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Combined Coulombic and magnetic contributions to dispersion in e + 12C collisions
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Dispersion corrections to elastic electron scattering from a 12C nucleus are calculated within the second-order
Born approximation. Three strong transient nuclear excitations are considered, at 4.439 MeV (2+), 17.7 MeV
(1−), and 23.5 MeV (1−). The Friar-Rosen-type Coulomb term is supplemented with the transverse part of the
photon propagator. It is found that the dispersive cross-section changes in the first diffraction minimum reach
nearly 10%, rising more slowly with collision energy beyond 400 MeV. Magnetic scattering can be strong for
the individual excited states and lowers the dispersion effect considerably at energies below 400 MeV. However,
it contributes at most 10% at the higher energies investigated.
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I. INTRODUCTION

The discrepancies between the quantum-electrodynamical
(QED) corrected elastic scattering data in the vicinity of
the first diffraction minimum of the differential cross sec-
tion [1–4] and calculations based on the phase-shift approx-
imation are still outstanding problems [5]. These deviations
are commonly attributed to the virtual excitation of the target
nucleus during the scattering process, known as dispersion.
Such effects were first investigated by Schiff [6] and by Lewis
[7], using a closure approximation for evaluating the sum
over the transient nuclear excitations, together with simple
parametrizations of the nuclear charge distributions and cor-
relation functions.

A more advanced treatment of the dispersion effects, par-
ticularly for the 12C nucleus, was provided by Friar and Rosen
[8,9]. They also used the closure approximation, which was
subsequently improved by some correction terms. However,
they employed a harmonic-oscillator-based model for the re-
sulting ground-state correlation function. There were further
dispersion estimates for 12C at 50-MeV impact by Bottino
and Ciocchetti [10], who avoided the closure approxima-
tion and instead described the transition to excited states in
terms of approximate form factors. De Forest [11] consid-
ered explicitly all nuclear excited states up to the tenth shell,
calculated within the harmonic-oscillator model, but used an
16O target. All these papers considered only the Coulom-
bic contribution in the photon propagators, responsible for
the charge-charge interaction between the impinging electron
and the target nucleus, in order to account for the dominant
contribution.

Magnetic dispersion corrections were investigated by
Goldberg [12] in the case of a helium target. He also made
the closure approximation and treated the helium nucleons
as independent particles, thus ignoring correlation effects.
Moreover, for coping with the integrals, he made an expansion
which is only valid for the backmost scattering angles. By

considering only one of the transverse terms and only the
convection current, he estimated the magnetic contribution to
elastic scattering to be well below 1%, i.e., much smaller than
the Coulombic contribution to dispersion.

A reinvestigation of magnetic scattering is motivated
by the fact that in nuclear excitation, magnetic contri-
butions can play a role even in the forward hemisphere
[13]. Transverse transitions are particularly important for the
excitation of the giant-dipole resonance [14,15], which ex-
tends in 12C from 15 to 35 MeV [16]. Such excitations
are described by using transition densities calculated within
the quasiparticle random-phase approximation (QRPA) or
with the more elaborate quasiparticle-phonon model (QPM)
[17,18]. These densities consider both convection and mag-
netization currents, as well as the correlation between the
nucleons.

In the present work all transverse parts of the pho-
ton propagator, which are allowed by the requirement of
gauge invariance [12], are retained. Moreover, instead of
employing the closure approximation, the virtual excitation
of two strong high-energy dipole and one quadrupole state
is explicitly considered. This choice is based on investi-
gations where giant-dipole intermediate states, constructed
from particle-hole harmonic-oscillator basis states, were taken
into account [19]. We were also inspired by the predic-
tion [10] that excitations of low multipolarity, in particular,
dipole, will provide the dominant contribution to dispersion
for collision energies well below 1 GeV. And finally, it
was discovered in spin-asymmetry considerations that highly
excited states are extremely important for the dispersion
effect [20,21].

The paper is organized as follows. In Sec. II the theory is
outlined, and Sec. III provides some numerical ingredients.
Results for the dispersion correction at collision energies from
220 to 750 MeV are given in Sec. IV, followed by the conclu-
sion (Sec. V). Atomic units (h̄ = m = e = 1) are used unless
indicated otherwise.
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II. THEORY

The exchange of two photons, as occurs in dispersion,
is described in terms of the Feynman box diagram [4,22].
Only the direct box graph will be considered here. Within the
second-order Born approximation, the transition amplitude
for dispersion is given by [9,23]

M f i = 4π

(2π )3

(
e2

c

)2 ∫
d p

1(
q2

2 + iε
)(

q2
1 + iε

)
×

3∑
μ,ν=0

tμν (ω1)
∑
n �=0

T μν
n , (2.1)

where ω1 = Ei − ωn −
√

(q1c)2 + M2
T c4 + MT c2 is the pole

of the nuclear propagator. In this expression, Ei is the total
energy of the impinging electron and MT is the nuclear mass
number. The contribution from the poles of the electron prop-
agator, which enters into (2.1) in terms of

tμν (ω1) = c u
(σ f )+
k f

γ0γμ

ω1 + cαp + βmc2

ω2
1 − p2c2 − m2c4 + iε

× γ0γν u(σi )
ki

, (2.2)

is neglected as being of minor importance [9]. Here, ki and k f

are, respectively, the initial and final momenta of the electron,
which is described by the free four-spinors u(σi )

ki
and u

(σ f )
k f

with spin projections σi and σ f [24]. The symbols β,α, γ0, γν

denote Dirac matrices. The sum over n in (2.1) runs over all
nuclear states with excitation energy ωn �= 0, and T μν

n is the
nuclear tensor component. The four-momenta q1 and q2 from
the two photon propagators are interrelated with the interme-
diate electron momentum p = (ω1/c, p) by q1 = ki − p and
q2 = p − k f .

Making use of the gauge invariance, one can
decompose [9,12]

gμν

q2 + iε
= − 1

q2
δμ0δν0 − δmn − q̂mq̂n

q2 + iε
δμmδνn, (2.3)

where gμν is the metric tensor, μ = 0, m with m = 1, 2, 3 and
q̂m = qm/|q|. The first term refers to the Coulombic contri-
bution, and the second term denotes the transverse part of
the photon propagator. This leads to the decomposition, using
tμνT μν

n = tμν

∑
ρτ

gμρgντ Tn,ρτ [24]:

3∑
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q2

2 + iε
)(

q2
1 + iε

) T μν
n = 1

q2
1q2

2

t00 Tn,00

+ 1(
q2

1 + iε
)

q2
2

[
3∑

m=1

t0m

(
Tn,0m − q̂m

1

3∑
k=1

q̂k
1 Tn,0k

)]

+ 1

q2
1

(
q2

2 + iε
)
[

3∑
m=1

tm0

(
Tn,m0 − q̂m

2

3∑
k=1

q̂k
2 Tn,k0

)]

+ Rn. (2.4)

The fourth term, Rn, relates to the product of the two trans-
verse parts:

Rn = 1(
q2

1 + iε
) (

q2
2 + iε

) 3∑
r,k=1

(
trk − q̂r

2

3∑
m=1

q̂m
2 tmk

)

×
(

Tn,rk − q̂k
1

3∑
t=1

q̂t
1 Tn,rt

)
. (2.5)

It is of opposite sign as compared to the first two transverse
terms in (2.4) and will be of importance for nuclear excitations
with a strong magnetic contribution.

The nuclear tensor component Tn,00 describes the excita-
tion of the state |n〉 and the subsequent return to the ground
state |0〉, mediated by the charge transition density �:

Tn,00 = 〈0| �(q2) |n〉〈n| �(q1) |0〉, n �= 0. (2.6)

Since 12C is a spin-zero nucleus, only one multipole L con-
tributes to the excitation of the state |n〉. Hence [25,26]

〈n| �(q) |0〉 =
∫

drN�n0(rN ) eiqrN

=
∫

drN �L(rN )Y ∗
LM (r̂N ) eiqrN , (2.7)

where �L(rN ) is the transition density in coordinate space,
calculated from nuclear models (see, e.g., [27]), and YLM is
a spherical harmonic function [28]. Equation (2.7) is readily
expressed in terms of the charge form factor F c

L ,

〈n| �(q) |0〉 = 4π iL F c
L (|q|) Y ∗

LM (q̂), (2.8)

where F c
L (q) = ∫

r2
N drN�L(rN ) jL(qrN ) with jL a spherical

Bessel function [29].
The tensor components Tn,0m and Tn,m0 refer to one tran-

sition induced by �, the second one by the current transition
density J = (Jm)m=1,2,3,

Tn,m0 = 〈0| Jm(q2) |n〉〈n| �(q1) |0〉,
Tn,0m = 〈0| �(q2) |n〉〈n| Jm(q1) |0〉, n �= 0. (2.9)

The components Tn,rk describe transitions where excitation
and decay are due to the current transition density,

Tn,rk = 〈0 | Jr (q2) | n〉〈n | Jk (q1) | 0〉. (2.10)

Considering excited states with parity (−1)L, the magnetic
transition density in coordinate space is defined by [26,27,30]

Jn0(rN ) = −i
∑

λ=L±1

JLλ(rN )Y ∗M
Lλ (r̂N ), (2.11)

where Y ∗M
Lλ is a vector spherical harmonics [28]. In Fourier

space one gets

〈n| J(q) |0〉 =
∫

drN Jn0(rN ) eiqrN

= − 4π i
∑

λ=L±1

iλ Fte
Lλ(|q|) Y ∗M

Lλ (q̂), (2.12)
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where the transverse form factor Fte
Lλ(q) =∫

r2
N drN JLλ(rN ) jλ(qrN ) has been introduced. We note that

the sum over n in (2.1) runs for a given angular momentum
state L also over its magnetic quantum numbers M. Using
completeness, this sum can easily be carried out in the case
of Tn,00 [28],

L∑
M=−L

TL,00 = 4π (2L + 1) F c
L (|q1|) F c

L (|q2|) PL(cos ϑ12),

(2.13)
where PL is a Legendre polynomial and ϑ12 is the angle
between q1 and q2.

The differential cross section for the elastic scattering of
unpolarized electrons, including dispersion, is in lowest order
given by [9,23]

dσ box

d� f
= |k f |

|ki|
1

frec

1

2

∑
σiσ f

[| fcoul|2 + 2 Re
{

f ∗
coulA

box
f i

}]
,

(2.14)
where Abox

f i comprises the four contributions according to (2.4)

Abox
f i = 2

√
EiE f

c2

∑
L

[
Mc

f i(L) + Mte1
f i (L) + Mte2

f i (L)

+ Mte3
f i (L)

]
, (2.15)

and fcoul(σiσ f ) is the Coulomb scattering amplitude, consist-
ing of the direct term A and the spin-flip term B as calculated
within the phase-shift analysis [31]. If u(σi )

ki
and u

(σ f )
k f

represent
helicity eigenstates (σ = +/− for positive/negative helicity),
one has

fcoul(++) = fcoul(−−) = A,

fcoul(+−) = − fcoul(−+) = i B. (2.16)

Due to the small mass MT of the light 12C nucleus, the
consideration of recoil is important, leading to a final (to-
tal) energy E f which is smaller than Ei. In the first-order
Born approximation for fcoul, where the inclusion of recoil
is straightforward, it leads to a shift of the position of the
first diffraction minimum of the Coulomb cross section to
higher angles. In the phase-shift analysis used here, recoil is
accounted for by using an average collision energy Ē instead
of Ei,kin (where Ekin = E − c2 is the kinetic energy),

Ē = √
Ei,kinEf,kin, (2.17)

adopting the prescription of [32,33]. The application of
(2.17) is important, since only then does the calculated mini-
mum position of the Coulomb cross section, dσ coul/d� f =
(|A|2 + |B|2)|k f |/(|ki| frec), agree with experiment. This is
demonstrated in Fig. 1 for 431.4-MeV electron impact, in
comparison with the experimental data. The increase of angle
with recoil is clearly seen.

Figure 2(a) shows the position ϑmin of the first cross-
section minimum as a function of collision energy. The
displayed data points were obtained by means of spline inter-
polating the measured angular distributions and subsequently
selecting the angle which corresponds to their minimum

FIG. 1. (a) Elastic scattering cross section for 431.4-MeV
e + 12C collisions as a function of scattering angle ϑ f . Shown is
dσcoul/d� f with (− − −−) and without (· · · · · · ) the consideration
of recoil in comparison with the measurements of Offermann et al.
(�, [4]). Included is the total cross section dσ box/d� f from (2.14)
with (2.15) (——–). (b) is an enlarged version of (a).

cross-section value. The change of ϑmin with respect to the
no-recoil Coulombic result, both for theory and experiment,
is explicitly depicted in Fig. 2(b). Also here, the consideration
of recoil improves the agreement with the measurements. The
additional recoil prefactor frec in (2.14) is given by [34]

frec = 1 − q2 E f

2MT c2 k2
f

(
1 − c2

MT E f

)
, (2.18)

with q = ki − k f the momentum transfer.
Below the integrals inherent in the four contributions to

(2.15) are provided, using the optimum choice of integration
variables. For the Friar-Rosen-type term Mc

f i, corresponding
to the Coulombic contribution in (2.4), the integration variable
is shifted from p to p′ = p − ki = −q1 such that q2 = p′ +
q, and ω1 = Ei − ωL −

√
p′2c2 + M2

T c4 + MT c2 becomes an-

gle independent. Here and below the identification p′ ≡
|p′|, TL,rk ≡ Tn,rk and ωL ≡ ωn is used. Then (setting e = 1),
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FIG. 2. (a) Position ϑmin of the first diffraction minimum as a
function of collision energy Ei,kin. Shown are the results from the
recoil-corrected (——–) and no-recoil (· · · · · · ) phase-shift anal-
ysis. The experimental data are from Offermann and co-workers
(�, [3,4]) and from Reuter et al. (◦, [2]). For the datum point
at 690 MeV, see text in Sec. IV B. (b) Angular change �ϑmin =
ϑmin(Ē )/ϑmin(Ei,kin ) − 1 as a function of collision energy in compar-
ison with the respective experimental data points from (a).

Mc
f i(L) = 2(2L + 1)

π c

∫ ∞

0
d p′

∫
d�p′

1

(p′ + q)2

×
u

(σ f )+
k f

[ω1 + cα(p′ + ki ) + βc2]u(σi )
ki

ω2
1 − (p′ + ki )2c2 − c4 + iε

× F c
L (p′) F c

L (|p′ + q|) PL(cos ϑ12), (2.19)

with cos ϑ12 = 1
|p′+q| [(k f cos ϑ f − ki ) cos ϑp′ +

k f sin ϑp′ sin ϑ f cos ϕp′ − p′], where ϑ f is the scattering
angle. The z axis is chosen along ki, and the (x, z) plane
contains k f and hence q. One has F c

L (q) ∼ qL for q → 0,
such that for L � 1 the integrand in (2.19) is well behaved
and can be dealt with as described in [35].1

The same integration variable p′ is chosen for the trans-
verse term Mte1

f i , which relates to the second expression

1In Eq. (2.19) of that work, the prefactor 2
√

EiEf /c2 is missing.

in (2.4). With q2
1 = �E1/c2 − q2

1 = (Ei − ω1)2/c2 − p′2 and
γ0γm = αm one gets

Mte1
f i (L) = 1

2π2c

∫ ∞

0

p′2d p′

(Ei − ω1)2/c2 − p′2 + iε

∫
d�p′

(p′ + q)2

×
3∑

m=1

u
(σ f )+
k f

[ω1 + cα(p′ + ki ) + βc2]αmu(σi )
ki

ω2
1 − (p′ + ki )2c2 − c4 + iε

×
L∑

M=−L

[
TL,0m − p̂′m

3∑
k=1

p̂′k TL,0k

]
. (2.20)

For the transverse term Mte2
f i , relating to the third expres-

sion in (2.4), the choice p′ = p − k f = q2 has to be made,
such that q1 = q − p′. Then

Mte2
f i (L) = 1

2π2c

∫
d p′

(q − p′)2

1

�E2/c2 − p′2 + iε

×
3∑

m=1

u
(σ f )+
k f

αm[ω1 + cα(p′ + k f ) + βc2]u(σi )
ki

ω2
1 − (p′ + k f )2c2 − c4 + iε

×
L∑

M=−L

[
TL,m0 − p̂′m

3∑
k=1

p̂′k TL,k0

]
, (2.21)

where ω1 = Ei − ωL + MT c2 −
√

(q − p′)2c2 + M2
T c4 and

�E2 = (ω1 − E f )2.
The integration variable p′ = q2 for the third transverse

term Mte3
f i from (2.5) is taken to be the same as for the second

term, leading to identical expressions for q1 and ω1 as in
(2.21). One gets

Mte3
f i (L) = − 1

2π2c

∫
d p′

(q−p′)2 − �E1
c2 −iε

1
�E2
c2 − p′2+iε

×
3∑

r,k=1

u
(σ f )+
k f

αr[ω1 + cα(p′ + k f ) + βc2]αku(σi )
ki

ω2
1 − (p′ + k f )2c2 − c4 + iε

×
L∑

M=−L

[
TL,rk − q̂k

1

3∑
m=1

q̂m
1 TL,rm

− p̂′r
3∑

m=1

p̂′m TL,mk

+ p̂′r q̂k
1

3∑
m=1

q̂m
1

3∑
t=1

p̂′t TL,tm

]
, (2.22)

with �E1 = (Ei − ω1)2.

III. NUMERICAL INGREDIENTS

For the determination of the phase shifts, the electronic
scattering states have to be calculated. They are obtained
by means of solving the Dirac equation with the help of
the Fortran code RADIAL of Salvat et al. [36]. The nuclear
potential is generated from the Fourier-Bessel representation
of the ground-state charge density of the 12C nucleus [37].
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The phase-shift summation, required for the evaluation of the
scattering amplitude fcoul [31], is performed with the help of
a threefold convergence acceleration [38].

From the transition densities �L, JL,L+1, and JL,L−1 (note
that in contrast to excitation by inelastic scattering, no weight
factor

√
4π is attached to the transition densities), the respec-

tive form factors are calculated. With the properties F c
L (q) ∼

qL and Fte
Lλ(q) ∼ qλ for q → 0, and with their product entering

into the integrals (2.20) and (2.21) by means of (2.9), the
worst case for convergence, λ = 0, is unproblematic with the
present choice of integration variables. Mte3

f i needs special care
but is also convergent.

As for the first transverse term (2.20), its difference to
the Friar-Rosen-type term (2.19) lies in the appearance of an
additional pole p′

0 from the denominator �E1/c2 − p′2 + iε,
where p′

0 ≈ ωL/c. Writing the denominator from the elec-
tron propagator (2.2) in the form F − G cos ϑp′ + iε with
ω1 as defined above (2.19), the pathological solutions p′

1, p′
2

(with p′
1 < p′

2) from F = −G can be determined analytically
(avoiding Newton’s method), and one finds nearly coinci-
dence, p′

1 ≈ p′
0. After extracting the singularity cos ϑp′ =

F/G in the cos ϑp′ integral (see [35]) one is left with an
integral of the type (with ε0 → 0)(∫ p′

1−ε0

α

+
∫ β

p′
1+ε0

)
d p′ ln |p′

1 − p′|
p′ − p′

0 − iε
f (p′)

≈
(∫ p′

1−ε0

α

+
∫ β

p′
1+ε0

)
d p′ ln |p′

1 − p′|
p′ − p′

1 − iε
[ f (p′) − f (p′

1)]

+ f (p′
1)

[
−1

2
ln2(p′

1 − α)+ 1

2
ln2(β − p′

1) + iπ ln |p′
0 − p′

1|
]
,

(3.1)

where p′
0 = p′

1 is used, except in the last term. Note that the
p′-integration interval has not only to be split in p′

1 and p′
2, but

also in |q|.
The second transverse term (2.21) is much harder, and it is

resorted to the approximation ω1 ≈ Ei − ωL (corresponding
to MT → ∞), such that the pole p′

0 from q2
2 = 0 remains

angle independent and the further singularities attain a simple
analytic form. Then the integrand has the structure∫ β

α

d p′ p′2

p′2 − p′2
0 − iε

∫ 1

−1
dx

×
∫ 2π

0
dϕp′

1

D − E cos ϕp′ + iε

1

A + B cos ϕp′
f (p′),

(3.2)

where f (p′) is a well-behaved function, x = cos ϑp′ , and
the denominator A + B cos ϕp′ results from (q − p′)2. It is
unproblematic if p′ = |q| is avoided. The denominator D −
E cos ϕp′ + iε from the electron propagator depends now both
on ϑp′ and ϕp′ . The pathological solutions x1(p′), x2(p′) from
|D| = E coincide for p′

1 = |
√

(Ei − ωL )2/c2 − c2 − |k f | | and
p′

2 =
√

(Ei − ωL )2/c2 − c2 + |k f |, again with p′
1 ≈ p′

0 close
to ωL/c. One can show that for p′ = p′

1 and p′ = p′
2 one

has x1 = x2 = − cos ϑ f , and −1 � x1 < x2 < 1 if p′
1 < p′ <

p′
2. The extraction of the singularities requires the following

integral:∫ π

0
dϕp′

1

D − E cos ϕp′ + iε
= π sign(D)√

(D + iε)2 − E2
. (3.3)

It is advantageous to split the x integral not only in x1 and
x2, but also in x̄ = (x1 + x2)/2. With the help of the formula∫

dx
1√

αx2 + 2βx + γ

= 1√
α

[
ln

(√
α
√

αx2 + 2βx + γ + αx + β
) + ln 2

]
,

(3.4)

for α > 0 one has, for example, after extraction of the singu-
larities in the x integral, if D(x = −1) < 0,∫ x̄

−1
dx

1√
(D + iε)2 − E2

= 1

2p′|k f |c2

×
[

ln
sin ϑ f

1 + cos ϑ f
+ 1

2
ln

(p′ + p′
2)(p′ + p′

1)

(p′
2 − p′)(p′ − p′

1)
+ i

π

2

]
,

(3.5)

valid for p′
1 < p′ < p′

2. For D(x = −1) � 0, the sign of the
last two terms is reversed, and the denominator in the first
term turns into 1 − cos ϑ f . Thereby logarithmic singularities
in p′

1 and p′
2 are produced such that an integral of type (3.1) is

also needed here.
The integrand of the third transverse term (2.22) is identical

to the one given in (3.2), except for the replacement of A by
A′ = A − ω2

L/c2, adding −iε. However, the singularities from
A′ + B cos ϕp′ = 0 are no longer reduced in strength by the
numerator, such that they have to be extracted in a similar way
as those from D − E cos ϕp′ = 0. The pathological solutions
x′

1(p′), x′
2(p′) from |A′| = B coincide for p′

3 = q − ωL/c and
p′

4 = q + ωL/c. If one restricts the momentum transfer such
that 1.5 p′

1 < p′
3 < q < p′

4 < 0.9 p′
2, which covers the exam-

ples given below, the interval (p′
3, p′

4) lies completely inside
(p′

1, p′
2). Thus for p′ ∈ (p′

3, p′
4) the x-integration interval con-

tains four singularities. For the points p′ ∈ {p′
3, p′

4} one has
x′

1 = x′
2 = (ki − k f cos ϑ f )/q, and the pathological intervals

[x1, x2] and [x′
1, x′

2] where the ϕp′ integrand becomes singular
are disjoint, −1 < x1 � x2 < x′

1 � x′
2 < 1. This allows for

a separate treatment of the singularities of the two photon
propagators.

While for the p′ intervals 0 < p′ < p′
3 and p′

4 < p′ � p′
max

(with p′
max ≈ 1.5 p′

2), the same techniques are used as for Mte2
f i

(merely substituting A′ for A and using logarithmic integration
steps near p′

3 and p′
4), the interval p′

3 < p′ < p′
4 requires the

following treatment. Defining the separation point x̄0 = (x2 +
x′

1)/2, the integral is split into two parts, I1 + I2,∫ p′
4−ε0

p′
3+ε0

d p′
∫ 1

−1
dx f (p′, x) =

∫ p′
4−ε0

p′
3+ε0

d p′
∫ x̄0

−1
dx f (p′, x)

+
∫ p′

4−ε0

p′
3+ε0

d p′
∫ 1

x̄0

dx f (p′, x). (3.6)

In I1, the ϕp′ singularity is extracted with the help of the
integral (3.3), whereas in I2, the two denominators of (3.2) are
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FIG. 3. Transition strength B(E1)↑ for dipole excitation by
means of an electromagnetic interaction with the 12C nucleus as a
function of excitation energy ωL up to 40 MeV, calculated within the
QRPA model [16].

interchanged. Thus an equation of type (3.3) comes into play,
with D + iε and E replaced by A′ − iε and B, respectively.

We note that in the intervals −1 < x < x1 and x2 < x �
x̄0, the ϕp′ integrand is sharply peaked in cos ϕp′ = sign
D/E (x2) = −1, so that this value is extracted even if it is not
a pole. A similar procedure is applied in the intervals x̄0 �
x < x′

1 and x′
2 < x < 1. In the remaining intervals the true

poles at cos ϕp′ = D/E , respectively, at cos ϕp′ = −A′/B, are
used instead. A second extraction of the singularities from the
remainder [i.e., from the right-hand side of (3.3)] is not done
here. Logarithmic integration steps and a somewhat larger step
number are sufficient. We estimate the numerical accuracy of
the dispersion correction to be about 5%.

IV. RESULTS

We will first consider some properties of nuclear excitation
and subsequently discuss the influence of transient excited
states on the elastic scattering cross section. Thereby it is dis-
tinguished between the relative cross-section changes induced
by Coulombic and magnetic transitions.

A. Transition to excited states

At collision energies near 200 MeV and beyond, the im-
pinging electron will rather excite the nucleus than scatter
elastically (except at small scattering angles). In the context
of dispersion, dipole excitations are particularly important. In
fact, the average value of the excitation energy, ω̄ = 15 MeV,
predicted by Friar and Rosen [9] for the use in the closure
approximation, lies in the giant-dipole resonance region. Fig-
ure 3 shows the BE1 strength of the one-phonon 1− states with
excitation energies in the region between 10 and 40 MeV, as
calculated by Ponomarev within the QRPA model [16]. For
details see, e.g., Ref. [15]. This strength is related to the charge
transition density for natural parity states, π = (−1)L, by [29]

B(EL, 0+ → Lπ ) = (2L + 1)

∣∣∣∣
∫ ∞

0
rL+2

N drN �L(rN )

∣∣∣∣
2

. (4.1)

FIG. 4. Differential cross section dσ/d� f in the first diffraction
minimum of dσ coul/d� f for the excitation of the 4.439-MeV (L =
2) state (− · − · −), the 17.7-MeV (L = 1) state (· · · · · · ), and the
23.5-MeV (L = 1) state (———) as a function of collision energy
Ei,kin. Included is the elastic Coulombic cross section dσ coul/d� f ,
multiplied by a factor of 100 (− − − − −).

There exist two particularly strong excitations, at 23.5 and
17.7 MeV, which will subsequently be used in the sum over
n in (2.1).

In addition to the dipole excitations, there is a well-isolated
2+ state at 4.439 MeV, which is the lowest quadrupole exci-
tation in 12C, with strength B(E2, 0+ → 2+) = 39.7 e2 fm4

[39]. This state will also be included in the sum over n.
Its transition densities are again calculated within the QRPA
prescription and are provided in [40]. Figure 4 displays
the electron-impact excitation cross section for these three
states, calculated from the transition densities within the
distorted-wave Born approximation (DWBA) [30,41]. For
each collision energy, the cross sections are evaluated at the
scattering angle corresponding to the first diffraction mini-
mum according to Fig. 2(a). The quadrupole state with the
lowest ωL is the dominant one, while the 23.5-MeV dipole
state is about a factor of 2 weaker than the 17.7-MeV state.
Included is the elastic scattering result dσ coul/d� f , which in
the figure is enhanced by a factor of 100. Beyond 400-MeV
collision energy, the energy dependence of all processes, elas-
tic and inelastic, is very similar.

In contrast to the elaborate DWBA calculation for ex-
citation, the second-order Born theory, used for dispersion,
requires form factors instead of transition densities. They are
displayed in Fig. 5 for the three states under consideration.
Note that the sign of JL,L−1 has been reversed according to the
convention of [29]. From Fig. 5(a) it follows that the charge
form factors of the 23.5-MeV dipole state and the quadrupole
state are of the same order of magnitude, while the one for
the 17.7-MeV state is much smaller. In contrast, the magnetic
form factor Fte

L,L+1 [Fig. 5(b)] is considerably stronger for the
17.7-MeV excitation. For the quadrupole state not only Fte

L,L+1
but also Fte

L,L−1 [Fig. 5(c)] is extremely weak.
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FIG. 5. Form factors for dipole and quadrupole excitation by
electron impact on 12C as a function of momentum transfer
|q|. Shown are the results for the 23.5-MeV state (———), the
17.7-MeV state (· · · · · · ), and the 4.439-MeV state (− · − · −).
(a) Charge form factor Fc(|q|), (b) transverse form factor Fte

L,L+1(|q|),
and (c) transverse form factor Fte

L,L−1(|q|).

B. Coulombic dispersion correction

Given the cross section (2.14) with the complete sum
(2.15), the total dispersion correction �σbox to the elastic scat-
tering cross section from the phase-shift analysis is defined by

�σbox = dσ box/d� f

dσ coul/d� f
− 1. (4.2)

FIG. 6. Coulombic dispersion correction at the position of the
first diffraction minimum of dσ coul/d� f as a function of collision
energy. Shown is �σbox from (4.2) (———–) as well as its con-
tributions from the transient 23.5-MeV state (− · − · −), from the
17.7-MeV state (− · · · −), and from the 4.439-MeV state (− − −−).
The Friar-Rosen result (with ω̄ = 15 MeV) is included (· · · · · · [23]).
The experimental data (�) are from Offermann and co-workers [3,4].

In order to distinguish the contributions �σbox(L) from each
excited state, characterized by the angular momentum L and
the energy ωL, the sum over L in (2.15) is dropped when
inserting (2.14) into (4.2). Since these contributions add in-
coherently due to their linear entry into the cross section, the
total dispersion correction can be written as

�σbox =
∑

L

�σbox(L). (4.3)

Note that the contributing states may have the same L but
different ωL.

In order to compare with the Friar-Rosen theory, one con-
centrates first on the Coulombic excitation of the transient
nuclear states, that is, retaining only Mc

f i in (2.15) while set-
ting the transverse terms equal to zero.

We resort again to the minimum position from Fig. 2(a),
in the vicinity of which the dispersion effect is expected to be
largest [11], to demonstrate the dependence on the collision
energy. Figure 6 shows the contribution of the three selected
states to �σbox. It is seen that at all energies the highest dipole
state provides the largest portion of dispersion, mostly near
6%. In contrast, the quadrupole state furnishes at most 2%,
which is of the order of the Friar-Rosen result. However, it
compensates the decrease of the 23.5-MeV-state dispersion
effect with energy. The contribution from the dipole state at
17.7 MeV is very small (below 0.5%).

A notable feature is the leveling of the dispersion cor-
rection beyond 400 MeV. It is related to the fact that the
excitation probability of the three states increases with Ei in
a similar way as the elastic process for such high energies
(see Fig. 4) such that the quotient (4.2) tends to a constant.
Also shown is the comparison of �σbox with the experimen-
tal data from Offermann and co-workers [3,4], which result
from high-precision measurements. Radiative corrections are
already considered in the data. It is seen that the agreement
with the measurements is greatly improved as compared to
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FIG. 7. Coulombic dispersion correction �σbox (———) as
a function of scattering angle ϑ f (a) at an impact energy of
431.4 MeV and (b) at 690 MeV. Included is the result from the
Friar-Rosen theory (· · · · · · [23]). The data points (�) in (a) are
derived from the experimental cross sections of Offermann et al.
[4]. In (b) the data points (�) are those from Kalantar-Nayestanaki
et al. [3], and the other data points (◦) result from a reevaluation of
the measurements as described in the text. The dashed lines connect
the experimental points as a guide to the eye. The oscillations at the
larger angles are interpreted as experimental fluctuations.

the Friar-Rosen theory, where closure with ω̄ = 15 MeV is
used [23].

The angular dependence of the dispersion correction for
two impact energies is shown in Fig. 7 in comparison with
experiment and with the Friar-Rosen theory. For the collision
energy of 431.4 MeV [Fig. 7(a)], the maximum value of
�σbox agrees with the data but is shifted to a slightly larger
angle. The Friar-Rosen theory is far too low at the maximum;
however, it reproduces the experimental increase of �σbox

for ϑ f � 55◦, while the present theory is inferior in this re-
spect. Noting that only the L = 2 intermediate state leads to
an increase with angle, in contrast to the L = 1 states (see
Fig. 8 below), this deficiency might result from the omission
of excited states with higher multipolarity.

Figure 7(b) provides the results for �σbox at a higher en-
ergy, 690 MeV. In accord with Fig. 6, its maximum is around

FIG. 8. Dispersion correction �σbox(L) from 431.4-MeV e +12

C collisions as a function of scattering angle ϑ f : (a) for the transient
excited L = 1 state at ωL = 23.5 MeV, (b) for the L = 1 state at ωL =
17.7 MeV, and (c) for the L = 2 state at ωL = 4.439 MeV. Shown are
results from the Coulombic excitation (− − − − −), the magnetic
excitation (− · − · −), and their sum (————–).

8%. For this collision energy, no explicit cross-section data are
available but only the reduced ones, according to (4.2), which
depend on the theoretical estimates of [3] for the elastic cross
section, and which are shown as black dots in the figure. These
data imply a dispersion correction in the maximum, which
is about a factor of 2 higher than our predictions, followed
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by a very deep minimum at angles beyond the diffraction
minimum.

This feature supports the suspicion that in the data re-
duction recoil was not treated properly. We performed a
reevaluation of experiment in the following way. First to each
value of the effective momentum transfer qeff (the abscissa
in the plot of [3]) the corresponding momentum transfer |q|
was associated, using the fact that the measurements extended
from 26◦ to 36◦. This led to a linear relation between qeff and
the pertinent scattering angle ϑ f . Next dσ coul/d� f was calcu-
lated at each such angle ϑ f , and by inversion of (4.2) the cross
section dσexp/d� f (ϑ f ) was reconstructed. Looking at the
angular dependence of these so-obtained experimental cross-
section data in comparison with dσ coul/d� f , a distinct shift of
the experimental low-angle wing by +0.06◦ was discovered.
(This is slightly lower than the calculated recoil-induced shift
of +0.10◦.) To bring the two curves into agreement, each da-
tum point at ϑ f was now associated with the angle ϑ f − 0.06◦,
and comparison was made with dσ coul/d� f (ϑ f − 0.06◦) to
obtain �σ

exp
box via (4.2). This procedure results in the open

circles shown in Fig. 7(b), the maximum of which is now in
reasonable agreement with the maximum of �σbox. Only the
mismatch of its angular position is somewhat larger than at the
lower energy. We note that the 690-MeV data points in Figs. 2
and 6 were obtained from these reevaluated data.

C. Magnetic contribution

Magnetic transitions can play an important role in ex-
citation by electron impact. For the collision energy of
431.4 MeV and an angle of 49◦ (q = 1.8 fm−1), magnetic
scattering contributes, respectively, 29%, 52%, and 1% to the
cross sections for the L = 1 (23.5 MeV), L = 1 (17.7 MeV),
and L = 2 (4.439 MeV) excitations. Therefore a similar in-
fluence on �σbox will occur, maybe even somewhat enhanced
by the presence of three magnetic terms (instead of one in
excitation).

The effect of magnetic scattering on the dispersion-
corrected cross section is obtained from (2.14) by setting
Mc

f i = 0 in (2.15). We note that for the highly relativistic
systems considered here, Mte1

f i , Mte2
f i , and Mte3

f i can be of
comparable magnitude. In such a case, Mte2

f i and Mte3
f i tend

to compensate each other.
For each of the three transient excited states, the Coulom-

bic and magnetic contribution to dispersion are displayed
separately in Fig. 8. For the L = 1 state at 23.5 MeV
[Fig. 8(a)], the transition currents tend to compensate the
influence of the transition charge density, such that the total
dispersion effect is below 2%. In case of the lower-energy
L = 1 state [Fig. 8(b)], the dispersion correction results nearly
exclusively from magnetic scattering, while the L = 2 state
[Fig. 8(c)] shows the opposite behavior.

Whereas magnetic scattering is far from negligible for the
L = 1 excited states, the total dispersion correction from in-
cluding the three states is very similar to the dispersion from
Coulombic excitation alone. This is demonstrated in Fig. 9(a)
for 431.4-MeV impact along with the experimental data from
Fig. 7(a). In fact, the total dispersion correction deviates no-

FIG. 9. Dispersion correction �σbox from (a) 431.4 MeV and
(b) 690 MeV e +12 C collisions as a function of the scattering angle.
Shown is the Coulombic contribution from Fig. 7 (· · · · · · ), the mag-
netic contribution (− · − · −), and their sum (————). All results
include the sum over L in (2.15). The data points are those from
Fig. 7.

tably from the Coulombic correction only at scattering angles
near 45◦, in the peak maximum and above 65◦.

Figure 9(b) shows the respective result at 690 MeV. Also
for this higher energy the total dispersion correction is very
similar to the Coulombic one, while the total magnetic scat-
tering is small. For the individual transient states, as compared
to Fig. 8, the magnetic contribution from the 23.5-MeV state
is only half as large in the maximum as in case of the lower
collision energy. For the other two excited states the situation
is basically the same as shown in Figs. 8(b) and 8(c).

Figure 10(a) displays the situation in the first diffraction
minimum. At energies below 400 MeV, the inclusion of mag-
netic scattering lowers the dispersion correction considerably
and altogether leads to a stronger increase of �σbox as the pro-
jectile gets faster. Figure 10(b) furnishes the total contribution
from each of the excited states. The situation differs from the
pure Coulombic case (Fig. 6) in that the 4.439-MeV state is
nearly equally important as the 23.5-MeV state, which domi-
nates the dispersion correction from the Coulombic excitation.
At the lower energies, a large part of �σbox results from the
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FIG. 10. Dispersion correction �σbox at the position of the first
diffraction minimum as a function of collision energy. Shown in
(a) together with the experimental data from Offermann and co-
workers (� [3,4]) is the Coulombic part from Fig. 6 (· · · · · · ),
the magnetic contribution (− · − · −), as well as their sum (—
——). All three excited states (L = 1, 2) are taken into account.
Shown in (b) is �σbox when considering ωL = 23.5 MeV (− · − · −),
17.7 MeV (· · · · · · ), and 4.439 MeV (− − −−), as well as their sum
(————–). All four contributions to Abox

f i are taken into account.

17.7-MeV excitation, the Coulombic contribution to which is
completely unimportant.

V. CONCLUSION

We have estimated the influence of dispersion on the elastic
scattering cross section from electron impact on a carbon
nucleus. Since 12C is a light nucleus, we are confident that
the results from the second-order Born approximation for the
box diagram, paired with the partial-wave analysis for elastic
potential scattering, are reliable concerning the influence of
Coulomb distortion effects. Compared to the standard the-
ory of Friar and Rosen for 12C, we have (i) dropped the
closure approximation and instead explicitly considered the
transient excitation to two prominent dipole and one low-lying
quadrupole state by means of accurate form factors available

within the QRPA model. And (ii), we have included the mag-
netic part of the two photon propagators.

By accounting for the transient excitation of the three
prominent states, we found an enhancement of the dispersion
correction as compared to the Friar-Rosen predictions by a
factor of 5 in its maximum region for energies above 300 MeV.

Considering the angular dependence of the dispersion ef-
fect at two sample impact energies, 431.4 and 690 MeV, where
accurate experimental data are available, the experimental
peak height is approximately reproduced (if a recoil-based
reevaluation of the 690-MeV data is made), while the peak
position is at too large an angle as compared to the mea-
surements. Also there is some disagreement in the low- and
high-energy wings. The angular distribution, predicted by the
Coulombic excitation of the transient nuclear states, is only
marginally changed when the magnetic terms are added.

As for the contribution of the individual excited states at
both impact energies, it is found that the 23.5-MeV L = 1
state yields the dominant Coulombic part of �σbox, whereas
the one from the 17.7-MeV L = 1 state is negligible. How-
ever, considering both Coulombic and magnetic contributions,
the 4.439-MeV L = 2 and the 17.7-MeV states have equal
shares in the maximum for 431.4-MeV impact, the quadrupole
state taking over at angles beyond the peak. The 23.5-
MeV state furnishes only 2% to �σbox in the maximum. At
690 MeV, the contribution of the 23.5-MeV state in the maxi-
mum has increased to nearly 4%.

In order to systematically investigate the dependence of
dispersion on collision energy from 220 to 750 MeV, we
have studied the cross-section change in the first diffraction
minimum of the elastic cross section where it is largest. In this
geometry, the addition of the magnetic scattering leads to a
steeper increase of �σbox with energy, yielding up to 9% at the
highest energies. For the slower collisions, the 17.7-MeV state
provides the dominant contribution, its effect being partially
canceled by the consideration of the 4.439-MeV state. Near
500 MeV, all three transient states contribute equally, while
at still larger energies the highest excited state considered
takes over. As compared to the mere Coulombic excitation,
the basic effect of magnetic scattering is a decrease of �σbox

by 30%–70% at energies below 300 MeV.
To conclude, magnetic scattering plays a decisive role

for dispersion in contrast to early conjectures about its ir-
relevance. Although the considered high-energy intermediate
dipole states together with the strong low-lying quadrupole
excitation give a qualitative prescription of the dispersion
correction to the differential cross section, the influence of
transient nuclear states of higher multipolarity is still an
open question. Also, at energies well beyond 400 MeV the
excitation of baryon resonances and intermediate-state pi-
ons, not considered in the QRPA model for the transition
densities, may have some influence on dispersion. Further ex-
perimental and theoretical investigations are needed to clarify
this point.

ACKNOWLEDGMENTS

I would like to thank A. V. Afanasev for stimulating this
project and for fruitful comments. I am particularly grateful

054303-10



COMBINED COULOMBIC AND MAGNETIC CONTRIBUTIONS … PHYSICAL REVIEW C 105, 054303 (2022)

to V. Yu. Ponomarev for calculating the dipole transition
densities and the B(E1) strength distribution. I would also

like to thank P. A. Amundsen for his help with a technical
detail.

[1] I. Sick and J. Mc Carthy, Nucl. Phys. A 150, 631 (1970).
[2] W. Reuter, G. Fricke, K. Merle, and H. Miska, Phys. Rev. C 26,

806 (1982).
[3] N. Kalantar-Nayestanaki, C. W. de Jager, E. A. J. M.

Offermann, H. de Vries, L. S. Cardman, H. J. Emrich, F. W.
Hersman, H. Miska, and D. Rychel, Phys. Rev. Lett. 63, 2032
(1989).

[4] E. A. J. M. Offermann, L. S. Cardman, C. W. de Jager, H.
Miska, C. de Vries, and H. de Vries, Phys. Rev. C 44, 1096
(1991).

[5] P. Guèye et al. ((Jefferson Lab Hall A Collaboration), Eur. Phys.
J. A 56, 126 (2020).

[6] L. I. Schiff, Phys. Rev. 98, 756 (1955).
[7] R. R. Lewis, Phys. Rev. 102, 544 (1956).
[8] J. L. Friar and M. Rosen, Phys. Lett. B 39, 615 (1972).
[9] J. L. Friar and M. Rosen, Ann. Phys. 87, 289 (1974).

[10] A. Bottino and G. Ciocchetti, Nucl. Phys. A 178, 593 (1972).
[11] T. De Forest, Phys. Lett. B 32, 12 (1970).
[12] A. Goldberg, Il Nuovo Cimento 20, 1191 (1961).
[13] A. Lovato, S. Gandolfi, J. Carlson, S. C. Pieper, and R.

Schiavilla, Phys. Rev. Lett. 117, 082501 (2016).
[14] J. Goldemberg and R. H. Pratt, Rev. Mod. Phys. 38, 311 (1966).
[15] V. Yu. Ponomarev, D. H. Jakubassa-Amundsen, A. Richter, and

J. Wambach, Eur. Phys. J. A 55, 236 (2019).
[16] V. Yu. Ponomarev (private communication).
[17] V. G. Soloviev, Theory of Atomic Nuclei: Quasiparticles and

Phonons (Institute of Physics, Bristol, 1992).
[18] N. Lo. Iudice, V. Yu. Ponomarev, Ch. Stoyanov, A. V. Sushkov,

and V. V. Voronov, J. Phys. G: Nucl. Part. Phys. 39, 043101
(2012).

[19] H. Bethe and A. Molinari, Ann. Phys. 63, 393 (1971).
[20] A. V. Afanasev and N. P. Merenkov, Phys. Rev. D 70, 073002

(2004).
[21] A. V. Afanasev and N. P. Merenkov, Phys. Lett. B 599, 48

(2004); arXiv:hep-ph/0407167v2 (2005).

[22] L. C. Maximon and J. A. Tjon, Phys. Rev. C 62, 054320 (2000).
[23] D. H. Jakubassa-Amundsen, arXiv:2102.08069 [nucl-th].
[24] J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics

(McGraw-Hill, New York, 1964).
[25] T. A. Griffy, D. S. Onley, J. T. Reynolds, and L. C. Biedenharn,

Phys. Rev. 128, 833 (1962).
[26] D. G. Ravenhall and J. Wambach, Nucl. Phys. A 475, 468

(1987).
[27] H. C. Lee, Atomic Energy of Canada Report No. AECL-4839,

Ontario, 1975.
[28] A. R. Edmonds, Angular Momentum in Quantum Mechanics,

2nd ed. (Princeton University Press, Princeton, NJ, 1960).
[29] J. Heisenberg and H. P. Blok, Annu. Rev. Nucl. Part. Sci. 33,

569 (1983).
[30] D. H. Jakubassa-Amundsen, Nucl. Phys. A 937, 65 (2015).
[31] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum

Electrodynamics, 2nd ed., Course of Theoretical Physics, Vol. 4
(Elsevier, Oxford, 1982).

[32] N. T. Meister and T. A. Griffy, Phys. Rev. 133, B1032
(1964).

[33] L. C. Maximon, Rev. Mod. Phys. 41, 193 (1969).
[34] T. W. Donnelly and I. Sick, Rev. Mod. Phys. 56, 461 (1984).
[35] D. H. Jakubassa-Amundsen, Eur. Phys. J. A 57, 22 (2021).
[36] F. Salvat, J. M. Fernández-Varea, and W. Williamson, Jr.,

Comput. Phys. Commun. 90, 151 (1995).
[37] H. de Vries, C. W. de Jager, and C. de Vries, At. Data Nucl.

Data Tables 36, 495 (1987).
[38] D. R. Yennie, D. G. Ravenhall, and R. N. Wilson, Phys. Rev.

95, 500 (1954).
[39] S. Raman, C. W. Nestor, Jr., and P. Tikkanen, At. Data Nucl.

Data Tables 78, 1 (2001).
[40] D. H. Jakubassa-Amundsen and V. Yu. Ponomarev, Eur. Phys.

J. A 56, 162 (2020).
[41] S. T. Tuan, L. E. Wright, and D. S. Onley, Nucl. Instrum.

Methods 60, 70 (1968).

054303-11

https://doi.org/10.1016/0375-9474(70)90423-9
https://doi.org/10.1103/PhysRevC.26.806
https://doi.org/10.1103/PhysRevLett.63.2032
https://doi.org/10.1103/PhysRevC.44.1096
https://doi.org/10.1140/epja/s10050-020-00135-7
https://doi.org/10.1103/PhysRev.98.756
https://doi.org/10.1103/PhysRev.102.544
https://doi.org/10.1016/0370-2693(72)90011-1
https://doi.org/10.1016/0003-4916(74)90038-4
https://doi.org/10.1016/0375-9474(72)90483-6
https://doi.org/10.1016/0370-2693(70)90322-9
https://doi.org/10.1007/BF02732528
https://doi.org/10.1103/PhysRevLett.117.082501
https://doi.org/10.1103/RevModPhys.38.311
https://doi.org/10.1140/epja/i2019-12784-4
https://doi.org/10.1088/0954-3899/39/4/043101
https://doi.org/10.1016/0003-4916(71)90019-4
https://doi.org/10.1103/PhysRevD.70.073002
https://doi.org/10.1016/j.physletb.2004.08.023
http://arxiv.org/abs/arXiv:hep-ph/0407167v2
https://doi.org/10.1103/PhysRevC.62.054320
http://arxiv.org/abs/arXiv:2102.08069
https://doi.org/10.1103/PhysRev.128.833
https://doi.org/10.1016/0375-9474(87)90074-1
https://doi.org/10.1146/annurev.ns.33.120183.003033
https://doi.org/10.1016/j.nuclphysa.2015.02.001
https://doi.org/10.1103/PhysRev.133.B1032
https://doi.org/10.1103/RevModPhys.41.193
https://doi.org/10.1103/RevModPhys.56.461
https://doi.org/10.1140/epja/s10050-020-00330-6
https://doi.org/10.1016/0010-4655(95)00039-I
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1103/PhysRev.95.500
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1140/epja/s10050-020-00147-3
https://doi.org/10.1016/0029-554X(68)90091-8

