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Configuration-interaction projected density functional theory:
Effects of four-quasiparticle configurations and time-odd interactions
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The effects of four-quasiparticle configurations and time-odd interactions are investigated in the framework of
configuration-interaction projected density functional theory by taking the yrast states of 60Fe as examples. Based
on the universal PC-PK1 density functional, the energies of the yrast states with spin up to 20h̄ and the available
B(E2) transition probabilities are well reproduced. The yrast states are predicted to be of four-quasiparticle
structure above spin I = 16h̄. The inclusion of the time-odd interactions increases the kinetic moments of inertia
and delays the appearance of the first band crossing, and, thus, improves the description of the data.
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I. INTRODUCTION

The configuration-interaction shell model (CI-SM) [1] and
the nuclear density functional theory (DFT) [2–4] are widely
used approaches for the description of nuclear properties.
The CI-SM describes nuclear spectroscopic properties in the
laboratory frame and captures both the excitation of single
particles and the collective correlations coming from the co-
herent motion of many nucleons. Because of the limitation
of its model space, it is usually applied to light and medium
heavy nuclei. The nuclear DFT is based on the idea that
the ground-state energy of a nucleus can be expressed as a
functional of the nucleon density, and is applicable for nuclei
all over the nuclide chart. The nuclear DFT takes into account
many-body correlations by breaking essential symmetries and
describes fruitful physics around the minima of the potential
energy surface. However, the nuclear DFT, in the first place,
is limited to describe nuclear ground states. For quantitative
investigations of nuclear spectroscopic properties, one needs
to resort to proper extensions based on the DFT.

During the past decades, great efforts have been made to
extend the nuclear DFT for nuclear spectroscopic properties.
The generator coordinate method (GCM) [5], which includes
the quantum fluctuations along some relevant collective vari-
ables, is one of the effective approaches. The GCM approach
has been implemented in nonrelativistic [6–8] and relativistic
[9,10] DFTs, and has achieved great successes in the shape
coexistence [11–13], the erosion of shell-closure [14], the
collective band structures of superheavy nuclei [15], the novel
modes of nuclear weak decays [16,17], etc. Nevertheless, the
DFT-based GCM approaches are limited to describe spectra
with energies below the first two-quasiparticle excitations
[18]. For the description of spectra with higher excitation
energies, the cranking models [19] based on nonrelativistic
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[20,21] and relativistic [22,23] DFTs have been demonstrated
as powerful tools. Moreover, two- and three-dimensional
tilted axis cranking DFTs have been successfully applied
to many novel rotational phenomena [24–28]. However, the
band crossing phenomena cannot be properly described by
the cranking approach [29] because the cranking states are
obtained at a constant rotational frequency rather than a con-
stant angular momentum. Recent progress on considering the
correlations due to the symmetry breaking and mixing states
beyond the rotating mean field has been made based on the
nonrelativistic DFTs [30,31].

To describe the nuclear spectroscopic properties with
beyond mean-field correlations up to high spin, the
configuration-interaction projected density functional theory
(CI-PDFT) was proposed in Ref. [32]. The starting point of
CI-PDFT is a well-defined density functional whose self-
consistent solution corresponds to a state at the energy
minimum of the potential energy surface and contains al-
ready important physics. The additional correlations required
for the description of spectroscopic properties are consid-
ered with shell-model calculations in a configuration space
built on top of the self-consistent solution. Due to the fact
that such a configuration space is constructed with optimized
bases, its dimension is much smaller than that in the tradi-
tional shell models. The CI-PDFT could be used to describe
the nuclear spectroscopic properties up to high spin without
additional parameters beyond the well-defined density func-
tional. The CI-PDFT was later implemented in the framework
of nonrelativistic DFTs [33,34], where the authors used an
alternative name, i.e., the no-core configuration-interaction
approach rooted in multireference DFT.

In the previous application of the CI-PDFT [32], the four-
quasiparticle configurations are not included. Moreover, the
time-odd parts of the density functional are neglected for
simplicity. As stated in Ref. [32], the consideration of time-
odd components and four-quasiparticle configurations would
give better agreement with the experimental data for higher
spin states. In fact, investigations within the projected shell
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model (PSM) based on the phenomenological pairing-plus-
quadrupole interaction, which includes the four-quasiparticle
configurations, can reproduce the higher spin states well [35].
In the present work, the CI-PDFT including contributions
from the four-quasiparticle configurations and time-odd in-
teractions is developed. By taking the yrast states of 60Fe
populated up to spin I = 20h̄ [36] as examples, the effects
of four-quasiparticle configurations and time-odd interactions
are discussed.

II. THEORETICAL FRAMEWORK

The starting point of the point-coupling relativistic density
functional is the following Lagrangian density [3]:

L = ψ̄ (iγμ∂μ − m)ψ

− 1

2
αS (ψ̄ψ )(ψ̄ψ ) − 1

2
αV (ψ̄γμψ )(ψ̄γ μψ )

− 1

2
αTV (ψ̄ �τγμψ )(ψ̄ �τγ μψ )

− 1

3
βS (ψ̄ψ )3 − 1

4
γS (ψ̄ψ )4 − 1

4
γV [(ψ̄γμψ )(ψ̄γ μψ )]2

− 1

2
δS∂ν (ψ̄ψ )∂ν (ψ̄ψ ) − 1

2
δV ∂ν (ψ̄γμψ )∂ν (ψ̄γ μψ )

− 1

2
δTV ∂ν (ψ̄ �τγμψ )∂ν (ψ̄ �τγ μψ )

− 1

4
FμνFμν − e

1 − τ3

2
ψ̄γ μψAμ, (1)

which contains nine coupling constants: αS , αV , αTV , βS , γS ,
γV , δS , δV , and δTV . The subscripts S, V , and TV represent
scalar, vector, and isovector, respectively. It is clear that the
terms associated with the coupling constants are written as
a power series in ψ̄O
ψ and their derivatives, where O ∈
{1, �τ } and 
 ∈ {1, γμ}, and Greek indices μ run over the
Minkowski indices 0, 1, 2, and 3. Note that the time-odd
interactions originate from the spacelike components, i.e., the
components with μ = 1, 2, and 3, of the vector and isovector
channels. From the Lagrangian density, one can derive the
Hamiltonian by Legendre transformation. Details can be seen
in Ref. [3].

For open-shell nuclei, a unified treatment of both the mean
field and pairing correlations is realized by solving the follow-
ing relativistic Hartree-Bogoliubov (RHB) equation [3],(

ĥD − λ �̂

−�̂∗ −ĥ∗
D + λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
. (2)

Here, Uk and Vk are the quasiparticle (qp) wave functions, ĥD

is the single-particle Dirac Hamiltonian,

ĥD = α· (p − V ) + β(m + S) + V, (3)

and λ is the Fermi surface. The scalar field S and vector field
V μ are connected in a self-consistent way to various densities
and currents [3]. The matrix element of the pairing field �̂ is

�ab = 1

2

∑
c,d

〈ab|V pp|cd〉aκcd , (4)

where V pp is the pairing force, and κ is the pairing tensor
determined by the qp wave functions. In the present work,
V pp is chosen as the finite-range separable force proposed in
Ref. [37]. By solving the RHB equation (2) iteratively, one
can obtain the intrinsic ground state |�0〉, together with a set
of qp orbits i defined by

β̂i|�0〉 = 0 for ∀ i, (5)

in which β̂i represents the qp annihilation operator [5].
Starting from the intrinsic ground state |�0〉, one can con-

struct the multi-qp configurations. For example, the multi-qp
states up to four-qp configurations for even-even nuclei are

{|�0〉, β̂†
νi
β̂†

ν j
|�0〉, β̂†

πi
β̂†

π j
|�0〉, β̂†

νi
β̂†

ν j
β̂†

πk
β̂†

πl
|�0〉,

β̂†
πi

β̂†
π j

β̂†
πk

β̂†
πl

|�0〉, β̂†
νi
β̂†

ν j
β̂†

νk
β̂†

νl
|�0〉}. (6)

These states form the configuration space of the CI-PDFT.
In general, multi-qp configurations with half protons and
half neutrons are energy favored. Therefore, four-qp config-
urations with all like particles could be excluded if one is
interested in only the yrast states [38,39].

The wave function |�σ
IM〉 in the laboratory frame with good

angular momentum quantum numbers I and M is written as
[32] ∣∣�σ

IM

〉 =
∑

η

F Iσ
η P̂I

MK |�η〉. (7)

Here, η runs over the intrinsic states taken from the config-
uration space in Eq. (6), and P̂I

MK is the angular momentum
projection operator. Similarly to Ref. [32], each multi-qp state
|�η〉 is assumed to be axially deformed and is characterized
by the total intrinsic magnetic quantum number K . The expan-
sion coefficients F Iσ

η are determined by the diagonalization
of the Hamiltonian in a shell-model subspace spanned by the
nonorthogonal projected bases {P̂I

MK |�η〉}, or equivalently by
solving the following generalized eigenvalue equation:∑

η′

[
HI

ηη′ − EIσ NI
ηη′

]
F Iσ

η′ = 0. (8)

The energy kernel HI
ηη′ and the norm matrix NI

ηη′ are defined
respectively as

HI
ηη′ = 〈�η|ĤP̂I

KK ′ |�η′ 〉, NI
ηη′ = 〈�η|P̂I

KK ′ |�η′ 〉. (9)

Here, Ĥ represents the Hamiltonian derived from the La-
grangian density (1) including the pairing term. The energy
kernel and norm matrix are calculated by the Pfaffian algo-
rithms proposed in Refs. [40,41]. In the present work, the
particle number projection is not included, and an approxi-
mate scheme to correct the mean value of the particle number
is used [42]. The time-odd interactions associated with the
spacelike components of vector and isovector channels are
considered.

The generalized eigenvalue equation (8) is solved by the
standard procedure. Once the expansion coefficients F Iσ

η are
known, one can construct the collective wave functions [5]

GIσ
η =

∑
η′

(NI )1/2
ηη′ F Iσ

η′ , (10)
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FIG. 1. The neutron and proton qp energy levels of 60Fe. The
qp energy levels with positive and negative parities are denoted
respectively by solid and dashed lines. The approximate spherical
quantum numbers are used to label the qp energy levels (see text).

which are interpreted as the probability amplitudes of the
states |�η〉. The reduced E2 transition probabilities between
an initial state Ii and a final state I f is defined by

B(E2 : Ii, σ → I f , σ
′) = e2

2Ii + 1

∣∣〈�σ ′
I f

∣∣∣∣Q̂2

∣∣∣∣�σ
Ii

〉∣∣2
. (11)

Note that e denotes the bare value of the proton charge, and
there is no need to introduce the effective charges in the CI-
PDFT calculations [32].

III. NUMERICAL DETAILS

In the present work, the CI-PDFT with time-odd interac-
tions and four-qp configurations is illustrated by taking the
yrast states of 60Fe [36] as examples. The relativistic point-
coupling Lagrangian PC-PK1 [43] is adopted for both the
mean-field and CI-PDFT calculations. For the pairing chan-
nel, the finite-range separable force [37] with pairing strength
G = 728 MeV fm3 is used. The RHB equation (2) is solved
self-consistently by expanding the qp wave functions in terms
of three-dimensional harmonic oscillator basis in Cartesian
coordinates [44] with Nf = 10 major shells. The configuration
space for the present CI-PDFT calculations consists of zero-,
two-, and four-qp states. For simplicity, the four-qp states
are constructed by coupling two-qp proton states with two-qp
neutron states, and those with four like-nucleon configurations
are not included in the present investigation.

IV. RESULTS AND DISCUSSION

In Fig. 1, the neutron and proton qp energy levels with
energy lower than 4.0 MeV are depicted. The qp energy levels
are obtained by solving the RHB equation (2) iteratively, and
the obtained ground state is deformed with quadrupole defor-
mation β = 0.24. Therefore, the spherical quantum numbers
nl jm used to label the qp levels in Fig. 1 are only the main

FIG. 2. The calculated yrast states (solid dots) and energies of
angular momentum projected states for some important configura-
tions (different lines). Inset: The energies of angular momentum
projected states for all the configurations. Note that the energy of
the yrast state 0+ is renormalized to zero.

spherical components of the deformed qp wave functions.
Due to the time-reversal symmetry, the qp energy levels are
twofold degenerate, and the energies of qp levels denoted by
quantum numbers with opposite projections on the third axis
are the same. For the mean-field calculation, the time-odd in-
teractions do not contribute due to the time-reversal symmetry.
The corresponding creation operators β̂† of the qp states are
then used to generate the qp excited states |�η〉. As shown in
Eq. (6), the |�η〉 together with the intrinsic ground state |�0〉
form the configuration space of the CI-PDFT.

The dimension of the configuration space is truncated with
a qp excitation energy cutoff Ecut. The adopted Ecut for two-qp
states here is 5.0 MeV, and the resultant configuration space
consists of 30 states including 21 two-qp states for neutron
and 9 ones for proton. For the four-qp states, only the ones
with two g9/2 neutrons are considered, and the number of four-
qp states in the configuration space is 27.

In the following, all the aforementioned 58 states including
30 two-qp states, 27 four-qp states as well as one intrinsic
ground state |�0〉 are included in the CI-PDFT calculations.
The energies of angular momentum projected states for the
58 configurations as functions of spin are plotted in the inset
of Fig. 2. Such a plot is also named as the band diagram
[38], which provides useful information for understanding the
structure changes even before the diagonalization is carried
out. The energy of a band η is defined as

Eη(I ) = 〈�η|Ĥ P̂I
KK |�η〉

〈�η|P̂I
KK |�η〉

, (12)
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which represents the expectation value of the Hamiltonian
with respect to the projected qp states |�η〉. Because the
configurations are axially deformed in the present work, it is
convenient to use the quantum number K to classify them.

In Fig. 2, the zero-qp band associated with the in-
trinsic ground state |�0〉 (0qp K = 0) and the bands
built on top of five additional two- or four-qp configu-
rations that represent the most important ones for each
kind of configuration are presented. The two-qp neu-
tron bands are marked as “ν2qp”, and the corresponding
configurations are respectively ν(g9/2,−1/2)1(g9/2,3/2)1 for
K = 1 and ν(g9/2,1/2)1(g9/2,3/2)1 for K = 2. The four-qp
bands marked as “4qp” are coupled with two g9/2 neu-
trons and two ( f p) protons, and their configurations are
ν(g9/2,−1/2)1(g9/2,1/2)1 ⊗ π (p1/2,1/2)1(p1/2,−1/2)1 for K = 0,
ν(g9/2,−1/2)1(g9/2,3/2)1 ⊗ π (p1/2,1/2)1(p1/2,−1/2)1 for K = 1,
and ν(g9/2,1/2)1(g9/2,3/2)1 ⊗ π (p1/2,1/2)1(p1/2,−1/2)1 for K =
2, respectively. It is seen that the energy of the 0qp band
with K = 0 increases with spin and the band quickly enters
into the high energy region, thus becoming unfavored for the
states in the high spin region. In contrast, the ν2qp bands
with K = 1 and K = 2 show first a constant dependence with
spin, and then cross the 0qp band at I = 8h̄. This behavior
makes the two-qp states with two g9/2 neutrons the most
important configurations for the spin interval I = 8–14 h̄. The
ν2qp bands become less favorable above I = 14h̄, and the 4qp
bands with K = 0, K = 1, and K = 2 cross them and become
more important. From the analysis of the band diagram, the
dominant role of the g9/2 neutrons for the description of the
yrast states of 60Fe is clearly illustrated. The solid dots marked
as “Yrast” in Fig. 2 denote the lowest energy states for a
given spin I , which are obtained by mixing all the angular
momentum projected states through the diagonalization of the
Hamiltonian. These are the theoretical results to be compared
with the data. The energies and B(E2) transition probabilities
for the yrast states in 60Fe calculated by the CI-PDFT with
and without time-odd interactions and their comparisons with
the available data [36,45] are shown in Fig. 3. Meanwhile,
we show the probability amplitudes |GI

η|2 for each of the yrast
states with spin I in Fig. 4 to better illustrate the band structure
changes.

It is found that the energy levels as well as the E2 tran-
sition probabilities calculated by the CI-PDFT with time-odd
interactions agree well with the available data. In particular,
the irregularity shown in the energy levels, i.e., the com-
pressed levels spacings, at around I = 8h̄ is also reproduced
satisfactorily. The irregularity is mainly caused by the band
crossing between the ν2qp neutron bands with K = 1, 2 and
the 0qp band with K = 0. From the probability amplitudes
|GI

η|2 shown in Fig. 4, it is seen that the 0qp state plays domi-
nant roles for the yrast states with I � 6h̄. The corresponding
probability amplitude |GI

η|2 is 0.90 for the state with I = 0h̄
and then decreases gradually with spin, being 0.13 for the
yrast state with I = 8h̄. The |GI

η|2 of the ν2qp neutron states
with K = 1 and 2 increase suddenly at I = 8h̄, which indi-
cates that the yrast band structure changes from the 0qp state
to the ν2qp states and is consistent with the drop observed in
the B(E2) value at around I = 8h̄. The ν2qp neutron states
hold their dominant roles up to I = 14h̄, after which the 4qp

FIG. 3. The energy spectra (MeV) and B(E2) transition proba-
bilities (W.u.) calculated by the CI-PDFT for the yrast band in 60Fe,
in comparison with data available in Refs. [36,45].

states with K = 0, K = 1, and K = 2 begin to compete with
them. The 4qp states win after I = 16h̄, and the yrast states
are predicted to be of 4qp structure. Note that the second band
crossing caused by the 4qp states is much weaker than the one
caused by the ν2qp states, and, thus, no clear drops of B(E2)
values are observed at around I = 14h̄.

The energies of yrast states are overestimated by the
CI-PDFT calculations without time-odd interactions. The

FIG. 4. The probability amplitudes |GI
η|2 for all the qp states

involved in the description of the yrast states. For each spin, the
|GI

η|2 are divided into three regions and are marked as “0qp”, “2qp”,
and “4qp”, representing the contributions from intrinsic ground state,
two-qp states, and four-qp states, respectively. The results of two-qp
and four-qp states are plotted according to their qp excitation ener-
gies in ascending order. The |GI

η|2 associated with the important qp
states are denoted by different color bars.

054311-4



CONFIGURATION-INTERACTION PROJECTED DENSITY … PHYSICAL REVIEW C 105, 054311 (2022)

FIG. 5. The kinetic moment of inertia calculated by the CI-PDFT
with and without time-odd interactions, in comparison with the data
[36] and the results calculated by the PSM [35].

excitation energy for the yrast state with I = 20h̄ is pre-
dicted to be 25.5 MeV, around 7.5 MeV higher than the
corresponding data. The discrepancy might originate from the
underestimation of the corresponding moments of inertia. To
better clarify this phenomenon, the kinetic moments of inertia
(MOI) calculated by the CI-PDFT with and without time-odd
interactions are shown in Fig. 5, in comparison with the data
and the results calculated by the PSM. It is seen that the
MOI calculated without time-odd interactions underestimate
the data, especially for the ones with I � 10h̄. In comparison,
the PSM results in Ref. [35] reproduce the data well for states
with I = 0–6 h̄ and I = 10–20 h̄. However, a sharp increase of
MOI occurs at I = 6h̄ for both of the PSM calculations and the
CI-PDFT ones without time-odd interactions. This disagrees

with the experimental observation. The inclusion of time-odd
interactions predicts larger MOI and delays the appearance
of the band crossing and, thus, achieves better descriptions
of the data. Note that the enhancements of MOI caused by
the time-odd interactions have also been obtained within the
framework of cranking and tilted axis cranking relativistic
DFTs [46–48].

V. SUMMARY

In summary, the effects of four-quasiparticle configurations
and time-odd interactions are investigated in the framework of
configuration-interaction projected density functional theory
by taking the yrast states of 60Fe as examples. The ener-
gies and the B(E2) transition probabilities of the yrast states
are well reproduced based on the universal PC-PK1 density
functional. Through the analysis of the angular momentum
projected states and the probability amplitudes for some im-
portant quasiparticle configurations, the dominant roles of the
neutron g9/2 orbits are emphasised and a weak band crossing
caused by the four-quasiparticle configurations at around I =
14h̄ is also predicted. It is found that the inclusion of the time-
odd interactions could increase the kinetic moments of inertia
and delay the appearance of first band crossing observed in
60Fe. This makes the calculated results agree better with the
experimental data.
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