 1/2 11B state.
Spectroscopic factors of the ground states of 10B and 10Be and the
first two (1+, 0) excited states of 10B are presented.

Jπ S(11B → 10Be) S(11B → 10B) S(11B → 7Li)
(0+, 1) (1+

1 , 0) (1+
2 , 0) (3/2+, 1/2)

1/2+
1 0.276 0.250 2 × 10−4 0.218

1/2+
2 0.0525 0.171 0.562 0.002

1/2+
3 0.067 0.231 0.188 0.011

3/2+
1 0.079 6 × 10−4 0.215 0.009

3/2+
2 4 × 10−4 0.581 0.002 0.012

3/2+
3 6 × 10−4 0.011 0.006 0.021

3/2+
4 0.067 0.034 0.35 0.006

resonance is higher than the experimental prediction of
197 keV. Furthermore, it is unclear which resonance should
correspond to the experimental prediction. To gain insight
in the structure of the 1/2+ states, we follow Ref. [30] to
calculate the overlap between the corresponding NCSM 11B
states and the 10Be ground state, the 10B (1+, 0) excited states,
and the 7Li ground state (see Table I). The first 1/2+ state
with the largest overlap with the 10Be ground state corre-
sponds to the bound state shown in Fig. 2, while the second
and third 1/2+ states, corresponding to the two (1/2+, 1/2)
resonances in Fig. 3, have comparably low overlaps. While
these proton spectroscopic factors do not distinguish between
the two resonances, the large 1/2+

2
10B overlap indicates

that its corresponding NCSMC resonance contains significant
single-neutron content. From this, it is clear that the sharp
resonance is caused by the lack of 10B 1+ channels and would
be broadened by their inclusion in the NCSMC calculation.
With the sharp resonance classified, the broad resonance must
therefore correspond to the 1/2+

3 NCSM state and be the
candidate for the experimentally measured proton resonance.

B. Phenomenologically adjusted NCSMC

With the resonance identified, the next step is to calculate
the branching ratio for the β decay from the 11Be ground
state to the 11B proton resonance. In order to better evaluate
how well this resonance explains the experimentally observed
branching ratio, we introduce a phenomenological shift to
the NCSMC calculation (see, e.g., Ref. [27]) resulting in the
calculated resonance lying at 197 keV [see Fig. 3(c)]. This
approach, dubbed NCSMCpheno, proceeds by using the 10Be,
11B, and 11Be NCSM eigenenergies as adjustable parameters
in the NCSMC equations. First, the 10Be 2+ excitation en-
ergy is set to its experimental value (a change from NCSM
calculated 3.48 MeV to experimental 3.37 MeV). We then
adjust only the 1/2+ and 3/2+ channels relevant for the β-
decay calculations. Consequently, there is almost no change
in energies of negative-parity states and the 5/2+ state in
Figs. 1 and 2, and in the T = 3/2 phase shift in Fig. 3(c).
The fact that the (1/2+, 1/2) resonances shift slightly more
than 1 MeV lower in energy when increasing the basis size
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TABLE II. B(GT) values from the ground state of 11Be to the
specified bound states of 11B. The first column displays the Jπ of
each considered T = 1/2 11B state. The NCSMCpheno approach was
applied. Both the NCSM and NCSMCpheno values were obtained at
Nmax = 7. Experimental values were obtained as branching ratios
from Ref. [4] and converted to B(GT) values (see text).

B(GT) NCSM NCSMCpheno Expt.

1/2+
1 0.341 0.277 0.004

3/2+
1 0.023 0.002 0.010

3/2+
2 2.92 0.286 0.228

3/2+
3 0.011 7 × 10−5 —

from Nmax = 5 to Nmax = 7 [compare Figs. 3(a) and 4(a) and
Figs. 3(b) and 4(b)] implies that a larger model space can bring
the resonance down further. Thus, this phenomenological shift
is emulating the effect of including more channels. In addition
to shifting the (1/2+, 1/2) resonance to 197 keV, we shift the
11B (3/2+, 1/2) levels as well as the 11Be ground state to its
experimental value (see Figs. 1 and 2). These phenomenolog-
ical shifts bring the NCSMC major shell splittings closer to
experimental values. A consequence of shifting the first two
(3/2+, 1/2) 11B levels is the emergence of a sharp resonance
(previously broad and higher in energy) just 573 keV above
threshold in Fig. 3. The location of this resonance is similar
to the predicted resonance at 262 keV in Ref. [31]. The au-
thors of Ref. [31] suggest that this could be the unassigned
resonance observed in Ref. [32].

C. 11Be β decay

We first calculate B(GT) for the β decay from the 11Be
ground state to the first bound (1/2+, 1/2) state in 11B. This
level is shifted to its experimental value as well (see Fig. 2).
The results are shown in Table II. Also shown in Table II
is the B(GT) calculated for the β decay to the three bound
(3/2+, 1/2) states. The third bound (3/2+, 1/2) state is a
result of phenomenologically shifting the first two levels to
their corresponding experimental values. To determine the
half-life from B(GT), we use [1]

f T p
1/2 = 6141

g2
AB(GT)

, (4)

where gA= − 1.27 is the GT coupling constant, f is a phase-
space factor determined by the Q value of the decay, and T p

1/2
is the half-life of the decay. The half-life of the decay can be
used to calculate the corresponding branching ratio using the
following expression:

bp = T
11Be

1/2

T p
1/2

, (5)

where T
11Be

1/2 = 13.8 s is the half-life of the 11Be nucleus.
Using Eqs. (4) and (5), the experimental branching ratios (see
Ref. [4]) were converted to the B(GT) values in Table II. It is
clear from Table II that the inclusion of the proton and neu-
tron channels in the NCSMC improves the calculated B(GT)
values over the NCSM results.
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FIG. 5. Energy-dependent BGT(E ) calculated from the ground
state of 11Be to the (1/2+, 1/2) proton continuum of 11B using the
NCSMC.

The transition strength to the 1/2+
1 state is unexpectedly

large compared to the experimental strength. This is indicative
of the mixing of strength between the bound 1/2+

1 state and
the resonance in question. It is also worth noting that the
overlap between the 1/2+

1 state and both the 7Li +α ground
and the 10B +n (1+

1 , 0) states is significant (see Table I). Thus,
the inclusion of these channels in the NCSMC calculation
could address this discrepancy. The NCSMCpheno calculations
of the experimentally strong transition to the 3/2+

2 state show
great improvement over the NCSM calculations. The cause
of the enhanced NCSM B(GT) value can be attributed to
the large overlap with the 10B +n (11, 0) state (see Table I).
With the inclusion of the 10Be +n channel in the NCSMC
calculation, the halo structure of 11Be is reproduced and has
a small overlap with the 11B 3/2+

2 state, thus suppressing the
NCSMC B(GT).

The calculation of the branching ratio for the β decay to the
(1/2+, 1/2) resonance is more involved since the final state in
Eq. (1) is an energy-dependent scattering wave function. The
scattering wave function is calculated in k-space (using the
same same convention from Ref. [13]), and thus the matrix
element in Eq. (1) must be evaluated with a volume integral in
k-space,

B(GT) = 4π

∫ kmax

kmin

dkk2BGT(k), (6)

where kmin and kmax are chosen to isolate the location of the
resonance. In order to calculate the branching ratio for this
process, BGT(k) must be folded with the energy-dependent
phase-space factor f . Thus, we first transform Eq. (6) to
energy space such that

B(GT ) =
∫ Emax

Emin

dEBGT(E ), (7)

where

BGT(E ) := 4πμk

h̄2 BGT(k)

and k =
√

2μE
h̄ , with μ being the reduced mass. The energy-

dependent BGT(E ) is shown in Fig. 5, where it displays a
prominent peak at the resonance energy of 197 keV. The sharp
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TABLE III. B(GT) β-decay values for the transition from the ground state of 11Be to the 10Be +p resonance. The NCSM results correspond
to the (1/2+

3 , 1/2) state. The experimental values are those presented in Ref. [6].

(1/2+, 1/2) Nmax = 5 Nmax = 7 Expt.

NCSM NCSMCpheno NCSM NCSMCpheno

B(GT) 1.95 0.325 1.39 0.565 5.58.3
3.3

bp — 7.4 × 10−7 — 1.3 × 10−6 1.3(3) × 10−5

peak in BGT(E ) is a visual representation of how a resonance
can enhance the β-decay transition rate to the continuum.
The Q value at a given energy can be expressed as Q =
Q0 − E , where Q0 = 0.281 MeV is the Q value evaluated at
the 10Be +p threshold. The branching ratio of the β decay to
the resonance can be calculated by combining Eqs. (4), (5),
and (7) in the following way:

bp = T
11Be

1/2 g2
A

6141

∫ Emax

Emin

dEBGT(E ) f (Q0 − E ). (8)

Using Eq. (8), we integrate BGT(E ) over the energy range
shown in Fig. 5, resulting in the values shown in Table III.
The NCSMC B(GT) value reported in Table III is calculated
as B(GT) = ∫ dEBGT(E ). Although the calculated branching
ratio, bp = (1.3 ± 0.5) × 10−6, is lower than the two exper-
imental observations [5,6], it is consistent when taking into
account that the nonresonant decay branching ratio calculated
in Ref. [2] is 2 orders of magnitude smaller. The uncertainty
is estimated by comparing the NCSMCpheno results using
Nmax = 5 and Nmax = 7. To verify that we shifted the correct
resonance, we also calculated B(GT) = 0.0483 for the tran-
sition to the (1/2+, 1/2) resonance located around 1 MeV in
Fig. 3(c). This weak transition strength confirms that we have
chosen the correct candidate. We also investigate the sharp
(3/2+, 1/2) resonance in Fig. 3(c) as it was suggested as a
candidate for the large branching ratio [6]. While there is a
non-negligible overlap between 3/2+

4 and 10Be +p (see Ta-
ble I), we calculate that B(GT) = 0.001 31 for this particular
resonance. This is contrary to the large B(GT) empirically cal-
culated for this resonance in Ref. [31]. It is also worth noting
that the α spectroscopic factors for the 1/22 and 1/23 states
in Table I are significantly smaller than those calculated in
the shell-model calculations in Ref. [3]. The smaller spectro-
scopic factors indicate that the proton-decay channel will not
have as much competition with the α-decay channel as was
indicated in Ref. [3]. With these considerations, we conclude
that the large observed branching is due to the existence of
this (1/2+, 1/2) 10Be +p resonance.

IV. CONCLUSIONS

Using the ab initio NCSMC, we investigated the bound
energy levels and low-lying resonances in both 11Be and
11B. The two- and three-body interactions, NN-N4LO(500) +
3Nlnl, produce realistic energy spectra in both 11Be and 11B.
The experimentally observed parity inversion in 11Be is re-
produced. We identified two (1/2+, 1/2) resonances in the
10Be +p continuum and determined that the broad resonance
dominated by the 1/2+

3 NCSM state is the candidate reso-

nance. The location of the resonance is several MeV higher
than the experimentally predicted location of 197 keV, al-
though its position decreases dramatically with the increasing
basis size. In order to determine if this resonance can explain
the large branching ratio observed by experiment, we phe-
nomenologically shifted the NCSMC resonance to 197 keV.

With the resonance determined, we developed the pro-
cedure to calculate B(GT) fully within the NCSMC. The
Appendix contains the relevant derivations. We then extended
the calculation to the continuum by deriving the necessary
expressions to calculate the branching ratio for the decay
to a resonance state (in the 10Be +p continuum). The re-
sulting branching ratio for the β decay to the candidate
(1/2+, 1/2) resonance is bp = (1.3 ± 0.5) × 10−6. This cal-
culated branching ratio is consistent with both experimental
branching ratios reported in Refs. [5,6], taking into account
that the nonresonant decay branching ratio is 2 orders of
magnitude smaller. Furthermore, we calculate a small B(GT)
for the nearby (3/2+, 1/2) resonance which further reinforces
our conclusions.

The present calculations can be further improved by in-
cluding the 7Li +α and 10B +n mass partitions. The former
would particularly impact the description of the 1/2+

1 bound
state and presumably redistribute some of the B(GT) strength
from the bound state to the (1/2+, 1/2) resonance. Work
in this direction is under way; see Ref. [33] for the latest
developments regarding the inclusion of α clustering in the
NCSMC.
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APPENDIX: DERIVATION OF B(GT) IN THE NCSMC

To calculate B(GT), the reduced matrix element of the GT
operator is calculated with NCSMC initial and final states. We
derive this reduced matrix element for a general coordinate-
independent one-body operator, O(κτ )

μτ
, with κ and τ being the

spin and isospin ranks, respectively, and μτ being the isospin
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projection, e.g., GT, Fermi, or spin part of the M1 operator.
The GT operator corresponds to the case where κ = 1, τ = 1,
and μτ = +1. Inserting the form of the NCSMC wave func-
tion [Eqs. (2) and (3)] in Eq. (1) leads to four contributions:

〈
�

J
π f
f Tf

f MTf

∥∥ Ô(κτ )
μτ

∥∥�
J

πi
i Ti

i MTi

〉
=
∑
λiλ f

c̃∗
λ f

c̃λi〈Aλ f J f Tf MTf ‖ Ô(κτ )
μτ

‖ AλiJiTiMTi〉

+
∑
λ f νi

c̃∗
λ f

∫ ∞

0
drr2χ̃νi (r)

1

r

× 〈
Aλ f J f Tf MTf

∥∥ Ô(κτ )
μτ

Âνi

∥∥

JiTiMTi
νir

〉
+
∑
λiν f

c̃λi

∫ ∞

0
drr2χ̃∗

ν f
(r)

1

r

× 〈



Jf Tf MTf
ν f r

∥∥ Âν f Ô(κτ )
μτ

∥∥AλiJiTiMTi

〉
+
∑
ν f νi

∫ ∞

0
dr′r′2χ̃∗

ν f
(r′)

1

r′

∫ ∞

0
drr2χ̃νi (r)

1

r

× 〈



Jf Tf MTf

ν f r′
∥∥ Âν f Ô(κτ )

μτ
Âνi

∥∥

JiTiMTi
νir

〉
. (A1)

The expansion coefficients c̃ and χ̃ (r) can be related to the ex-
pansion (2) and NCSMC norm kernels according to Eqs. (20),
(32), and (33) in Ref. [11]. We note that the JπT MT quantum
number dependence of these coefficients is not displayed to
simplify the notation. Similarly, we omit the parity quantum
number in most of the states. In the present case, A = 11. We
also note that matrix element (A1) is reduced only in spin
space, not isospin space.

In order to proceed with the derivation, all contributions
from localized terms are calculated in a HO basis and then
converted to coordinate space with the following relation [34]:∣∣
JT MT

νr

〉 =∑
n

∣∣
JT MT
νn

〉
Rn�(r), (A2)

where Rnl (r) are radial HO functions and∣∣
JT MT
νn

〉 = [( |10Be α1Iπ1
1 T1〉

∣∣N 1
2
+ 1

2

〉 )(sT )

× Y�(r̂10,1)
](Jπ T )

MT
Rn�(r10,1), (A3)

with N representing p for 11B and n for 11Be. See also the
discussion in Sec. II C 1 in Ref. [34].

The process to calculate each of the terms in Eq. (A1)
is analogous to the procedure for calculating the norm and
Hamiltonian kernels for the NCSMC [13]. The first term in
Eq. (A1) involves NCSM matrix elements of Ô(κτ )

μτ
calculated

using standard second-quantization techniques. The second
and third terms are analogous to the coupling kernels when
solving the NCSMC Hamiltonian equations [13]. In order
to continue, we represent the operator in a second-quantized
form:

Ô(κτ )
μκμτ

=
(−1

κ̂

)∑〈
ja

1

2
mta

∥∥∥∥ Ô(κτ )
μτ

∥∥∥∥ jb
1

2
mtb

〉

× â†
jama

1
2 mta

ã jbmb
1
2 mtb

〈 jama jbmb | κμκ〉,
with ã jm 1

2 mt
=(−1) j−maj −m 1

2 mt
. To expand this term, we also

represent the cluster wave function in a second-quantized
form (see Sec. II D 2 of Ref. [34] and Sec. II A of Ref. [35]):

Âν

∣∣
JiMiTiMTi
νn

〉
SD =

∑
(−1)I1+Ji+ j ŝ ĵ

{
I1

1
2 s

� Ji j

}

× 〈I1M1 jm | JiMi〉
〈
T1MT1

1

2
mt

∣∣∣∣TiMTi

〉

× â†
n� jm 1

2 mt
|10Be α1I1M1T1MT1〉SD ,

(A4)

where |10Be α1I1M1T1MT1〉SD is an NCSM state of the (A−1)
system 10Be expanded in the HO Slater determinant (SD)
basis, {I1 I2 s

� Ji j} is the standard Wigner 6 j-symbol [36], and

x̂ denotes
√

2x + 1. The nl HO quantum numbers in the nl j
single-particle states are omitted from now on for simplicity.
The relationship between the SD eigenstates entering Eq. (A4)
and the relative coordinate eigenstates in Eqs. (3) and (A3) is
given by

|10Be α1I1M1T1MT1〉SD = |10Be α1I1M1T1MT1〉ϕ00
( �R(10)

c.m.

)
,

(A5)

with �R(10)
c.m. being the c.m. coordinate of 10Be and ϕ00 being the

HO wave function of the c.m. motion. Using Eq. (A4), the
coupling term becomes

SD
〈
AλJf Tf MTf

∥∥ Ô(κτ )
μτ

Âν

∥∥

JiTiMTi
νn

〉
SD

=
∑

(−1)1+κ+Jf −Ji Ĵi ŝ ĵ

{
I1 j Ji

κ Jf ja

}{
I1

1
2 s

� Ji j

}〈
T1MT1

1

2
mt

∣∣∣∣ TiMTi

〉

×
〈

ja
1

2
mta

∥∥∥∥ Ô(κτ )
μτ

∥∥∥∥ j
1

2
mt

〉
SD〈AλJf Tf MTf ‖ â†

ja
1
2 mta

‖ A−1 α1I1T1MT1〉SD

+
∑

(−1)Jf −J1+J2+ jb+κ−Ji ŝ ĵĴiĴ1Ĵ2

{
ja jb κ

J1 j J2

}{
I1 j Ji

κ Jf J1

}{
I1

1
2 s

� Ji j

}〈
T1MT1

1

2
mt

∣∣∣∣TiMTi

〉

×
〈

ja
1

2
mta

∥∥∥∥ Ô(κτ )
μτ

∥∥∥∥ jb
1

2
mtb

〉
SD〈AλJf Tf MTf ‖

[(
â†

ja
1
2 mta

â†
j 1

2 mt

)(J2 )
ã jb

1
2 mtb

](J1 )

‖ A−1 α1I1T1MT1〉SD, (A6)
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where 〈â†
ja

1
2 mta

〉 and 〈[(â†
ja

1
2 mta

â†
j 1

2 mt
)(J2 )ã jb

1
2 mtb

](J1 )〉 are one-particle and two-particle–one-hole transition matrices between the

composite and the target (here 11B and 10Be) NCSM wave functions. Similarly as for the target eigenstates (A5), the composite
system (11Be or 11B) eigenstates expanded in the HO SD basis are related to the relative coordinate eigenstates appearing in
Eq. (A1) by

|AλJT MT 〉SD = |AλJT MT 〉ϕ00(�ξ0),

with �ξ0 being the c.m. coordinate of the composite A-nucleon system and ϕ00 being the HO wave function of the c.m. motion.
See also the Appendix of Ref. [11] and Ref. [35]. The third term in Eq. (A1) is calculated by taking advantage of the following
relation:

SD
〈
Aλ f J f Tf MTf

∥∥ Ô(κτ )
μτ

Âν

∥∥

JiTiMTi
νn

〉
SD = (−1)Jf −Ji

SD
〈



JiTiMTi
νn

∥∥ [Ô(κτ )
μτ

Âν

]† ∥∥Aλ f J f Tf MTf

〉
SD. (A7)

Thus, Eq. (A6) is sufficient for both coupling terms in Eq. (A1).
The last term in Eq. (A1) is derived using a similar procedure:

SD
〈



Jf Tf MTf

ν ′n′
∥∥ Âν ′Ô(κτ )

μτ
Âν

∥∥

JiTiMTi
νn

〉
SD

= δα1α
′
1
δI1I ′

1
δT1T ′

1
δMT1 M ′

T1
Ĵ f Ĵi ŝŝ′

×
∑

ĵ ĵ′(−1)I1+κ+Ji+ j′
{

I1 j Ji

κ Jf j′

}{
I1

1
2 s

� Ji j

}{
I1

1
2 s′

�′ Jf j′

}

×
〈

j′
1

2
m′

t

∥∥∥∥ Ô(κτ )
μτ

∥∥∥∥ j
1

2
mt

〉〈
T1MT1

1

2
mt

∣∣∣∣TiMTi

〉〈
T1MT1

1

2
m′

t

∣∣∣∣Tf MTf

〉

−
∑

ŝŝ′ ĵ ĵ′Ĵ f ĴiĴ2Ĵ3Ĵ4(−1) j′+ ja+κ+J3+ jb+I1−Jf

{
I1

1
2 s

� Ji j

}{
I ′
1

1
2 s′

�′ Jf j′

}⎧⎪⎨
⎪⎩

− j I1 Ji

j′ − I ′
1 Jf

jb ja − κ

J4 J2 J3 −

⎫⎪⎬
⎪⎭

× SD〈A−1 α′
1I ′

1T ′
1 M ′

T1
‖
[(

â†
ja

1
2 mta

â†
j 1

2 mt

)(J2 )(
ã j′ 1

2 m′
t
ã jb

1
2 mtb

)(J4 )
](J3 )

‖ A−1 α1I1T1MT1〉SD

×
〈

ja
1

2
mta

∥∥∥∥ Ô(κτ )
μτ

∥∥∥∥ jb
1

2
mtb

〉〈
T ′

1 M ′
T1

1

2
m′

t

∣∣∣∣Tf MTf

〉〈
T1MT1

1

2
mt

∣∣∣∣TiMTi

〉

−
∑

ŝŝ′ ĵ ĵ′Ĵ f ĴiĴ2(−1) ja+ j′+I1+I ′
1+κ+Ji+Jf

{
I1

1
2 s

� Ji j

}{
I ′
1

1
2 s′

�′ Jf j′

}{
ja j κ

Ji Jf I1

}{
I1 ja Jf

j′ I ′
1 J2

}

×
〈

ja
1

2
mta

∥∥∥∥ Ô(κτ )
μτ

∥∥∥∥ j
1

2
mt

〉
SD

〈A−1 α′
1I ′

1T ′
1 M ′

T1
‖
(

â†
ja

1
2 mta

ã j′ 1
2 m′

t

)(J2 )
‖ A−1 α1I1T1MT1〉SD

× 〈T1MT1tm | TiMTi〉
〈
T ′

1 M ′
T1

1

2
m′

t

∣∣∣∣Tf MTf

〉

−
∑

ĵ ĵ′ŝŝ′Ĵ f ĴiĴ1(−1) jb− j′−κ+1

{
I1

1
2 s

� Ji j

}{
I ′
1

1
2 s′

�′ Jf j′

}{
I1 j Ji

jb I ′
1 J1

}{
j′ jb κ

Ji Jf I ′
1

}

×
〈

j′
1

2
mt ′

∥∥∥∥ Ô(κτ )
μτ

∥∥∥∥ jb
1

2
mtb

〉
SD

〈A−1 α′
1I ′

1T ′
1 M ′

T1
‖
(

â†
j 1

2 mt
ã jb

1
2 mtb

)(J1 )
‖ A−1 α1I1T1MT1〉SD

×
〈
T1MT1

1

2
mt

∣∣∣∣ TiMTi

〉〈
T ′

1 M ′
T1

1

2
m′

t

∣∣∣∣Tf MTf

〉

+ δnn′δ��′
ŝŝ′Ĵ f Ĵi

κ̂
(−1)I ′

1+l− 1
2 +Ji+s+s′

{
s′ s κ

I1 I ′
1

1
2

}{
s′ s κ

Ji Jf �

}∑〈
ja

1

2
mta

∥∥∥∥ Ô(κτ )
μτ

∥∥∥∥ jb
1

2
mtb

〉

× SD〈A−1 α′
1I ′

1T ′
1 M ′

T1
‖
[
â†

ja
1
2 mta

ã jb
1
2 mtb

](κ )
‖ A−1 α1I1T1MT1〉SD

×
〈
T1MT1

1

2
mt

∣∣∣∣TiMTi

〉〈
T ′

1 M ′
T1

1

2
mt

∣∣∣∣ Tf MTf

〉
, (A8)
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where 〈[(â†
ja

1
2 mta

â†
j 1

2 mt
)(J2 )(ã j′ 1

2 m′
t
ã jb

1
2 mtb

)(J4 )](J3 )〉, 〈(â†
ja

1
2 mta

ã j′ 1
2 m′

t
)(J2 )〉, 〈(â†

j 1
2 mt

ã jb
1
2 mtb

)(J1 )〉, and 〈(â†
ja

1
2 mta

ã jb
1
2 mtb

)(κ )〉 are two- and

one-body density matrices between the target (here 10Be) NCSM wave functions. The 12 j symbol is the 12 j(II) definition
in Ref. [37].

The reduced matrix elements in Eqs. (A6), (A7), and (A8) are in the SD basis, and thus they are not translationally invariant
since they contain the spurious motion of the (A−1)-nucleon cluster center of mass. Before transforming from the SD space to
coordinate space, these matrix elements must be made translationally invariant. The procedure to remove this spurious motion
in Ref. [34] is generalized here to be applicable to operators of nonzero order. The SD-cluster wave function is related to the
invariant-cluster wave function in the following way:

∣∣
Jπ T
νn

〉
SD =

∑
nr�r NLJr

�̂Ĵr (−1)s+�r+L+J

{
s �r Jr

L J �

}
〈nr�rNL�|00n��〉 a

A−a

[∣∣
Jπr
r T

νr nr

〉
φNL(�ξ0)

](Jπ T )
, (A9)

where 〈nr�rNL�|00n��〉 a
A−a

is a generalized HO bracket for two particles with mass ratio d = a
A−a [38]. In the present case

of a single-nucleon projectile, a = 1. Using Eq. (A9), the translationally invariant reduced matrix element can be extracted by
inverting the following expression:

SD
〈



J ′π T ′M ′
T

ν ′n′
∥∥ Âν ′Ô(κτ )

μτ
Âν

∥∥
Jπ T MT
νn

〉
SD =

∑
NLnr�r Jr n′

r�
′
r J ′

r

(−1)s+�r+s′+�′
r+J ′−J ′

r+κ+LĴĴ ′�̂�̂′Ĵr Ĵ ′
r

{
κ Jr J ′

r
L J ′ J

}

×
{

s �r Jr

L J �

}{
s′ �′

r J ′
r

L J ′ �′

}
〈nr�rNL�|00n��〉 a

A−a
〈n′

r�
′
rNL�′|00n′�′�′〉 a

A−a

× 〈



J ′πr
r T ′M ′

T
ν ′

r n′
r

∥∥ Âν ′
r
Ô(κτ )

μτ
Âνr

∥∥
Jπr
r T MT

νr nr

〉
. (A10)

Equation (A10) is a generalization of Eq. (32) in Ref. [34].
The removal of the spurious c.m. motion from the coupling matrix elements is still more straightforward. Following

Refs. [11,30], we find

SD
〈
AλJf Tf MTf

∥∥ Ô(κτ )
μτ

Âν

∥∥

JiTiMTi
νn

〉
SD = 〈n�00�|00n��〉 a

A−a

〈
AλJf Tf MTf

∥∥ Ô(κτ )
μτ

Âν

∥∥

JiTiMTi
νn

〉
, (A11)

with a generalized HO bracket due to the c.m. motion, value of which is simply given by

〈n��00�|00n��〉 a
A−a

= (−1)�
(A − a

A

) 2n+�
2

.

After removing the spurious c.m. motion using either Eq. (A10) or Eq. (A11), the conversion of the matrix elements to
coordinate space using Eq. (A2) is straightforward with the exception of the first term in Eq. (A8). The first term in Eq. (A8) is
completely contracted; thus it contains the Kronecker delta δnn′ . The Kronecker delta would analytically convert to a Dirac delta
δ(r − r′) using Eq. (A2) assuming an infinitely large basis size. Of course, in practice the HO basis is finite, so Eq. (A2) will not
properly transform the Kronecker delta from the first term in Eq. (A8). To account for this, we first split the operator between
the target and the projectile:

ÔA = Ô(A−1) + Ô1.

By splitting the operator, we can insert complete sets over the target and the projectile NCSM states (note that in the rest of this
section we omit isospin quantum numbers for simplicity):〈



Jf

ν ′r′
∣∣ Âν ′Ô(κ )Âν

∣∣
Ji
νr

〉 =∑〈



Jf

ν ′r′
∣∣ Âν ′Âν

∣∣A−1 α1I1
〉〈A−1 α1I1 | Ô(κ )

(A−1)

∣∣
Ji
νr

〉+∑〈



Jf

ν ′r′
∣∣ Âν ′Âν

∣∣α2I2
〉〈
α2I2

∣∣ Ô(κ )
(1)

∣∣
Ji
νr

〉
.

After substituting Eq. (A4) and performing some angular momentum recoupling, the expression becomes

〈



Jf

ν ′r′
∥∥ Âν ′Ô(κ )Âν

∥∥
Ji
νr

〉 = ĴiĴ f

∑
ŝŝ′
{

κ I ′
1 I1

I2 s s′

}{
κ s′ s
� Ji Jf

}
(−1)Ji+�+s′−s−I2−I ′

1

× 〈



Jf

ν ′r′
∣∣ Âν ′Âν̄

∣∣
Jf

ν̄r

〉〈A−1 α′
1I ′

1 ‖ Ô(κ
(A−1) ‖ A−1 α1I1〉

+ ĴiĴ f

∑
ŝŝ′
{

κ I ′
2 I2

I1 s s′

}{
κ s′ s
� Ji Jf

}
(−1)Ji+�−I2−I1

× 〈
Jf

ν ′r′
∣∣ Âν ′Âν̃

∣∣
Jf

ν̃r

〉〈
α′

2I ′
2

∥∥ Ô(κτ )
(1)

∥∥α2I2
〉
, (A12)

with the projectile states |α2I2T2MT2〉 representing either a proton or a neutron with α2 ≡ 1 and I2 = 1/2. The cumulative
quantum numbers ν̄ and ν̃ represent (A−1α′

1I ′
1α2I2s′�) and (A−1α1I1α

′
2I ′

2s′�), respectively. The matrix elements of Âν ′Âν̄ are
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defined as the norm kernels in Ref. [13]:

N Jf

ν ′ ν̄ (r′, r) = 〈
Jf

ν ′r′
∣∣ Âν ′Âν̄

∣∣
Jf

ν̄r

〉
= δν ′ ν̄

δ(r′ − r)

r′r
+
∑
nn′

Rn′�′ (r′)
[
N

Jf

ν ′n′ ν̄n − δν ′ ν̄ δn′n
]
Rn�(r), (A13)

where N
Jf

ν ′n′ ν̄n = 〈
Jf

ν ′n′ | Âν ′Âν̄ | 
Jf

ν̄n〉 is the norm kernel in HO space. The coordinate-space norm kernel defined in Eq. (A13) is
written to explicitly treat the δ-term in coordinate space and subtract the completely contracted part from the HO-space norm
kernel. Using this expression, Eq. (A12) becomes

〈



Jf

ν ′r′
∥∥ Âν ′Ô(κ )Âν

∥∥
Ji
νr

〉 = ĴiĴ f

∑
ŝŝ′
{

κ I ′
1 I1

I2 s s′

}{
κ s′ s
� Ji Jf

}
(−1)Ji+�+s′−s−I2−I ′

1

× δν ′ ν̄
δ(r′ − r)

r′r
〈
A−1 α′

1I ′
1 ‖ Ô(κ )

(A−1) ‖ A−1 α1I1
〉

+ ĴiĴ f

∑
ŝŝ′
{

κ I ′
2 I2

I1 s s′

}{
κ s′ s
� Ji Jf

}
(−1)Ji+�−I2−I1δν ′ ν̃

δ(r′ − r)

r′r
〈α′

2I ′
2 ‖ Ô(κ )

(1) ‖α2I2〉

+
∑
nn′

Rn′�′ (r′)
〈



Jf

ν ′n′
∥∥ Âν ′[Ô(κ ) − 1]Âν

∥∥
Ji
νn

〉
Rn�(r). (A14)

The HO matrix element in the last line of Eq. (A14), 〈
Jf

ν ′n′ ‖ Âν ′ [Ô(κ ) − 1]Âν ‖
Ji
νn〉, corresponds to Eq. (A8) (after removing

the c.m. motion) with the completely contracted term omitted.

[1] A. Bohr and B. R. Mottelson, Nuclear Structure: Volume I
(World Scientific, Singapore, 1997).

[2] D. Baye and E. Tursunov, Phys. Lett. B 696, 464 (2011).
[3] A. Volya, Europhys. Lett. 130, 12001 (2020).
[4] D. J. Millener, D. E. Alburger, E. K. Warburton, and D. H.

Wilkinson, Phys. Rev. C 26, 1167 (1982).
[5] K. Riisager, O. Forstner, M. Borge, J. Briz, M. Carmona-

Gallardo, L. Fraile, H. Fynbo, T. Giles, A. Gottberg, A. Heinz,
J. Johansen, B. Jonson, J. Kurcewicz, M. Lund, T. Nilsson, G.
Nyman, E. Rapisarda, P. Steier, O. Tengblad, R. Thies, and S.
Winkler, Phys. Lett. B 732, 305 (2014).

[6] Y. Ayyad, B. Olaizola, W. Mittig, G. Potel, V. Zelevinsky, M.
Horoi, S. Beceiro-Novo, M. Alcorta, C. Andreoiu, T. Ahn,
M. Anholm, L. Atar, A. Babu, D. Bazin, N. Bernier, S. S.
Bhattacharjee, M. Bowry, R. Caballero-Folch, M. Cortesi, C.
Dalitz et al., Phys. Rev. Lett. 123, 082501 (2019).

[7] Y. Ayyad, B. Olaizola, W. Mittig, G. Potel, V. Zelevinsky, M.
Horoi, S. Beceiro-Novo, M. Alcorta, C. Andreoiu, T. Ahn,
M. Anholm, L. Atar, A. Babu, D. Bazin, N. Bernier, S. S.
Bhattacharjee, M. Bowry, R. Caballero-Folch, M. Cortesi, C.
Dalitz et al., Phys. Rev. Lett. 124, 129902(E) (2020).

[8] J. Okolowicz, M. Ploszajczak, and W. Nazarewicz,
arXiv:2112.05622.

[9] W. Elkamhawy, Z. Yang, H.-W. Hammer, and L. Platter, Phys.
Lett. B 821, 136610 (2021).

[10] S. Baroni, P. Navrátil, and S. Quaglioni, Phys. Rev. Lett. 110,
022505 (2013).

[11] S. Baroni, P. Navrátil, and S. Quaglioni, Phys. Rev. C 87,
034326 (2013).

[12] G. Hupin, S. Quaglioni, and P. Navrátil, Phys. Rev. C 90,
061601(R) (2014).

[13] P. Navrátil, S. Quaglioni, G. Hupin, C. Romero-Redondo, and
A. Calci, Phys. Scr. 91, 053002 (2016).

[14] B. R. Barrett, P. Navrátil, and J. P. Vary, Prog. Part. Nucl. Phys.
69, 131 (2013).

[15] P. Descouvemont and D. Baye, Rep. Prog. Phys. 73, 036301
(2010).

[16] D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev.
C 91, 014002 (2015).

[17] D. R. Entem, R. Machleidt, and Y. Nosyk, Phys. Rev. C 96,
024004 (2017).

[18] P. Navratil, Few-Body Syst. 41, 117 (2007).
[19] M. Gennari, M. Vorabbi, A. Calci, and P. Navrátil, Phys. Rev. C

97, 034619 (2018).
[20] P. Gysbers, G. Hagen, J. D. Holt, G. R. Jansen, T. D. Morris,

P. Navrátil, T. Papenbrock, S. Quaglioni, A. Schwenk, S. R.
Stroberg, and K. A. Wendt, Nat. Phys. 15, 428 (2019).

[21] V. Somà, P. Navrátil, F. Raimondi, C. Barbieri, and T. Duguet,
Phys. Rev. C 101, 014318 (2020).

[22] F. Wegner, Ann. Phys. 506, 77 (1994).
[23] S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Phys. Rev. C 75,

061001(R) (2007).
[24] R. Roth, S. Reinhardt, and H. Hergert, Phys. Rev. C 77, 064003

(2008).
[25] E. D. Jurgenson, P. Navrátil, and R. J. Furnstahl, Phys. Rev. Lett.

103, 082501 (2009).
[26] C. McCracken, P. Navrátil, A. McCoy, S. Quaglioni, and G.

Hupin, Phys. Rev. C 103, 035801 (2021).
[27] A. Calci, P. Navrátil, R. Roth, J. Dohet-Eraly, S. Quaglioni, and

G. Hupin, Phys. Rev. Lett. 117, 242501 (2016).
[28] A. Ekström, G. R. Jansen, K. A. Wendt, G. Hagen, T.

Papenbrock, B. D. Carlsson, C. Forssén, M. Hjorth-Jensen,
P. Navrátil, and W. Nazarewicz, Phys. Rev. C 91, 051301(R)
(2015).

[29] T. Kawabata, H. Akimune, H. Fujita, Y. Fujita, M. Fujiwara,
K. Hara, K. Hatanaka, M. Itoh, Y. Kanada-En’yo, S. Kishi,

054316-10

https://doi.org/10.1016/j.physletb.2010.12.069
https://doi.org/10.1209/0295-5075/130/12001
https://doi.org/10.1103/PhysRevC.26.1167
https://doi.org/10.1016/j.physletb.2014.03.062
https://doi.org/10.1103/PhysRevLett.123.082501
https://doi.org/10.1103/PhysRevLett.124.129902
http://arxiv.org/abs/arXiv:2112.05622
https://doi.org/10.1016/j.physletb.2021.136610
https://doi.org/10.1103/PhysRevLett.110.022505
https://doi.org/10.1103/PhysRevC.87.034326
https://doi.org/10.1103/PhysRevC.90.061601
https://doi.org/10.1088/0031-8949/91/5/053002
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1088/0034-4885/73/3/036301
https://doi.org/10.1103/PhysRevC.91.014002
https://doi.org/10.1103/PhysRevC.96.024004
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1103/PhysRevC.97.034619
https://doi.org/10.1038/s41567-019-0450-7
https://doi.org/10.1103/PhysRevC.101.014318
https://doi.org/10.1002/andp.19945060203
https://doi.org/10.1103/PhysRevC.75.061001
https://doi.org/10.1103/PhysRevC.77.064003
https://doi.org/10.1103/PhysRevLett.103.082501
https://doi.org/10.1103/PhysRevC.103.035801
https://doi.org/10.1103/PhysRevLett.117.242501
https://doi.org/10.1103/PhysRevC.91.051301


AB INITIO CALCULATION OF THE β … PHYSICAL REVIEW C 105, 054316 (2022)

K. Nakanishi, H. Sakaguchi, Y. Shimbara, A. Tamii, S.
Terashima, M. Uchida, T. Wakasa, Y. Yasuda, H. Yoshida, and
M. Yosoi, Phys. Lett. B 646, 6 (2007).

[30] P. Navrátil, Phys. Rev. C 70, 054324 (2004).
[31] J. Refsgaard, J. Büscher, A. Arokiaraj, H. O. U. Fynbo, R.

Raabe, and K. Riisager, Phys. Rev. C 99, 044316 (2019).
[32] J. Kelley, E. Kwan, J. Purcell, C. Sheu, and H. Weller, Nucl.

Phys. A 880, 88 (2012).
[33] K. Kravvaris, S. Quaglioni, G. Hupin, and P. Navratil,

arXiv:2012.00228.

[34] S. Quaglioni and P. Navrátil, Phys. Rev. C 79, 044606
(2009).

[35] G. Hupin, J. Langhammer, P. Navrátil, S. Quaglioni, A. Calci,
and R. Roth, Phys. Rev. C 88, 054622 (2013).

[36] K. Gottfried and T.-M. Yan, Quantum Mechanics: Fundamen-
tals (Springer, New York, 2004).

[37] D. A. Varshalovich, A. N. Mokalev, and V. K. Khersonskij,
Quantum Theory of Angular Momentum (World Scientific,
Singapore, 1988).

[38] L. Trlifaj, Phys. Rev. C 5, 1534 (1972).

054316-11

https://doi.org/10.1016/j.physletb.2006.11.079
https://doi.org/10.1103/PhysRevC.70.054324
https://doi.org/10.1103/PhysRevC.99.044316
https://doi.org/10.1016/j.nuclphysa.2012.01.010
http://arxiv.org/abs/arXiv:2012.00228
https://doi.org/10.1103/PhysRevC.79.044606
https://doi.org/10.1103/PhysRevC.88.054622
https://doi.org/10.1103/PhysRevC.5.1534

