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Role of spin-orbit strength in the prediction of closed shells in superheavy nuclei
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Using the microscopic-macroscopic approach based on the modified two-center shell model, the ground-
state shell corrections are analyzed as a function of spin-orbit strength for even-Z superheavy nuclei in the
α-decay chains containing 295–300,302,304120 nuclei. The influence of the spin-orbit strength on the positions of
shell closures and the description of the low-lying one-quasiparticle spectra for 251Cf, 243Cm, 243Bk, and 251Es
nuclei are studied in detail. The importance of studying the nuclear structure of actinides for predicting the next
double magic nucleus beyond 208Pb is demonstrated.
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I. INTRODUCTION

Experiments on complete fusion reactions with a 48Ca
beam and various actinide targets were successfully carried
out at JINR (Dubna), GSI (Darmstadt), and LBNL (Berke-
ley) in order to synthesize superheavy nuclei (SHN) with
the charge numbers Z = 112–118 [1–10]. The SHN with
Z = 112 and 113 were also produced at GSI (Darmstadt)
and RIKEN (Tokyo) in cold fusion reactions with target nu-
clei 208Pb and 209Bi [11,12]. The new Superheavy Elements
Factory at JINR opens up new possibilities in SHN research
[3,13]. So the study of the physical (the nuclear structure,
the location of the shell closures, and the decay modes) and
chemical properties of superheavy elements, as well as of the
synthesis of new SHN, are of interest. A theoretical analy-
sis is required to guide experimental studies of the heaviest
nuclei. Existing microscopic-macroscopic (MM) approaches
[14–17] and self-consistent mean-field approaches [18–22]
provide the basis for intensive calculations of the properties
of heavy nuclei. However, a hitherto unsolved controversy of
SHN physics is that the MM approaches [14–17] mainly lo-
cate the proton shell closure at flerovium (Fl, Z = 114) while
the nonrelativistic and relativistic self-consistent approaches
predict stronger shell effect at Z = 120–126. As found in
Refs. [17,23,24], in the MM approach based on the modified
two-center shell model (TCSM) [25] the proton shell closure
can drift from Z = 114 to Z = 120 when adjusting slightly
the nuclear mean field where spin-orbit interactions are of
paramount importance for shell closures. The parameters of
the TCSM were set to describe the spins and parities of the
ground state and Qα values of the known heavy nuclei. The
phenomenological model [26] relies on the Z = 126 closed
shell. Since nuclear models contain a number of parameters
which are fixed for the best description of known nuclei, their
predictive power may be less for nuclei that are far from
the well-studied region of the nuclear chart. To improve the
quality of predictions, one can specially adjust the parameters
for describing the known properties of shell-stabilized nuclei
close to the region of interest. We expect the difference in

the predicted shell closures in SHN to be mainly caused by
different central mean-field and spin-orbit potentials used.

The aim of the present paper is to investigate the role spin-
orbit strength in the region of SHN by using the MM approach
[17,23,24]. The position of the proton shell closure in SHN
seems to be more sensitive to spin-orbit interaction rather
than central mean-field potential [27–29]. The spin-orbit po-
tential predestines if the proton shell is located at Z = 114
or 120 or 126. We start with the spin-orbit strength adopted
in Refs. [17,23,24] to describe the low-lying quasiparticle
states in even-odd heavy nuclei for which the experimental
data are available. This spin-orbit strength results in proton
shell closure at Z = 120 and not at Z = 114, as in other MM
approaches. In this paper, we will show how this strength
should be changed to shift the proton shell closure to Z = 114
and Z = 126. The change of the quality of description of
one-quasiparticle spectra will be presented with variation of
the spin-orbit strength.

II. MODEL

The single-particle Hamiltonian of the TCSM in the cylin-
der coordinates z, ρ, φ is written as

H = − h̄

2m
∇2 + V (ρ, z) + Vls + Vl2 . (1)

The shape of a nucleus is presented as two joined ellipsoids
with the semiaxes a and b and the centers at z1 and z2, z1 =
−z2. The momentum-independent part of the Hamiltonian is

V (ρ, z) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 mω2

z (z − z1)2 + 1
2 mω2

ρρ
2, z < z1,

1
2 mω2

ρρ
2, z1 < z < z2,

1
2 mω2

z (z − z2)2 + 1
2 mω2

ρρ
2, z > z2,

where m is a nucleon mass, ωρ/ωz = a/b = β, and z2 − z1 =
2R0λ − 2a. Here, ωρ = βω0R0/a, h̄ω0 = 41A−1/3 MeV, and
R0 = 1.2249A1/3 fm. The dimensionless parameters λ and
β are related to a and b through the condition of volume
conservation.
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The momentum-dependent part of the Hamiltonian (1)
consists of the spin-orbital term

Vls = − 2h̄κ

mω′
0

(∇V × p)s (2)

and the l2 term

Vl2 = −κμh̄ω′
0l2 + κμh̄ω′

0
N (N + 3)

2
δi f . (3)

Here δi f is a purely diagonal operator, N is the principal
quantum number of the spherical oscillator, h̄ω′

0 = 41A′−1/3

MeV, and A′ = Aab2/R3
0.

The terms Vls and Vl2 (see Ref. [25]) contain the parameters
κn,p and μn,p, respectively. In Eqs. (2) and (3), the indices n, p
are skipped for brevity. In order to improve the description of
spins and parities of the nuclear ground states, we introduce a
weak dependence on (N − Z ) in the parameters κn,p and μn,p.
For the actinide and transactinide region we suggest [24]

κn = −0.076 + 0.0058(N − Z ) − 6.53 × 10−5(N − Z )2

+ 0.002A1/3,

μn = 1.598 − 0.0295(N − Z ) + 3.036 × 10−4(N − Z )2

− 0.095A1/3 (4)

for neutrons and

κp = 0.0383 + 0.00137(N − Z ) − 1.22 × 10−5(N − Z )2

− 0.003A1/3,

μp = 0.335 + 0.01(N − Z ) − 9.367 × 10−5(N − Z )2

+ 0.003A1/3 (5)

for protons. If Eqs. (4) lead to κn < 0.045 + 0.002A1/3, we
set κn = 0.045 + 0.002A1/3. With the Nilsson-type single-
particle potential the weak dependence on N − Z is incorpo-
rated into the momentum-dependent part of the single-particle
Hamiltonian. With Eqs. (4) and (5) we are able to describe
correctly the ground-state spins of many heavy nuclei treated.
Note that the introduced additional dependence on N − Z
mainly supplies a better order of the single-particle levels near
the Fermi surface.

With the TCSM the potential energy is calculated as a sum
of two terms. The first one is a smoothly varying macroscopic
energy (the Coulomb and surface energies) calculated with
the liquid drop model. The second one contains the shell Esh

and pairing corrections arising due to the shell structure of the
nucleus.

The contribution of an odd nucleon, occupying a single-
particle state |μ > with energy eμ, to the energy of a nucleus is
described by the one-quasiparticle energy

√
(eμ − eF )2 + 
2.

Here the Fermi energy eF and the pairing-energy gap pa-
rameter 
 are calculated with in the BCS approximation. A
pairing interaction of monopole type with the strength pa-
rameters G n

p
= (19.2 ∓ 7.4 N−Z

A )A−1 MeV [30] for neutrons
and protons is used. For solving the pairing equations for
eF and 
, the same prescription as in Ref. [30] is used.
In the calculations of eF and 
 the blocking effect [31] is
not explicitly taken into consideration. To effectively take it
into account in calculations of one-quasiparticle excitations

FIG. 1. The calculated shell-correction energies (symbols are
connected by the lines) as functions of the coefficient k for 286,288114
and 300,302,304120 nuclei.

Eμ = √
(eμ − eF )2 + 
2 −

√
(e′

μ − eF )2 + 
2, where e′
μ is

the single-particle energy of the occupied level just below
the Fermi level, we use the results of Ref. [31], where the
reduction of the calculated 
 occurs by about a factor of 0.85.
Calculating the potential energy surface as a function of col-
lective coordinates with the TCSM, we find the ground-state
potential minimum in which the energies of the low-lying
one-quasiparticle states are obtained. The stability of SHN
correlates with the shell correction energy Esh in the ground
state. The larger |Esh| is, the greater the stability of SHN is
with respect to spontaneous fission and α decay.

III. CALCULATED RESULTS

A. Position of shell closure

In this subsection, we try to understand the difference in
predictions of proton shell closure in SHN. The fact that spin-
orbit potential influences the positions of shells is known. The
question is how. In order to study the influence of spin-orbit
strength in the region of SHN with the modified TCSM, we
take the spin-orbit term as kVls and study how the shell cor-
rection energies depend on the coefficient k varying from 0.8
to 1.2. The value k = 1 corresponds to the parameters defined
in Eqs. (4) and (5) [17,23,24].

The calculated shell corrections Esh are presented in Fig. 1
as functions of k for the nuclei 286,288Fl and 300,302,304120. The
smallest values of Esh are achieved at k = 1.0 for almost all
nuclei. The only exception is 304120, which has a minimum
value of Esh at k = 0.9. So, the dependencies of Esh on k show
the minima at k ≈ 1 for both Z = 114 and 120. Note that the
shell effects are stronger at Z = 120 than at Z = 114 in the
case of 0.7 � k � 1.1.

In Figs. 2–4, the values of shell correction energies are
calculated using the spin-orbit strength of 0.8, 1, and 1.2
times previously fitted value [Eqs. (4) and (5)] [17,23,24] for
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FIG. 2. The calculated values of shell corrections are presented
for the nuclei of α-decay chains containing 295,297,299120. The results
are obtained at k = 0.8 (squares), 1.0 (circles), and 1.2 (triangles).
The mass numbers of nuclei are marked.

the SHN along the α-decay chains containing 295,297,299120,
296,298,300120, and 302,304120, respectively. At Z � 120 and
k = 1, we obtain the largest |Esh| for most isotopes. The value
of Esh becomes more sensitive to k at Z > 120. While the
value of Esh goes up at k = 1.2, it goes down at k = 0.8. At
k = 1.0, the isospin dependencies of Esh is relatively weak
for Z = 120 and N � 180 (Figs. 2 and 3). The stronger shell
effects in 302,304120 (Fig. 4) are related to the neutron shell
at N = 184. In most cases the minimal value of Esh corre-
sponds to Z = 120 at k = 1. If the neutron number approaches
N = 184, the minimum is shifted to Z = 124 or 126. Thus,
the shell effects are stronger at Z = 120 than at Z = 114 at
k = 1.

Very pronounced minima of Esh appear at Z = 126 with
decreasing k up to 0.8 (Figs. 2–4). Close values of Esh for
Z = 124 and 126 in Figs. 2(c), 3(c), and 4 at k = 0.8 reflect a
strong role of the neutron shell at N = 184. The neutron shell
at N = 174 is pronounced only in 291,292Og. So, the weaker
the spin-orbit strength is, the stronger the shell effects are at
Z = 126.

For k = 1.2, there is a minimum of Esh at Z = 114 in
all α-decay chains considered (Figs. 2–4). Additional min-
ima corresponding to the nuclei 302,304120 appear due to the

FIG. 3. The same as in Fig. 2, but for the nuclei of α-decay chains
containing 296,298,300120.

N = 184 shell. Note that the stability of the nuclei with Z >

120 decreases with increasing k. The strength of spin-orbit
interaction is crucial to define the position of the shell closures
in nuclei beyond lead. The 20% variation of the spin-orbit
strength can strongly shift the position of the minimum of Esh.

The shape of the island of stability is mainly defined by
the spin-orbit strength, a change of which by 20% leads to
considerable changes. At k > 1, it is located between Z = 112
and 120, while at k � 1 it is extended to Z = 126. The exper-
iments on production of the Z = 120 nucleus could help us
to answer the question of where the center of island stability
is located and whether there is a shelf of stability beyond
Z = 120. Indeed, the properties of the Z = 120 nucleus will
reveal the stability/nonstability of nuclei with larger Z .

As mentioned in the Introduction, different models predict
the proton shell either at Z = 114 or at Z = 120 and 126. This
difference in predictions seems to be related to the spin-orbit
strengths used in the models. For example, a slight increase
of the spin-orbit strength in Ref. [29] with respect to that
in Ref. [27] results in the shift of the shell closure from
Z = 120 to Z = 114. In Refs. [29], it was proposed to extract
the spin-orbital potential from the energy density functional
used in the self-consistent calculations. The comparison of
spin-orbit strengths in different models (MM, relativistic, and
nonrelativistic mean-field models) can help us to understand
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FIG. 4. The same as in Fig. 2, but for the nuclei of α-decay chains
containing 302,304120.

the variety of their predictions of proton shell closure in the
region of SHN.

B. Dependence of one-quasiparticle spectra
on spin-orbit strength

To conclude on the reliability of the spin-orbit strength
(the value of k), we consider the spectra of low-lying one-
quasiparticle states in heavy nuclei for which there are
corresponding experimental data. As mentioned, the param-
eters of the TCSM were set at k = 1 for the best description
of the experimental one-quasiparticle spectra as well as the
spins and parities of the ground states. In Figs. 5–8, the one-
quasiparticle spectra calculated for 251Cf, 243Cm, 243Bk, and
251Es at k = 0.8, 1, and 1.2 are compared with the available
experimental data [32]. The states are marked by the Nilsson
asymptotic quantum numbers. Note that the experimental en-
ergies, spins, and parities are well described (within 250 keV)
with k = 1.0. The calculated results obtained at k = 0.8 and
1.2 are less consistent with the experimental data. In particu-
lar, the ground-state spins and parities cannot be reproduced.
It should also be noted that the experimental isomeric state
7
2

+
in the 251Cf nucleus is reproduced in the calculation only

at k = 1. An attempt to improve the description at k = 0.8 and
1.2 by setting the parameter μ in Eq. (3) failed. So a reason-

FIG. 5. The spectra of low-lying one-quasineutron states, cal-
culated at indicated k for 251Cf, are compared with the available
experimental data [32]. The states are marked by the Nilsson asymp-
totic quantum numbers.

able change in the value of Vl2 does not improve the low-lying
spectrum at k �= 1. The best description of the structure of
actinides and transactinides at k = 1 corresponds to stronger
shell effects at Z = 120 although shell effects at Z = 114 are
also pronounced.

In most cases, the one-quasiparticle spectra become denser
if the value of k deviates from 1. We found that at k = 0.9 the
calculated ground-state spins are still in good agreement with
the experimental assignments, but the higher energy levels do
not fit the data. At k = 1.1, there are shifts of the levels with
low spin upward and the states with large spin downward.
Thus, at k = 1 we have the best description of low-lying
one-quasiparticle states of actinides and the strongest shell
effects for nuclei with Z � 120. It seems that the quasipar-
ticle structure of actinides contains some information about
the next double magic nucleus beyond 208Pb. So, the nuclear

FIG. 6. The same as in Fig. 5, but for 243Cm.
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FIG. 7. The spectra of low-lying one-quasiproton states, calcu-
lated at indicated k for 243Bk, are compared with the available
experimental data [32]. The states are marked by the Nilsson asymp-
totic quantum numbers.

spectroscopic investigations are important in the region of ac-
tinides and transactinides for reliable prediction of the proton
shell in SHN. The intensive study of structure of heavy nuclei
allows us to define the parameters of microscopic approaches
and reliably predict the shell effects in SHN.

IV. SUMMARY

At the spin-orbit strength (k = 1) taken in the modified
TCSM the strongest shell effects are found for the nuclei with
Z = 120, or with 124 and 126 at N approaching 184. How-
ever, the variation of the value of Esh in the isospin chains is
relatively small, which confirms the results of self-consistent
calculations [27,28]. With decreasing spin-orbit strength (k =
0.8) the proton shell closure is shifted to Z = 126. For larger
spin-orbit interaction (k = 1.2), the nuclei with Z = 114 are
calculated to have the largest values of shell-correction en-
ergy. The shell effect at N = 184 is quite strong and interplays
with proton shell effects while the shell effect at N = 174
is less pronounced. So, the 20% variation of the spin-orbit

FIG. 8. The same as in Fig. 7, but for 251Es.

strength can strongly shift the center of island stability. By
extracting the mean-field potentials from the energy den-
sity functionals used in the self-consistent approaches and
comparing them with those in the MM models, one can un-
derstand the difference in predictions of proton shell closuret
in SHN.

As shown, the quality of the description of low-lying
one-quasiparticle states of actinides crucially depends on the
spin-orbit strength. The spin-orbit strength at k = 1 allows
us to describe well the low-lying one-quasiparticle spectra in
heavy nuclei [17,23,24]. At k = 0.8 and 1.2 the calculated
spectra are less consistent with the experimental data. Note
that at k = 1 we have also the strongest shell effects for nuclei
with Z � 120. So, the nuclear structure of actinides contains
some information about the next double magic nucleus be-
yond 208Pb, and studies of the structure of the heaviest nuclei
allow us to define the parameters of the nuclear mean field and
reliably predict the shell effects in still unknown SHN.
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