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Investigation of pseudospin and spin symmetries in relativistic mean field theory combined
with a similarity renormalization group approach
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Similarity renormalization group (SRG) is combined with the relativistic mean-field (RMF) theory, the
Schrodinger-like Hamiltonian describing the motion of nucleon is obtained. The Hamiltonian with the scalar and
vector potential from the self-consistent RMF calculations is used to explore the pseudospin and spin symmetries
and their evolution with mass number for Sn isotopes. The contribution of every term to the pseudospin (spin)
energy splitting is extracted. The spin energy splitting comes almost entirely from spin-orbit coupling, whereas
the pseudospin energy splitting is also dominated by nonrelativistic and dynamical terms. The magnitude of the
splitting is related to the radial, angular, and isospin quantum numbers of the doublet. The isospin dependence
of pseudospin (spin) symmetry comes from the nonrelativistic term (the spin-orbit coupling). The pseudospin
symmetry of neutron is superior to that of proton from the weakening of nonrelativistic and dynamical breaking.
These results are helpful to understand the origin and breaking mechanism of pseudospin and spin symmetries.
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I. INTRODUCTION

Pseudospin and spin symmetries play a critical role at
many physical phenomena [1,2]. The introduction of spin-
symmetry (SS) breaking successfully explains the existence
of magic numbers in atomic nuclei. The accompanying
consequence is the emergence of two quasidegenerate single-
particle states with quantum numbers of (n — 1,/ +2, j =
[ 4+3/2) and (n,l, j =14 1/2) in heavy nuclei. In analogy
to the SS, the quasidegeneracy states are defined as the pseu-
dospin doublet with quantum numbers (7i=n— 1,1 =1+
1, j=1+1/2) [3,4]. The introduction of pseudospin sym-
metry (PSS) can explain many nuclear structure phenomena,
such as deformed bands [5], superdeformed bands [6], mag-
netic moments [7-11], and identical bands [12—-15]. Because
of these successes, physicists have attempted to understand
the origin of this symmetry. In Ref. [16], a helicity unitary
transformation is introduced to map a normal state ([, s) to a
pseudostate (7, 5). A special proportional relationship between
the coefficients of spin-orbit and orbit-orbit terms was found
to be responsible for the emergence of PSS [17]. From the
Dirac equation given by the relativistic mean field (RMF) the-
ory, PSS was confirmed to be a relativistic symmetry and be
exact when the sum of scalar potential S and vector potential
V equals to zero [18]. The condition is relaxed tod¥ /dr =0
in Refs. [19,20], and the spin symmetry in the antinucleon
spectrum was found by charge conjugation transformation
[20]. Further exploration of spin symmetry in antinucleon
spectrum was presented in Refs. [21,22]. In Ref. [23], the
Dirac Hamiltonian was shown to possess SU(2) with SU(2)
algebra established in the PSS and SS limit. Furthermore,
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U(3) symmetry [24] and chiral symmetry [25,26] were found
in the Dirac Hamiltonian with special potentials in the PSS
and SS limit. The supersymmetry of the Dirac Hamiltonian
was investigated in Refs. [27-29]. Pseudospin symmetry in
nucleon-nucleus scattering was researched in Refs. [30,31].
Also the phase shifts in nucleon-nucleon scattering are ana-
lyzed to show that pseudospin symmetry is better conserved
in T = 1 phase shifts than in 7 = 0 phase sifts which demon-
strates on a fundamental level why pseudspin symmetry
conservation improves for heavy nuclei [32,33]. Moreover,
it has also been found that the PSS and SS exist in resonant
states [34,35].

In Refs. [22,36], it was pointed out that the pseudospin
symmetry arises from the mutual cancellation of the en-
ergy splittings contributed by different components in the
Schrodinger-like Hamiltonian and PSS possesses a dynamical
character. The conclusion was also discussed in Refs. [37,38].
Unfortunately, it was inevitable to encounter the singularity in
calculating the contribution of every component to the pseu-
dospin splitting and the coupling between the operator and its
eigenenergy in solving the Schrodinger-like equation for the
lower component of the Dirac spinor. To avoid these defects,
we have applied the similarity renormalization group (SRG) to
transform the Dirac Hamiltonian into a diagonal form [39,40].
Because all the defects in the usual decoupling, such as the
singularity and coupling, disappear, it is very appropriate to
use this Hamiltonian analyzing pseudospin and spin symme-
tries. The quality of pseudospin approximation is shown to
be related to the competition between the spin-orbit coupling
and dynamical effect [41-43]. To improve the accuracy of the
usual SRG, a reconstituted SRG method was proposed using
the resummation technique in Ref. [44]. The results were
compared with those obtained by Foldy-Wouthuysen trans-
formation and SRG method [45]. In Ref. [46], we explored
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the contributions from the various mesons and photon fields
to the PSS. The relationship between the pseudospin energy
splitting and these mesons and photon fields was checked
in the framework of RMF theory. The origin of PSS and its
breaking mechanism were explored by combining supersym-
metry quantum mechanics, perturbation theory, and the SRG
method in Ref. [47]. In Ref. [48], the roles of Coulomb and p
potentials were investigated at the pseudospin energy splitting
for Sn isotopes. The influences of the different mesons and
photon fields on the PSS and SS were investigated with the
SRG method [49]. Sun et al. have applied the Green’s func-
tion method to solve the Dirac equation with a Woods-Saxon
potential and investigated the SS and PSS in single-particle
resonant states [50]. Alberto et al. [36] have studied isospin
asymmetry in the PSS and indicated that the PSS is better
realized for neutrons than for protons in the bound states.
More researches on the PSS and SS can be seen in the reviews
[51,52]. Recently, the PSS and SS of single-particle reso-
nant states for Pb isotopes, the influence of different meson
fields on the PSS in single-neutron resonant states, and the
dependence of PSS on shape of potential in resonant states
have been explored [53-55]. Considering the RMF theory is
very successful in describing many phenomena of nuclei, we
combine SRG into RMF to explore the origin and breaking
mechanism of PSS and SS, and their dependencies on isospin.
In Sec. II, we state the theoretical framework. The numerical
details and results are presented in Sec. III. A summary is
given in Sec. IV.

II. FORMALISM

For the convenience of readers, we sketch the theoretical
formalism. The basic ansatz of the RMF model is a La-
grangian density, which nucleons are described as the Dirac
particles with the interactions via the exchange of mesons (o,
w, and p) and photon,
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where M is the nucleon mass, and mg, g5, My, 8w, Mp, and g,
are masses and coupling constants of the respective mesons.
The field tensors for the vector mesons and photons are de-

fined as
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By the classical variational principle, the Dirac equation for
nucleon is obtained as

{@-p+VE) +BIM+SEONYFE) =),  (3)

where V (7) and S(¥) are the vector and scalar potentials,
respectively [56,57]. For the spherical nuclei, the Dirac spinor
reads

(PO @009 o
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where Yj’m(ﬁ, @, s) is the spin spherical harmonics. Then, the
Dirac equation is simplified to the form
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with the Hamiltonian,
H=M+a- -p+(BS+V), (6)

where S and V represent the scalar potential and vector po-
tential, respectively. In order to transform H into a diagonal
form, we utilize Wegner’s formulation of the SRG [58]. The
initial Hamiltonian H is transformed by the unitary operator

U (1) according to
H()=UMHU(l), H@O)=H, (7)

where [ is a flow parameter. By differentiating Eq. (7), the
flow equation is obtained as

d
SHM = (). HOD, ®)
with the generator,
dU (1l
n(l) = %UWZ) — ©)

The choice of generator n(/) should achieve the goal of the
off-diagonal matrix elements decay. A good choice based on
Wegner’s theory is defined by n(l) = [H,(I), H(l)], where
H,(1) is the diagonal part of H (/) [58]. For the Dirac Hamil-
tonian (7), it is appropriate to choose n(l) = [BM, H(l)] [39].
Using (/) chosen, H(I) can evolve into a diagonal form when
[ — o0o. We use the technique in Ref. [39] and obtain the
diagonalized Dirac operator as

_ (Hp+M 0

where
Hp =Hy+ H; + H. + Hy + Hy,. (11

The expressions of these five Hermitian components are
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Hj corresponds to the operator describing a Dirac particle
in the nonrelativistic limit. The spin-orbit interaction and
the dynamical effect are reflected in H. and H,, respec-
tively. H; represents the relativistic modification of kinetic
energy. H, can denote the Darwin term. Hp is an operator
describing Dirac particle with p*> = d":z + LD HS s the

charge-conjugation of Hp with p? = — drz + K(" 1) [21,22].
The primes and double primes in Hp, respectlvely, denote
first-order and second-order derivatives with respect to r.
Obviously, the singularity disappears in every component of
Eq. (11), and all the terms in Hp are Hermitian. In addition,
there is no coupling between the energy € and the operator Hp.
Thus, the energy spectra of Hp can be calculated conveniently.
The energy spectra of Hp are calculated by expansion with a
set of harmonic-oscillator functions. The contribution of the
operator O; to the energy-level E; is calculated by the formula
(k|O;k) = f w,joiwkcﬁ?, where k& marks the single-particle
state considered.

III. NUMERICAL DETAILS AND RESULTS

Based on the previous formulism, we perform the RMF-
SRG calculations for Sn isotopes. With the available single-
particle levels, we explore the PSS and SS. The obtained
energies for neutron and proton are plotted in Figs. 1 and 2, re-
spectively. For the neutron single-particle states, the energies
increase with increasing mass number for those states far from
the continuum threshold, whereas that is opposite for those
states near the continuum threshold. There appears a small
kink in several bound levels, and several large energy gaps
between some levels, such as 1g7,, and 1gg,,. Of particular
note is the level inversion in the states 2 f5/, and 3p3,», which
has an important consequence for the PSS and SS. Unlike
the neutron case, except for a few small kinks, the proton
single-particle energies decrease with increasing mass number
for all the available single-particle states. Furthermore, the
speed of energy decreasing with increasing mass number is
faster for the proton than that for neutron, which indicates that
the proton single-particle energy is more sensitive to isospin.
Moveover, the energy-level order of the proton is different
from that of the neutron near the continuum threshold, which
reflects that the PSS and SS are isospin dependent.

To understand the physical mechanism of SS and its corre-
lation with isospin, we extract the energy splitting between the
spin doublets for Sn isotopes. The energy splitting contributed
by every term in H, and their variations with mass number
are plotted in Figs. 3-5. For all the neutron spin doublets,
the energy splitting and its variation with mass number is
nearly identical to that contributed by the spin-orbit term. Al-
though the energy splitting contributed by the nonrelativistic
and dynamical terms are strong, they are nearly the same
in magnitude, but opposite in sign, which results that their
contributions to the total energy splitting almost cancel out
each other. Comparably, the energy splitting contributed by
the other term is negligible.

Although the spin-orbit coupling plays a key role in
the SS breaking, the role of nonrelativistic and dynam-
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FIG. 1. Neutron single-particle energies and their evolution to
mass number for Sn isotopes. The energies are obtained in the RMF-
SRG calculations with the NL3 interaction.

ical terms cannot be ignored because of their important
contributions to single-particle energy levels. For the spin
doublets (1p1)2, 1p3/2), (ldaj2, 1dsp2), (1fsp2, 1f7,2), and
(1g7/2, 1g9/2), the dynamical term destroys spin symmetry,
whereas the nonrelativistic term improves SS. For the dou-
blet (2p1,2,2p3/2), the spin energy splitting contributed by
the nonrelativistic term changes from a negative value to a
positive value whereas that by the dynamical term changes
from a positive value to a negative value with increasing mass
number. For the doublets far from the threshold, the spin
energy splitting caused by the nonrelativistic term (the dynam-
ical term) are changed to positive (negative) for the 2d3,, and
2ds ), partners. Namely, the improvement or breaking from the
nonrelativistic term (the dynamical term) to the SS depends on
the quantum number of the doublets and isospin.

The magnitude of energy splitting is correlated with the
quantum numbers of the doublets. For the spin doublets with
the same radial quantum number, the energy splitting caused
by the spin-orbit term increases with increasing orbital an-
gular momentum. For example, the energy splitting between
the 1ds;; and 1ds), partners is two times more than that of
the doublet (1py/2, 1p3/2). The similar case also appears in
the other spin partners. For the spin doublets with the same
orbital angular momentum, the energy splitting caused by
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FIG. 2. The same as Fig. 1 but for proton single-particle levels.

the spin-orbit term increases with increasing radial quantum
number. For instance, the energy splitting between the 2p;/»
and the 2ps3;, partners is two times more than that of the
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FIG. 3. Contribution of every term in Hp to the spin energy split-
ting for the neutron spin doublets (1p;,,, 1p3/2) and (1d3)2, 1ds)»),
and their evolutions to mass number for the Sn isotopes where “non-
relati,” “dynamic,” spin-orbit, and other denotes the nonrelativistic
term, the dynamical term, the spin-orbit term, and the other term,
respectively. The “total” marks a sum of the spin energy splitting.
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FIG. 4. The same as Fig. 3 but for the neutron spin doublets
(1f5/2, 1f7/2) and (187/2, 189/2)-

doublet (1py,2, 1p3/2). Moreover, we have also observed that
the energy of the single-particle state with the quantum num-
bers (n, [, j =1 —1/2) is larger than that with the quantum
numbers (n,[, j =1+ 1/2), which means that the single-
particle state with higher total angular momentum is more
stable than its spin partner.

With the increasing of the mass number, the spin en-
ergy splitting increases for the two deeply bound doublets
(1p1/2, 1p3s2) and (1d3,2, 1ds)2). For the energy levels closer
to the continuum threshold, the energy splitting varies from
increasing to almost constant to decreasing with increasing
mass number. Especially for the energy levels very close to the
continuum threshold as the (2p1,2, 2p3,2) and (2d3,2, 2ds)2)
there appears a kink around A = 150. After A = 150, the
energy splitting becomes increasing and then decreasing with
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FIG. 5. The same as Fig. 3 but for the neutron spin doublets
(2p1y2, 2p3p2) and (2ds )2, 2ds)2).
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FIG. 6. The energy splitting of neutron pseudospin doublets
(2512, 1d3;2) and (2p3/2, 1 f5,2) as a function of mass number for Sn
isotopes where nonrelati, dynamic, spin-orbit, and other denote the
nonrelativistic term, the dynamical term, the spin-orbit term, and the
other term, respectively. The total marks a sum of the pseudospin
energy splitting.

increasing mass number. Namely, the isospin dependence of
SS is related to the quantum number of the doublet.

These indicate that the breaking of SS mainly comes from
the spin-orbit interaction, and the quality of SS is correlated
with the quantum numbers of the doublets as well as isospin.
The roles of nonrelativistic and dynamical terms does also
play an important role at SS. Their influences on the SS is
related to the quantum number of the doublets as well as
isospin.

Next, we explore the physical mechanism of PSS and its
dependence on isospin. The contribution of every term in
H), to the pseudospin energy splitting and its evolution to
mass number are displayed in Figs. 6-8 for all the available
neutron pseudospin doublets. The variation of pseudospin
energy splitting with mass number is quite consistent with
that contributed by the nonrelativistic term, but the magnitude
of splitting is significantly different. In addition to the con-
tribution of the nonrelativistic term, the dynamical term and
spin-orbit coupling also contribute significantly to the pseu-
dospin energy splitting. Similar to the spin energy splitting,
the contribution from the other term to pseudospin energy
splitting is insignificant.

The nonrelativistic term always destroys the PSS. The
magnitude of the destruction is very large, i.e., there is
no PSS in the nonrelativistic limit. The spin-orbit term al-
ways improves the PSS. However, the dynamical term plays
a role at destroying PSS for the doublets (2s1/2, 1d3)2),
(2p3)2, 1f5/2), and (2ds;2, 1g7,2), and improving PSS for
the doublets (2f7/2, 1]’19/2), (351/2, 2d3/2), and (3p3/2, 2f5/2).
Whether improvement or breaking from the dynamical term
depends on the particular pseudospin doublet.

For the pseudospin doublets with the same radial quan-
tum number, the energy splitting decreases with increasing
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FIG. 7. The same as Fig. 6 but for the energy splitting for neutron
pseudospin doublets (2ds/», 1g7,2) and (272, 1hy)2).

orbital angular momentum. For example, the energy splitting
between the doublet (2ds/,, 1g7,2) is more than three times
that of the doublet (27,2, 1hg,>). For the pseudospin doublets
with the same orbital angular momentum, the energy splitting
decreases with increasing radial quantum number. For in-
stance, the energy splitting between the doublet (251, 1d3/2)
is more than three times that of the doublet (3512, 2d3/7).
For the doublet closer to the continuum, there appears inver-
sion in the pseudospin energy splitting. The energy splitting
evolves from E, ; j—i11/2 > Ep 1,142, j=143/2 0 Enj j=11172 <
E,_1,142,j=1+3/2 with increasing orbital angular momentum
as seen for the doublets (3512, 2d3,2) and (3p3/2, 2f5/2) and
indicated in Refs. [38,59-61]. This inversion is mainly due
to the evolution of the dynamical term from improvement to
destruction for the PSS.
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FIG. 8. The same as Fig. 6 but for the energy splitting for neutron
pseudospin doublets (35,2, 2d3;,) and (332, 2f5/2).
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FIG. 9. The same as Fig. 3 but for the energy splittings for proton
spin partners (1])1/2, 1[]3/2) and (ldg/z, ldj/z).

With the increasing of mass number, the PSS becomes
better for all the doublets with several exceptions, which agree
the result in Refs. [53,62,63]. Since the pseudospin energy
splittings contributed by the spin-orbit term and the dynamical
term are insensitive to mass number, the isospin dependence
of PSS mainly originates from the nonrelativistic term. It is
worth noting that there appears kink on the curve of pseu-
dospin energy splitting as a function of mass number after
A = 150 for the doublets (251/2, 1d3/2), (3S1/2, 2d3/2), and
(3p3/2, 2f5/2). The kink is mainly due to the contribution of
the nonrelativistic term. The dynamical term has a consider-
able influence on the kink.

These indicate that the PSS originates from the relativistic
effect. The nonrelativistic, spin-orbit coupling, and dynamical
terms play important role at PSS. The quality of PSS is cor-
related with the quantum numbers of the doublets as well as
isospin.

To understand better the isospin dependence of relativis-
tic symmetry, we explore the PSS and SS for the proton
single-particle states. In Figs. 9-11, we show the spin energy
splitting contributed by every term in H), for all the available
proton spin doublets. The variation of energy splitting with
mass number is similar to that of neutron. The spin energy
splitting and its evolution to mass number are almost entirely
dominated by the spin-orbit term. The contributions of non-
relativistic and dynamic terms to spin energy splitting cancel
each other out.

For the spin doublets with the same radial quan-
tum number, the doublets with lower angular momen-
tum have better SS. With the increasing of mass num-
ber, the spin energy splitting increases for the doublets
(1p12, 1p3n) and (1dsp, 1ds;2), whereas decreases for the
doublets (1fs/2, 1f72) and (lg7/2,1g9/2). For the dou-
blets (2p12, 2p3;2) and (2d3)2, 2ds;), there appears a kink
around A = 150 in the curve of spin energy splitting as
a function of mass number. Before A = 150, the energy
splitting decreases with increasing mass number. After
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FIG. 10. The same as Fig. 3 but for the energy splittings for
proton spin partners (1fs/2, 1f7/2) and (1g7/2, 189/2).

A =150, the energy splitting becomes increasing and then
decreasing with increasing mass number. Namely, the isospin
dependence of SS breaking is related to the quantum number
of the doublet.

Compared with neutron, the energy splitting between the
proton spin doublets is slightly larger than that of neutron spin
doublets due to slightly stronger spin-orbit coupling.

In the following, we explore the PSS for the proton single
particle states. The variation of energy splitting with mass
number is shown in Figs. 12-14. Similar to the case of the
neutron, the nonrelativistic term always destroys the PSS,
and the spin-orbit term always improves the PSS for all the
pseudospin doublets considered. Unlike the neutron case, the
dynamical term always destroys the PSS for all the pseudospin
doublets. For the doublets (2 /7,2, 1h9/>) and (3512, 2d3/5), the
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FIG. 11. The same as Fig. 3 but for the energy splittings for
proton spin partners (2pi,2, 2p3/2) and (2d3,2, 2ds)»).
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FIG. 12. The same as Fig. 6 but for the energy splitting for proton
pseudospin partners (251/2, 1ds;,) and 2p3j2, 1fs)2) -

dynamical term plays a role at improving the PSS for neutron,
whereas destroying the PSS for the proton.

The variation of the total energy splitting with the mass
number is quite consistent with that of the energy splitting
contributed by the nonrelativistic term. The magnitude of
energy splitting depends on the dynamical term and the spin-
orbit coupling. Except for the small anomaly, the energy
splitting decreases with increasing mass number, which means
that the PSS is better in neutron-richer nuclei.

Compared with neutron, the PSS for proton is relatively
worse since the energy splittings by the nonrelativistic and
dynamical terms are stronger. For example, the energy split-
ting between the doublet (2ds,,, 1g7/2) is 1 to 2 MeV larger
for proton than that for neutron, which is consistent with this
finding in Ref. [64].
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FIG. 13. The same as Fig. 6 but for the energy splitting for proton
pseudospin partners (2ds;, 1g7,2) and (2f7/2, Lhy).
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FIG. 14. The same as Fig. 6 but for the energy splitting for proton
pseudospin partner (35,2, 2d3/2).

IV. SUMMARY

The SRG is combined with the RMF theory, and the
Schrodinger-like Hamiltonian describing the motion of nu-
cleon is obtained. This Hamiltonian consists of five terms,
they are the nonrelativistic term, the spin-orbit coupling, the
dynamical term, the relativistic modification of kinetic energy,
and the Darwin term. All these terms are Hermitian. Combin-
ing the scalar and vector potentials from the self-consistent
RMF calculations into this Hamiltonian, the contribution of
every term to pseudospin (spin) energy splitting is extracted,
and the origin and breaking mechanism of PSS and SS are
explored. Sn isotopes are chosen as illustrated examples, the
variations of pseudospin and spin energy splitting with mass
number are checked, and the dependence of this symmetries
on isospin is investigated.

For all the neutron spin doublets, the energy splitting and
its variation with mass number are nearly identical to those
contributed by the spin-orbit term. The breaking of SS mainly
comes from the spin-orbit interaction. The energy splitting
contributed by the nonrelativistic and dynamical terms are
nearly the same in magnitude but opposite in sign, and their
contributions to the total energy splitting almost cancel out
each other. The magnitude of energy splitting increases with
increasing angular momentum (radial quantum number) for
the doublets with the same radial quantum number (angular
momentum). The change in SS breaking with mass number is
different for different doublets, and this isospin dependence is
dominated by spin-orbit interactions.

For all the neutron pseudospin doublets, the variation of
energy splitting with the mass number is quite consistent with
that contributed by nonrelativistic term, but the magnitude
of energy splitting is severely different. The energy splitting
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contributed by nonrelativistic term is extraordinarily large,
i.e., there is no PSS in nonrelativistic limit. The spin-orbit
coupling greatly reduces pseudospin energy splitting. The dy-
namical term evolves from breaking to improving PSS, and
even reversing pseudospin splitting for the doublets closer
to the continuum threshold. The PSS becomes better with
increasing mass number for all the doublets with several ex-
ceptions. The isospin dependence of PSS is determined by the
nonrelativistic term.

Similar to the case of the neutron, the energy splitting
between the proton spin doublet and its variation with mass
number are almost same to those contributed by the spin-orbit
term. The breaking of SS mostly comes from the spin-orbit
interaction. Comparably, the energy splitting between the pro-
ton doublet is slightly larger than that of the neutron. The
magnitude of SS breaking is isospin dependent and related
to the quantum numbers of the doublet.

Similarly, for the proton pseudospin doublets, the variation
of energy splitting with the mass number is quite consis-
tent with that contributed by the nonrelativistic term, but the
magnitude of energy splitting is significantly changed by the
dynamical term and the spin-orbit coupling. The dynamical
term always destroys the PSS, which is not exactly the same

as that of neutron. Compared with neutron, the PSS for proton
is relatively worse since the energy splitting by the nonrela-
tivistic and dynamical terms is stronger.

These indicate the nonrelativistic, dynamical, and spin-
orbit terms play important roles at the PSS and SS. The quality
of PSS and SS is related to the quantum numbers of the
doublets. Isospin has also important influences on the sym-
metries. In the nonrelativistic limit, spin symmetry emerges,
whereas no vestige of pseudospin symmetry remains in this
limit, which reaffirms that pseudospin symmetry is a rela-
tivistic symmetry. The PSS of neutron is superior to that of
proton from the weakening of nonrelativistic and dynamical
breaking.

ACKNOWLEDGMENTS

This work was partly supported by the National Natural
Science Foundation of China under Grants No. 11935001 and
No. 11575002; the Key Research Foundation of Education
Ministry of Anhui Province under Grant No. KJ2018A0028,
and the Doctoral Scientific Research Startup Fund of Anhui
University (Grant No. J01001319-J10113190082).

[1] S. H. Shen, H. Z. Liang, P. W. Zhao, S. Q. Zhang, and J. Meng,
Phys. Rev. C 88, 024311 (2013).
[2] P. R. Page, T. Goldman, and J. N. Ginocchio, Phys. Rev. Lett.
86, 204 (2001).
[3] K. T. Hecht and A. Adler, Nucl. Phys. A 137, 129 (1969).
[4] A. Arima, M. Harvey, and K. Shimizu, Phys. Lett. B 30, 517
(1969).
[5] A. Bohr, I. Hamamoto, and B. R. Mottelson, Phys. Scr. 26, 267
(1982).
[6] J. Dudek, W. Nazarewicz, Z. Szymanski, and G. A. Leander,
Phys. Rev. Lett. 59, 1405 (1987).
[7] D. Troltenier, W. Nazarewicz, Z. Szymanski, and J. P. Draayer,
Nucl. Phys. A 567, 591 (1994).
[8] J. N. Ginocchio, Phys. Rev. C 59, 2487 (1999).
[9] P. von Neumann-Cosel and J. N. Ginocchio, Phys. Rev. C 62,
014308 (2000).
[10] A. E. Stuchbery, J. Phys. G: Nucl. Part. Phys. 25, 611 (1999).
[11] A. E. Stuchbery, Nucl. Phys. A 700, 83 (2002).
[12] W. Nazarewicz, P. J. Twin, P. Fallon, and J. D. Garrett,
Phys. Rev. Lett. 64, 1654 (1990).
[13] E. S. Stephens, M. A. Deleplanque, J. E. Draper, R. M.
Diamond, A. O. Macchiavelli, C. W. Beausang, W. Korten,
W. H. Kelly, F. Azaiez, J. A. Becker, E. A. Henry, S. W. Yates,
M. J. Brinkman, A. Kuhnert, and J. A. Cizewski, Phys. Rev.
Lett. 65, 301 (1990).
[14] F. S. Stephens, M. A. Deleplanque, and A. O. Macchiavelli,
R. M. Diamond, P. Fallon, 1. Y. Lee, and C. Schuck, Phys. Rev.
C 57, R1565 (1998).
[15] J. Y. Zeng, J. Meng, C. S. Wu, E. G. Zhao, Z. Xing, and X. Q.
Chen, Phys. Rev. C 44, R1745 (1991).
[16] A. L. Blokhin, C. Bahri, and J. P. Draayer, Phys. Rev. Lett. 74,
4149 (1995).
[17] C. Bahri, J. P. Draayer, and S. A. Moszkowski, Phys. Rev. Lett.
68, 2133 (1992).

[18] J. N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997).

[19] J. Meng, K. Sugawara-Tanabe, S. Yamaji, P. Ring, and A.
Arima, Phys. Rev. C 58, R628 (1998).

[20] J. N. Ginocchio, Phys. Rep. 315, 231 (1999).

[21] S. G. Zhou, J. Meng, and P. Ring, Phys. Rev. Lett. 91, 262501
(2003).

[22] R. Lisboa, M. Malheiro, P. Alberto, M. Fiolhais, and A. S. de
Castro, Phys. Rev. C 81, 064324 (2010).

[23] J. N. Ginocchio, Phys. Rev. C 66, 064312 (2002).

[24] J. N. Ginocchio, Phys. Rev. Lett. 95, 252501 (2005).

[25] A. S. de Castro, P. Alberto, R. Lisboa, and M. Malheiro,
Phys. Rev. C 73, 054309 (2006).

[26] L. B. Castro, Phys. Rev. C 86, 052201(R) (2012).

[27] A. Leviatan, Phys. Rev. Lett. 92, 202501 (2004).

[28] A. Leviatan, Phys. Rev. Lett. 103, 042502 (2009).

[29] A. D. Alhaidari, Phys. Lett. B 699, 309 (2011).

[30] J. N. Ginocchio, Phys. Rev. Lett. 82, 4599 (1999).

[31] H. Leeb and S. A. Sofianos, Phys. Rev. C 69, 054608 (2004).

[32] J. N. Ginocchio, Phys. Rev. C 65, 054002 (2002).

[33] J. N. Ginocchio, Int. J. Mod. Phys. E 14, 105 (2005).

[34] J. Y. Guo, R. D. Wang, and X. Z. Fang, Phys. Rev. C 72, 054319
(2005).

[35] B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. Lett. 109,
072501 (2012).

[36] P. Alberto, M. Fiolhais, M. Malheiro, A. Delfino, and M.
Chiapparini, Phys. Rev. Lett. 86, 5015 (2001).

[37] S. Marcos, M. Lépez-Quelle, R. Niembro, and L. N. Savushkin,
Eur. Phys. J. A 37, 251 (2008).

[38] S. Marcos, M. Lépez-Quelle, R. Niembro, L. N. Savushkin, and
P. Bernardos, Phys. Lett. B 513, 30 (2001).

[39] J. Y. Guo, Phys. Rev. C 85, 021302(R) (2012).

[40] J. Y. Guo, S. W. Chen, Z. M. Niu, D. P. Li, and Q. Liu,
Phys. Rev. Lett. 112, 062502 (2014).

[41] S. W. Chen and J. Y. Guo, Phys. Rev. C 85, 054312 (2012).

054313-8


https://doi.org/10.1103/PhysRevC.88.024311
https://doi.org/10.1103/PhysRevLett.86.204
https://doi.org/10.1016/0375-9474(69)90077-3
https://doi.org/10.1016/0370-2693(69)90443-2
https://doi.org/10.1088/0031-8949/26/4/003
https://doi.org/10.1103/PhysRevLett.59.1405
https://doi.org/10.1016/0375-9474(94)90026-4
https://doi.org/10.1103/PhysRevC.59.2487
https://doi.org/10.1103/PhysRevC.62.014308
https://doi.org/10.1088/0954-3899/25/4/007
https://doi.org/10.1016/S0375-9474(01)01300-8
https://doi.org/10.1103/PhysRevLett.64.1654
https://doi.org/10.1103/PhysRevLett.65.301
https://doi.org/10.1103/PhysRevC.57.R1565
https://doi.org/10.1103/PhysRevC.44.R1745
https://doi.org/10.1103/PhysRevLett.74.4149
https://doi.org/10.1103/PhysRevLett.68.2133
https://doi.org/10.1103/PhysRevLett.78.436
https://doi.org/10.1103/PhysRevC.58.R628
https://doi.org/10.1016/S0370-1573(99)00021-6
https://doi.org/10.1103/PhysRevLett.91.262501
https://doi.org/10.1103/PhysRevC.81.064324
https://doi.org/10.1103/PhysRevC.66.064312
https://doi.org/10.1103/PhysRevLett.95.252501
https://doi.org/10.1103/PhysRevC.73.054309
https://doi.org/10.1103/PhysRevC.86.052201
https://doi.org/10.1103/PhysRevLett.92.202501
https://doi.org/10.1103/PhysRevLett.103.042502
https://doi.org/10.1016/j.physletb.2011.04.019
https://doi.org/10.1103/PhysRevLett.82.4599
https://doi.org/10.1103/PhysRevC.69.054608
https://doi.org/10.1103/PhysRevC.65.054002
https://doi.org/10.1142/S0218301305002825
https://doi.org/10.1103/PhysRevC.72.054319
https://doi.org/10.1103/PhysRevLett.109.072501
https://doi.org/10.1103/PhysRevLett.86.5015
https://doi.org/10.1140/epja/i2008-10619-1
https://doi.org/10.1016/S0370-2693(01)00737-7
https://doi.org/10.1103/PhysRevC.85.021302
https://doi.org/10.1103/PhysRevLett.112.062502
https://doi.org/10.1103/PhysRevC.85.054312

INVESTIGATION OF PSEUDOSPIN AND SPIN ...

PHYSICAL REVIEW C 105, 054313 (2022)

[42] D. P. Li, S. W. Chen, and J. Y. Guo, Phys. Rev. C 87, 044311
(2013).

[43] D. P. Li, S. W. Chen, Z. M. Niu, Q. Liu, and J. Y. Guo,
Phys. Rev. C 91, 024311 (2015).

[44] Y. X. Guo and H. Z. Liang, Phys. Rev. C 99, 054324 (2019).

[45] Y. X. Guo and H. Z. Liang, Chin. Phys. C 43, 114105 (2019).

[46] J. Y. Guo and X. Z. Fang, Eur. Phys. J. A 45, 179 (2010).

[47] H. Liang, S. Shen, P. W. Zhao, and J. Meng, Phys. Rev. C 87,
014334 (2013).

[48] Q. Xu, Eur. Phys. J. A 51, 81 (2015).

[49] Q. Xu and L. F. Luo, Eur. Phys. J. A 56, 129 (2020).

[50] T. T. Sun, W. L. Lu, L. Qian, and Y. X. Li, Phys. Rev. C 99,
034310 (2019).

[51] J. N. Ginocchio, Phys. Rep. 414, 165 (2005).

[52] H. Liang, J. Meng, and S. G. Zhou, Phys. Rep. 5§70, 1 (2015).

[53] X. X. Shi, Q. Liu, J. Y. Guo et al., Phys. Lett. B 801, 135174
(2020).

[54] H. M. Dai, M. Shi, S. W. Chen, and Q. Liu, Chin. Phys. C 45,
124102 (2021).

[55] Q. Liu, Y. Zhang, and J. Y. Guo, Phys. Lett. B 824, 136829
(2022).

[56] D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring,
Phys. Rep. 409, 101 (2005).

[57] J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H.
Long, and L. S. Geng, Prog. Part. Nucl. Phys. 57, 470
(20006).

[58] F. Wegner, Ann. Physik 506, 77 (1994).

[59] S. Marcos, L. N. Savushkin, M. Lopez-Quelle, and P. Ring,
Phys. Rev. C 62, 054309 (2000).

[60] G. A. Lalazissis, Y. K. Gambhir, J. P. Maharana, C. S. Warke,
and P. Ring, Phys. Rev. C 58, R45 (1998).

[61] J. Meng, K. Sugawara-Tanabe, S. Yamaji, and A. Arima,
Phys. Rev. C 59, 154 (1999).

[62] J. Y. Guo and X. Z. Fang, Phys. Rev. C 74, 024320
(20006).

[63] J. Meng and 1. Tanihata, Nucl. Phys. A 650, 176 (1999).

[64] R. Lisboa, M. Malheiro, and P. Alberto, Phys. Rev. C 67,
054305 (2003).

054313-9


https://doi.org/10.1103/PhysRevC.87.044311
https://doi.org/10.1103/PhysRevC.91.024311
https://doi.org/10.1103/PhysRevC.99.054324
https://doi.org/10.1088/1674-1137/43/11/114105
https://doi.org/10.1140/epja/i2010-10990-2
https://doi.org/10.1103/PhysRevC.87.014334
https://doi.org/10.1140/epja/i2015-15081-4
https://doi.org/10.1140/epja/s10050-020-00159-z
https://doi.org/10.1103/PhysRevC.99.034310
https://doi.org/10.1016/j.physrep.2005.04.003
https://doi.org/10.1016/j.physrep.2014.12.005
https://doi.org/10.1016/j.physletb.2019.135174
https://doi.org/10.1088/1674-1137/ac23d4
https://doi.org/10.1016/j.physletb.2021.136829
https://doi.org/10.1016/j.physrep.2004.10.001
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1002/andp.19945060203
https://doi.org/10.1103/PhysRevC.62.054309
https://doi.org/10.1103/PhysRevC.58.R45
https://doi.org/10.1103/PhysRevC.59.154
https://doi.org/10.1103/PhysRevC.74.024320
https://doi.org/10.1016/S0375-9474(99)00104-9
https://doi.org/10.1103/PhysRevC.67.054305

