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Background: The nuclear fission process is a dramatic example of the large-amplitude collective motion in
which the nucleus undergoes a series of shape changes before splitting into distinct fragments. This motion
can be represented by a pathway in the many-dimensional space of collective coordinates. Within a stationary
framework rooted in a static collective Schrödinger equation, the collective action along the fission pathway
determines the spontaneous fission half-lives as well as mass and charge distributions of fission fragments.
Purpose: We study the performance and precision of various methods to determine the minimum-action and
minimum-energy fission trajectories in the collective space.
Methods: We apply the nudged elastic band method (NEB), grid-based methods, and the Euler-Lagrange
approach to the collective action minimization in two- and three-dimensional collective spaces.
Results: The performance of various approaches to the fission pathway problem is assessed by studying the
collective motion along both analytic energy surfaces and realistic potential-energy surfaces obtained with the
Skyrme-Hartree-Fock-Bogoliubov theory. The uniqueness and stability of the solutions is studied. The NEB
method is capable of efficient determination of the exit points on the outer turning surface that characterize the
most probable fission pathway and constitute the key input for fission studies. This method can also be used to
accurately compute the critical points (i.e., local minima and saddle points) on the potential-energy surface of
the fissioning nucleus that determine the static fission path. The dynamic programming method also performs
quite well and it can be used in many-dimensional cases to provide initial conditions for the NEB calculations.
Conclusions: The NEB method is the tool of choice for finding the least-action and minimum-energy fission
trajectories. It will be particularly useful in large-scale static fission calculations of superheavy nuclei and
neutron-rich fissioning nuclei contributing to the astrophysical r-process recycling.
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I. INTRODUCTION

Fission is a fundamental nuclear decay that is important
in many areas of science, ranging from structure and stability
of heavy and superheavy nuclei [1–3] to studies devoted to
physics beyond the standard model of particle physics [4] and
the synthesis of heavy elements [5–7].

Theoretically, the nuclear fission process is an example
of the nuclear large-amplitude collective motion originating
from the single-particle motion of individual nucleons. Due to
the complexity of this process, our understanding of nuclear
fission is still incomplete. For the state of affairs in this field,
we refer to the recent review [8,9].

When it comes to realistic predictions, the self-consistent
nuclear energy density-functional (EDF) method [10,11] has
proven to be very successful in terms of quantitative reproduc-
tion of fission lifetimes and fragment yields. Unfortunately,
realistic self-consistent fission calculations in multidimen-
sional collective spaces, based on the microscopic input,

are computationally expensive when it comes to large-scale
theoretical fission surveys. Given the computational cost of
microscopic methods and the large number of fissioning nu-
clei that are, e.g., expected to contribute to the astrophysical
r-process nucleosynthesis, calculations have mostly relied on
simple parametrizations or highly phenomenological models.
The new perspective is offered by state-of-the-art theoreti-
cal frameworks and modern computational techniques that
promise to speed up the calculations to be able to carry out
quantified global fission surveys for multiple inputs [9].

This study is concerned with finding the optimal pathway
during the tunneling motion phase of spontaneous fission
(SF). Within a static collective Schrödinger equation frame-
work, such a trajectory, dubbed the least-action path (LAP),
is obtained by minimizing the collective action in a many-
dimensional collective space [12,13]. A number of techniques
have been proposed to deal with this challenging task. In the
early application [14], the trial pathways were assumed in a
parametrized form and the LAP was obtained by minimizing
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the penetration integral with respect to the variational parame-
ters. Grid-based techniques such as the dynamic programming
[15] and Ritz [16] methods have been used in numerous
EDF calculations of LAPs [17–23]. In Refs. [24–29], LAPs
were obtained by solving the eikonal equation by the method
of characteristics. Effectively, this method can be related to
the instanton approach: a quantum-mechanical propagation in
imaginary time that amounts to solving the classical equa-
tions of motion in an inverted potential. Only one solution
of the eikonal equations, called the escape path, arrives at
the exit point on the outer turning surface with zero velocity.
Other trajectories, corresponding to different initial condi-
tions, cannot reach the outer turning surface. For the recent
applications of the instanton framework to fission, we refer
the reader of Refs. [30–32]. Up to now, however, applications
of this method to nuclear physics problems have been limited
because of enormous numerical difficulties [30,33].

In this paper, we compare grid-based approaches to the
LAPs with the nudged elastic band (NEB) method that was
originally formulated in the context of molecular systems
[34–37]. In NEB, the minimum action path can be obtained
iteratively by continuously shifting the pathway to the near-
est minimum action path [38–40]. A similar approach is a
growing string method [41]. To provide more insights, we
also employ the Euler-Lagrange (EL) method to compute the
stationary action path.

In addition to the LAP, another characteristic trajectory
in the collective space is the minimum-energy path (MEP),
sometimes referred to as the static path. The MEP can serve
as a first, rough approximation to the LAP. It is obtained by
computing the steepest descent line on the potential-energy
surface, which passes through the local minima and saddle
points. To find the MEP, a flooding, or watershed, algorithm
has been applied [42–46]. The NEB approach can also be
adopted to find the MEP and saddle points [47]. (For a re-
view of modern optimization methods for finding MEPs, see
Refs. [48,49].)

This paper is organized as follows: In Sec. II we define
the basics concepts of the nuclear EDF approach as applied
to nuclear fission. Section III describes the path-optimization
methods used. The results of our calculations and an analysis
of trends are presented in Sec. IV. Finally, Sec. V contains the
conclusions of this work.

II. NUCLEAR ENERGY DENSITY FUNCTIONAL
APPROACH TO SPONTANEOUS FISSION

The main ingredients for a theoretical determination of
SF lifetimes are the collective potential-energy surface (PES)
and the inertia tensor. To compute the PES, one solves the
constrained Hartree-Fock-Bogoliubov (HFB) equations with
the realistic energy density functional in the space of collec-
tive coordinates q ≡ {qi}. These are usually represented by
the expectation values of the quadrupole moment operator
Q̂20 (elongation), quadrupole moment operator Q̂22 (triaxial-
ity), octupole moment operator Q̂30 (mass asymmetry), and
the particle-number dispersion term λ2τ (N̂2

τ − 〈N̂τ 〉2) (τ =
n, p) that controls dynamic pairing correlations [18,50,51]. In
some cases one also considers the hexadecapole moment Q40

(necking coordinate) [52]. That is, in practical applications,
we consider 2–5 collective coordinates which describe the col-
lective motion of the system. Figure 1 shows a representative
PES of 256Fm in the space of Q20 ≡ 〈Q̂20〉 and Q30 ≡ 〈Q̂30〉.

The collective inertia (or mass) tensor Mi j (q) is obtained
from the self-consistent densities by employing the adiabatic
time-dependent HFB approximation (ATDHFB) [56–58]. In
this study, we use the nonperturbative cranking approximation
[56]:

Mi j (q) = h̄2

2q̇iq̇ j

∑
αβ

(
F i∗

αβF j
αβ + F i

αβF j∗
αβ

)
Eα + Eβ

, (1)

where qi is the collective coordinate, q̇i represents the time
derivative of qi, and Eα are one-quasiparticle energies of HFB
eigenstates |α〉. The matrices F i are given by

F i∗

q̇i
= AT ∂κ∗

∂qi
A + AT ∂ρ∗

∂qi
B − BT ∂ρ

∂qi
A − BT ∂κ

∂qi
B, (2)

where A and B are the matrices of the Bogoliubov transfor-
mation, and ρ and κ are particle and pairing density matrices,
respectively, determined in terms of A and B. Derivatives of
the density matrices with respect to collective coordinates are
calculated by employing the three-point Lagrange formula.
It is important to remark that rapid variations in Mi j are
expected in the regions of configuration changes (level cross-
ings) due to strong variations of density derivatives in (2)
associated with structural rearrangements [14,17].

Since SF is a quantum-mechanical tunneling process and
the fission barriers are usually both high and wide, the SF
lifetime is obtained semiclassically [13] as T1/2 = ln 2/(nP),
where n is the number of assaults on the fission barrier per
unit time and P is the penetration probability given by

P = (1 + exp [2S(Lmin)])−1, (3)

where Lmin is the path that minimizes the fission action inte-
gral calculated along the one-dimensional trajectory L(s) in
the multidimensional collective space:

S(L) = 1

h̄

∫ sout

sin

S (s)ds, (4)

where

S (s) =
√

2Meff(s)[Veff(s) − E0] (5)

with Veff(s) and Meff(s) being the effective potential energy
and inertia along the fission path L(s), respectively. Veff can
be obtained by subtracting the vibrational zero-point energy
from the total HFB energy. (In the examples considered in
this paper we assume the zero-point energy to be zero.) The
integration limits sin and sout correspond to the classical inner
and exit points, respectively, defined by Veff(s) = E0 on the
two extremes of the fission path, see Fig. 1. The collective
ground state (g.s.) energy is E0, and ds is the element of length
along L(s). A one-dimensional path L(s) can be defined in the
multidimensional collective space by specifying the collective
variables q(s) as functions of path’s length s. The expression
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FIG. 1. Potential-energy surface of 256Fm calculated with nuclear EDF method using the D1S parametrization of the Gogny interaction
[53] in the space of two collective coordinates: Q20 (elongation) and Q30 (mass asymmetry). The static fission pathways are marked by solid
lines: red (symmetric pathway) and green (asymmetric pathway). The outer turning line (OTL) is indicated, together with the exit points
associated with the static pathways. For simplicity, we assume that the inner turning point corresponds to the ground-state configuration (i.e.,
E0 = 0). The high-energy region that is practically not accessible during collective motion is indicated in black. The intersections of fission
pathways with exit points are indicated by dots; these are important for determining fission-fragment yields [54,55].

for Meff is [59]:

Meff(s) =
∑

i j

Mi j (q)
dqi

ds

dq j

ds
. (6)

The least-action path (LAP) Lmin is obtained by minimizing
the action integral (4) with respect to all possible trajecto-
ries L that connect the lines and surfaces of inner turning
points sin and exit points sout [17]. However, as discussed in
Refs. [24,25] and this paper, only the pathways related to the
exit points are stationary. The MEP can instead be described
as the union of steepest descent paths from the saddle point(s)
to the minima. The corresponding trajectory q(s) satisfies

dq
ds

∝ ∇V (q(s)), (7)

which characterizes a path of steepest descent on a surface
V (q) [60]. For the NEB, one finds the MEP by allowing the
elements of the path to follow the gradient of the PES in
their immediate vicinity. We shall assume that the PES in
the tunneling region is free from discontinuities associated
with rapid configuration changes [61–63]. This assumption
is usually valid because of nonvanishing pairing correlations
inside the potential barrier. It is also to be noted that, as in
any optimization or minimization approach, the stationary
path determined numerically corresponds to a local action
minimum, which is not guaranteed to be the global minimum.
Moreover, there could be many stationary pathways represent-
ing different fission modes, see Fig. 2. To simplify notation,
we assume in the following discussions that the stationary
action path found by our algorithms is indeed the LAP.

Since S (s) = 0 on the outer turning surface V (q) = E0, it
follows that paths moving on the surface V (q) = 0 do not
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FIG. 2. Illustration of two stationary action paths (representing
competing fission modes) from the g.s. to the OTL (marked white)
on the PES given by Eq. (12). The cyan line shows the primary
path (1). The secondary path (2) is indicated by the black line. The
corresponding exit points are marked by stars. The green dashed line
connects the exit point (1) with the point (3) on the OTL; the action
along the dashed path is zero. The inset shows the spring force and
the action force acting on the image i on the NEB for the intermediate
(not fully converged) gray path. For the video illustrating the NEB
determination of both LAPs, see the Supplemental Material (SM)
[64].
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contribute to the action. This is illustrated in Fig. 2 by the
path connecting the g.s. and, for example, the purple star
labeled (3). Such a path consists of the cyan curve—the exit
trajectory—and the green dashed line, connecting (1) with (3)
through the OTL, which results in the same action integral as
the exit trajectory.

III. METHODS AND ALGORITHMS

All path-optimization methods described in the following
sections, but the EL method, have a reference implementation
included in the python package, PyNEB [65], which has been
developed by the authors for this work.

A. Nudged elastic band

The NEB method was originally formulated to provide a
smooth transition of a molecular system on a potential-energy
surface from the reactant to the product state [35–37]. Upon
application of this variant of the NEB method, one obtains the
MEP as well as a series of “images” of the molecular system
as it transitions along the path. The NEB technique has been
subsequently refined, with improved numerical stability [39]
and a more accurate determination of a saddle point [38] being
two key advances towards a more widely applicable numerical
approach for MEP determination.

To obtain the LAP, the procedure must be modified such
that the images move towards the minimum of the action [66]
which amounts to replacing the standard gradient of the PES
with the gradient of the action

gi = −∇iS, (8)

with respect to the image qi. With this prescription, the images
will settle to the LAP in the collective space.

While the NEB method will, by design, drive the line of
images towards either the MEP or LAP, the iterative scheme
chosen greatly impacts the total number of iterations required
before the solution converges. In the early implementations, a
simple velocity Verlet algorithm [67] was used to adjust the
position of the images step to step [35–39]. This approach
is robust and relatively stable, although the convergence can
be slow for flatter surfaces where the images are not pulled
strongly to their optimal positions. To aid this process, the
fast inertial relaxation engine (FIRE) was proposed [68] to ac-
celerate convergence without sacrificing stability. The method
was subsequently updated [69] to further improve perfor-
mance. Indeed, in our tests, the inertial algorithm regularly
outperforms the velocity Verlet algorithm by an-order-of-
magnitude reduction in iterations at the same convergence
criteria.

With this, our implementation of the NEB approach is
defined. The algorithm itself is outlined in Algorithm 1 in
the SM [64]. The force used in the optimization step for each
image, Fopt

i , is constructed by adding the perpendicular com-
ponent of the action gradient to the spring force Fk

i between
the images,

Fk
i = k(|qi+1 − qi| − |qi − qi−1|)τ i, (9)

where k is a tunable parameter that controls the strength of
the spring force and τ i is the unit vector tangent to the line of
images from image i − 1 to image i + 1. The spring force on
the endpoints is defined differently:

Fk
1 = k|q2 − q1|, Fk

N = k|qN − qN−1|. (10)

The total force acting on the interior images is then

Fopt
i = Fk

i + g⊥
i . (11)

The NEB approach is illustrated in Fig. 2 for the case of
bimodal tunneling from the g.s. minimum to the OTL on an
analytic PES defined by

V (q) = 3.17 + 2e−5[(x−1)2+(y− 1
2 )2] − 3e−(x2+y2 )

− 1
2 (3x + y), (12)

where q = (x, y). The inset shows the forces on the images
of the NEB gray path, which has not converged yet to the
black path. The spring force Fk

i keeps the images from drifting
too much from each other, while the perpendicular part of the
action gradient g⊥

i pushes them towards the nearest stationary
action path. This example shows that the NEB algorithm,
depending on the initial locations of the images, will converge
to a local stationary path, not necessarily the least action
path.

For the endpoint, i = N , one can choose to either fix the
position of the image or to allow the image to move towards
the outer turning surface. In the second case, a harmonic
restraint term is added to the spring force to construct
Fopt

N ,

Fopt
N = Fk

N − {
Fk

N · f (qN ) − η[V (q) − E ]
}

f (qN ), (13)

where f = −∇V/|∇V | and η determines the strength of the
harmonic restraint term [66]. This force pulls the endpoint
i = N very quickly to the outer turning surface and helps find
the optimal exit points.

The default iteration scheme used in our implementation
is the inertial algorithm mentioned above, although a stan-
dard Verlet minimizer is also included in the PyNEB python
package [65]. The structure of the NEB solver is modular
and allows for the simple replacement of components like the
minimizer, allowing for easy checks on the convergence and
parameters that describe the iterative scheme.

B. Grid-based methods

Some traditional methods to compute the LAP begin by
computing the PES and the collective inertia on a grid
of collective coordinates. The calculation of the LAP is
then reduced to finding the path through the grid points
that minimizes a discrete approximation of the action. Two
methods that we have benchmarked are the dynamic pro-
gramming method (DPM) [15], and Dijkstra’s algorithm (DA)
[70]. Here, both will be described for two-dimensional (2D)
grid, with points labeled by qi j = (xi, y j ) (i = 1, . . . , N , j =
1, . . . , M). Both methods can be straightforwardly extended
to a higher-dimensional grid.

Dynamic programming is a general mathematical tech-
nique for solving multidecision problems by breaking the
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FIG. 3. Different types of paths that can be found in the different
grid-based methods. The single node qi j can reach the red (blue)
regions in DPM (DA). The initial and final points are marked.

problem down into simpler overlapping subproblems. It was
first adapted to the action integral minimization in Ref. [15]
and used in Ref. [17] to determine the LAP. This adaptation is
what we refer to as the DPM.

The DPM approximates the LAP between an initial point
qin and a final point qfin. This method finds paths that tra-
verse diagonally from a given cell: from cell qi j , only cells
qi+1, j can be reached, for j = 1, . . . , M. The allowed cells
are highlighted in red in Fig. 3. The LAP from qin to qfin
is constructed iteratively as follows: for a cell qi j , there are
M possible paths, each passing through a cell at xi−1. The
LAP from qin to qi j is selected and stored in memory. This
is repeated for every cell with x = xi, for a total of M pos-
sible paths. Once qfin is reached, there are only MN paths
(out of a total of MN paths), and the LAP is selected from
these. The DPM algorithm is detailed in Algorithm 2 in the
SM [64].

Dijkstra’s method [70] is similar to DPM, in that it breaks
down the large optimization problem into a set of smaller
problems. Given a cell qi j , the action to every neighbor qi′ j′

is calculated as if the path to qi′ j′ passes through qi j . If
this action integral is smaller than that along the current
path to qi′ j′ , qi′ j′ is said to come from qi j . This is repeated,
starting from qin, until qfin is reached. Figure 3 shows the
nearest-neighbors of qi j (the cell marked in green) in a blue
square. Dijkstra’s algorithm is described in Algorithm 3 in the
SM [64].

Dijkstra’s algorithm can find paths that pass through multi-
ple cells with the same xi value, or even paths that backtrack.
DPM cannot find such paths. However, DPM can find paths
that jump from qi j to qi+1, j′ , for any j′, while Dijkstra’s
algorithm is limited to j′ = j − 1, j, j + 1 (see Fig. 3). For
fission calculations, one frequently takes the x coordinate as
the quadrupole moment Q20, and fission can be viewed as col-
lective motion in which Q20 continuously increases towards
scission. So, the paths that Dijkstra’s algorithm can find, that
DPM cannot, are rather unlikely. In general DPM tends to
find paths with a smaller action than Dijkstra’s algorithm, see
Sec. IV.

C. Euler-Lagrange equations

To find the LAP for the functional (4) using the EL equa-
tions [71], we first parametrize the trajectory q by a time
variable t , i.e., q = q(t ) with t ∈ [0, t f ]. This is done in order
to explicitly account for the arclength ds = (

∑
dq2

i )1/2. In
terms of t , the action integral (4) reads:

S(L) =
∫ t f

0

√
2(Veff[q(t )] − E0)

(
n∑
i j

Mi j[q(t )]q̇iq̇ j

)1/2

dt

=
∫ t f

0
L(q, q̇)dt, (14)

where q̇i ≡ dqi/dt , and L is the corresponding Lagrangian.
The associated EL equation can be written as

∂L
∂qi

= d

dt

(
∂L
∂ q̇i

)
, (15)

with the boundary conditions: q(t = 0) = qin (the initial loca-
tion) and q(t = t f ) = qfin (the final location).

To numerically solve Eq. (15) we use the shooting method
[72]. That is, we start at the initial position qin and vary the
direction and orientation of the initial “velocity” q̇(t = 0).
We use a numerical differential equation solver to propagate
the solution until we find an initial condition that satisfies
q(t f ) = qfin. Finding such initial conditions can present some
challenges, which we discuss in the SM [64].

The EL approach is equivalent to what is done in Ref. [24]
where the eikonal equation is solved by the method of charac-
teristics. Each different trajectory obtained by varying q̇(t =
0) corresponds to one of the characteristics of the leading
order [cf. Eqs. (2.8) and (4.3) of Ref. [24]]. It is worth noting
that if the imaginary part of the phase of the wave function
W (q) is negligible, as is the case of the motion in the deep
subbarrier region, then the eikonal equation for W is a valid
approximation [12]. The trajectories corresponding to the sta-
tionary functional (4) are equivalent to the solutions of the
eikonal equation for W [see Eqs. (11) and (13) of Ref. [12]].
A connection between the eikonal equation, the dynamic pro-
gramming approach, and a variational principle in the context
of geometrical optics is discussed in Ref. [73].

IV. RESULTS

A. Analytic surfaces: Illustrative examples

We benchmark the performance of the NEB method by
comparing the LAP found using NEB (denoted as NEB-LAP)
to the paths found using the DPM, DA, and EL approaches
for analytic surfaces defined in terms of the position vector
q = (x, y). Throughout this section, we assume a constant
inertia Mi j = δi j . Within the NEB framework, the action
functional (4) can develop some noise as the NEB algorithm
approaches the final action. This noise is a function of the
NEB hyperparameters and the optimization method used. All
surfaces discussed in this section are released as example
cases with PyNEB [65].

In the analytic cases, the NEB is initialized by fixing an
initial and final points qin and qfin, respectively, and defining a
linear trajectory connecting them. The NEB algorithm is then
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TABLE I. Action integrals for the six-camel-back (CB-S and
CB-A) and Müller-Brown (MB) surfaces. The integrals have been
calculated using a linear spline interpolation evaluated at 500 points
along each trajectory.

NEB-MEP NEB-LAP DPM EL DA

CB-S 5.522 5.518 5.524 5.536 5.563
CB-A 6.793 6.404 6.405 6.407 6.886
MB 28.491 22.875 22.909 22.871 23.427

iterated until convergence is reached. Grid-based methods use
a grid spacing of �x = 0.1 along the x axis and �y = 0.005
along the y axis for all analytic surfaces. Details of the numer-
ical methods used for solving the EL equations for all surfaces
are discussed in the SM [64]. The action values for each
surface considered are included in Table I. Action integrals in
Table I are evaluated by using linearly interpolated trajectories
over 500 uniformly distributed points.

We compute both LAP and MEP in the NEB framework.
Since the MEP is a solution of Eq. (7), images along the path
converge to critical points on the surface depending on the
position of the boundary images at qin and qfin. Critical points
on the surface V (q) contained in the MEP can be extracted by
calculating ∇V along the path and are classified by computing
the eigenvalues of the Hessian at those points.

First, we consider the symmetric six-camel back potential
(CB-S) [49] defined as

VCB-S(q) = (
4 − 2.1x2 + 1

3 x4)x2 + xy + 4(y2 − 1)y2.

(16)

In this example, we seek the LAP connecting the local min-
imum located at qin = (1.70,−0.79) to the local minimum
located at qfin = (−1.70, 0.79). Figure 4 shows the CB-S PES
normalized to zero at its global minimum together with the
calculated NEB-MEP, NEB-LAP, DPM, EL, and DA trajec-
tories. The action integrals along these trajectories are listed
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FIG. 4. The symmetric camel-back PES VCB−S(q) normalized to
its global minimum together with the calculated NEB-MEP (red),
NEB-LAP (magenta), DPM (black), EL (cyan), and DA (lime) tra-
jectories. Black stars indicate saddle points and yellow crosses mark
local minima.
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FIG. 5. Similar as in Fig. 4 but for the asymmetric camel-back
surface VCB-A(q). For the video illustrating the NEB determination of
both LAP and MEP, see the SM [64].

in Table I. The MEP and the LAPs computed by using the
NEB, EL, DPM, and DA methods are very similar. However,
the DA trajectory slightly deviates from the other ones. This
is because DA is more constrained by the grid spacing than
DPM: regardless of the grid spacing, DA can only consider
its immediate neighbors, while DPM does not have this con-
straint (see Fig. 3 and Sec. III B).

As indicated by Fig. 4, the final action values for the LAP
obtained by the NEB, DPM, and EL methods agree well with
the MEP. However, the MEP and LAP are not necessarily
equivalent in general; the MEP can be viewed as an approx-
imation of the LAP. A detailed discussion on the conditions
for the MEP to be a LAP is contained in the SM [64]. To see
the MEP limitations, we consider an asymmetric variant of the
camel-back potential (CB-A)

VCB−A(q) = VCB-S(q) + 1
2 y, (17)

where the endpoints of the local minima are qin =
(1.70,−0.8) and qfin = (−1.70, 0.76). Figure 5 shows the
MEP trajectory which is markedly different from the LAP
solutions and corresponds to an appreciably larger action in-
tegral. Still, the MEP can be used for finding critical points
(minima and saddles) on the surface.

The Müller-Brown potential is a canonical example of a
PES used in theoretical chemistry [66,74,75]. The Müller-
Brown surface shown in Fig. 6 is defined as

VMB(q) =
4∑

i=1

Aie
ai(x−x0i )

2+bi(x−x0i )(y−y0i )+ci(y−y0i )
2

, (18)

where we use the same set of parameters as in
Ref. [74], namely: A = (−200,−100,−170, 15),
a = (−1,−1,−6.5, 0.7), b = (0, 0, 11, 0.6), c =
(−10,−10,−6.5, 0.7), x0 = (1, 0,−0.5,−1), and
y0 = (0, 0.5, 1.5, 1). The MEP follows the bent trajectory
that goes through the critical points: two saddle points and
one local minimum. This trajectory markedly differs from
the LAPs, which are in a rough agreement. The MB surface
highlights a problem with the DPM. As mentioned in Sec. III,
the DPM can only search a single direction of each coordinate
axis of the domain. In the case of the Muller-Brown surface,
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FIG. 6. Similar as in Fig. 4 but for the shifted Müller-Brown
surface. The inset shows the LAP pathways close to the initial point
qin. The yellow dashed line shows the vertical. As can be seen, all
paths except for the DPM curve start by moving to the left of the
vertical.

the DPM cannot search for trajectories bending back in
the negative-x direction. As seen in the inset of Fig. 4, the
NEB, EL, and DA methods start their trajectories moving
backwards in x from the initial point qin. The DPM path,
on the other hand, always moves in the positive-x direction.
Consequently, the action integral along the DPM path is
slightly larger than in the other methods.

B. Realistic calculations

To illustrate the performance of the NEB method and other
approaches to the LAP in realistic cases, we carried out nu-
clear EDF calculations for 232U in two collective coordinates
and 240Pu in three collective coordinates. In the particle-hole
channel we used the Skyrme functional SkM∗ [76], which
is often employed in fission studies. The particle-particle in-
teraction was approximated by the mixed density-dependent
pairing force [77].

In the case of 232U, we considered two collective coordi-
nates q ≡ (Q20, Q30) and for 240Pu we took three collective
coordinates q ≡ (Q20, Q30, λ2). The axial quadrupole and oc-
tupole moment operators are defined as in Ref. [78]:

Q̂λ0(r, θ ) = Nλ

√
2λ + 1

4π
rλPλ(cos θ ), (19)

where Pλ is the Legendre polynomial, N2 =
√

16π
5 , and N3 =

1. The collective coordinate λ2 = λ2n + λ2p defined in Sec. II
represents the dynamic pairing fluctuations. The value of
λ2τ = 0 corresponds to static HFB pairing.

As in Ref. [18], to render collective coordinates dimension-
less, we use dimensionless coordinates xi defined as

xi = qi

δqi
, (20)

where δqi are the scale parameters used in determining nu-
merical derivatives of density matrices in Eq. (2). Here we
took δQ20 = 1 b, δQ30 = 1 b3/2, and δλ2 = 0.01 MeV.
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FIG. 7. The PES (in MeV) of 232U in the (Q20, Q30 ) plane cal-
culated with SkM∗. Solid lines mark the LAPs and MEP obtained
with the constant inertia tensor; dotted lines correspond to the non-
perturbative inertia tensor. The OTL is shown in white. The blue,
orange, purple, and black curves represent the LAPs calculated using
the NEB, DPM, EL, and DA methods, respectively. The green curve
is the MEP, which was also calculated using NEB.

1. Two-dimensional case: SF of 232U

The PES was computed by solving the HFB equations us-
ing the parallel axial solver HFBTHO(v3.00) [79]. The large
stretched harmonic-oscillator basis of N = 25 major shells
was used to guarantee good convergence. We adopted a
458 × 501 grid with 0 � Q20 � 457 b and 0 � Q30 � 50 b3/2.
To apply the NEB method, which involves local gradient
calculations at arbitrary values q, we interpolate the PES
and the inertia tensor on the mesh. Because the grid is two-
dimensional, a cubic spline interpolator suffices. Close to the
Q30 = 0 axis, we take into account the mirror symmetry of
the PES by setting V (−Q30) = V (Q30). Finally, since NEB
updates occasionally push an image outside of the computed
PES mesh, we extended the PES to grow exponentially with
the distance outside the mesh, to smoothly push images back
into the evaluated region.

Figure 7 shows the two-dimensional PES of 232U. The
least action fission pathway which goes from the g.s. at qin =
(24 b, 0) to the exit point qfin = (281 b, 37 b3/2) is calculated
using the methods explained in Sec. III. To select the endpoint
qfin, we compute the LAP using DPM for all points on the
OTL, and select the point with the lowest action integral. This
point is then used as the exit point for the other methods.
While NEB does not require a fixed endpoint in general, we
fix the endpoint here in order to facilitate intermethod com-
parison. The MEP path is calculated using the NEB method.

The action integral computed with different methods is
shown in Table II. When computing the action, we interpolate
the paths using a linear spline interpolator, and the action in-
tegral is computed using 500 evaluations along the path. This
reduces the differences in the action that may arise from using
a different number of points along the path (for instance, NEB
gives a similar path to DPM using as few as 30 images). For all
paths, we compute the action using the inertia tensor evaluated
along the path. As can be seen, the action values computed
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TABLE II. Action integrals for 232U computed with different
methods. The paths computed using the constant and nonperturbative
inertia tensor are labeled “con.” and “n.-p.,” respectively.

NEB-MEP NEB-LAP DPM EL DA

con. 174.5 174.2 174.2 174.9 175.8232U n.-p. 173.6 173.3 175.0 178.5

con. 19.09 18.98 19.21 19.01 22.85240Pu n.-p. 16.54 16.47 18.18 30.50

for 232U using different methods agree well, with DA being
the worst performer. As seen in Fig. 7 and Table II the MEP
is very close to the LAP. This is because the static fission
pathway (i.e., MEP) is fairly straight and the fission valley is
well delineated. Note that perfect agreement is not expected,
and in fact was not observed for the analytic surfaces, either.
This is due in part to the different approximations used in
each method—for DPM and DA, this is the grid spacing; for
NEB, this is the number of images and approximate treatment
of derivatives; and for EL, this is a variety of simplifications
described in Sec. 3 in the SM [64]. Additional variation in the
quality of the interpolator further hampers agreement beyond
what is listed.

2. Three-dimensional case: SF of 240Pu

The SF of 240Pu in several collective coordinates was
studied in Ref. [18] where the details pertaining to the compu-
tation, grid size, etc., can be found. Between the g.s. minimum
and the fission isomer (FI), the fission pathway is affected by
triaxial degrees of freedom. Between the FI and the outer turn-
ing surface (OTS), however, the predicted fission trajectory is
axial. In this paper, we consider the fission of the FI of 240Pu
so the OTS corresponds to the FI energy.

For three-dimensional tunneling, the system of equa-
tions that must be solved to construct a global spline
interpolator is too large for practical applications. Instead,
we use piecewise linear interpolation. The PES at λ2 = 0 for
240Pu shown in Fig. 8 varies very smoothly in the barrier
region where the potential energy is larger than the energy of
the FI, and so this interpolation scheme is reasonable.

Figure 9 shows the LAPs for 240Pu computed with
the NEB, DPM, and EL methods in three dimensions
(3D). The pathways begin at the FI minimum at
qin = (Q0

20 = 87 b, Q0
30 = 0 b3/2, λ2 = 0.0) and the

exit point was chosen for DP in the same way as the
232U results before. The NEB endpoint in this case was
allowed to vary according to Eq. (13), better representing
standard procedure for production runs. The exit points
qfin predicted by NEB (185.1 b, 18.4 b3/2, 3.3 MeV),
DPM (184.0 b, 18.6 b3/2, 4.8 MeV) and EL
(179.8 b, 17.7 b3/2, 0.0) then differ. When the collective
mass is held constant, all methods find very similar paths
in the λ2 = 0.0 plane, which are also shown in Fig. 8. The
paths vary more when the nonperturbative inertia tensor is
used, with the main difference between the NEB and DPM
paths appearing in the region close to the FI minimum;
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FIG. 8. The PES (in MeV) for 240Pu in the space of collective
coordinates Q20, Q30 with λ2 = 0. Only the region beyond the fission
isomer is shown. The energy is normalized to the energy of the fission
isomer. The OTL is shown in white. The MEP (green) practically
coincides with the LAPs calculated with the constant inertia using
the NEB (blue), DPM (orange), and EL (purple) methods.

beyond the saddle point, both paths are similar. As seen
in Table II, the NEB and DPM are in a good agreement. In
general, one would expect a better performance from NEB
as this method is not constrained to a grid (this is true in
the case of the analytic surfaces discussed in Sec. IV A).
However, in rare cases, the DPM produces a slightly lower
action than the NEB. In such cases the NEB converges to an
even lower action if is initialized with the DPM result. This
suggests that for tunneling in more than two dimensions (2D),
a combination of NEB and DPM might be beneficial.

V. CONCLUSIONS

Finding the path that minimizes the action integral can
be extremely challenging since it involves searching over the

FIG. 9. The PES (in MeV) for 240Pu in the collective coordinates
Q20, Q30 and λ2. The 2D cross section at λ2 = 0 shown in Fig. 8
is indicated. The blue, orange, and purple curves are the LAP, cal-
culated using the NEB, DPM, and EL methods, respectively. The
nonperturbative inertia tensor was used for the dashed curves. The
OTS is indicated by the dark blue contour surface.
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space of all continuous paths that fulfill the boundary con-
ditions. Each method explored in this paper simplifies such
task in different ways. DPM and DA project the PES onto a
finite grid and explore decisions in making the path between
the boundary conditions. In the EL approach the surface is
modified in several ways to smooth the relation between ini-
tial conditions and the endpoint of the trajectory. The NEB
method reduces the original search over continuous path into
considering only piecewise linear paths, the number of pieces
given by the number of images. It is this simplification that
makes the NEB robust and accurate, since the total action now
becomes a smooth function of the position of the images, a
function that can straightforwardly be numerically minimized
by gradient descent methods.

A significant advantage of the NEB is that it can accom-
modate any initial positions of the images, which speeds the
convergence appreciably if a good prior guess of the LAP is
provided. Other methods lack for such incorporation of prior
knowledge. Finally, the resolution of the NEB for a rapidly
varying surface can be adjusted locally by increasing the
amount of images or spring constants, while for DPM and DA
the entire grid resolution would have to be increased, giving
an appreciable toll on the computational cost.

For both analytic and realistic potential-energy surfaces
the NEB robustly produces a LAP. In the cases studied,
NEB outperforms the EL and DA methods, and produces
close results to those of the DPM with usually lower ac-
tion integral. For many-dimensional tunneling, initiating the
NEB method from the DPM path might be a winning
strategy.

A huge advantage of the NEB over other methods is that
it can efficiently and accurately estimate exit points. By ex-
ploring different initial conditions for the positions of the
images which lead to distinct exit points, one can use the NEB
method to study the phenomenon of multimodal fission. An
example of such an application is shown in video 1 in the SM
[64]. While other methods can find a least-action trajectory
for an arbitrary final point placed on the OTL, as done, e.g.,
in Refs. [17–23], they cannot guarantee that this trajectory is
stationary. All such trajectories can be gradually transformed
into a stationary pathway by moving the final point along the
OTL towards the exit point, see Fig. 2.

In this paper we also explored the minimum-energy (or
static) path. We adjusted our NEB algorithm to generate
MEPs, including the determination of local minima and sad-
dle points. The necessary conditions for a MEP to also be a
LAP are discussed in the SM [64]. Video 2 in the SM [64]
illustrates the way the NEB method generates LAP and MEP.

An important contribution of this work is providing a beta
release of the PyNEB package, a python suite of codes that
implement the NEB algorithm described in this paper. The
package can be found in Ref. [65] together with the respective
documentation and code samples serving as a tutorial for its
use. A comprehensive investigation into the intricacies of the
numerical implementations and performance of the package
itself will accompany the version 1.0 release.

The NEB approach can be readily paired with accelerated
DFT calculations, such as the recent applications of Gaussian
process regression to PES emulation [75,80]. In these works,
a Gaussian process is used to emulate the PES and DFT
calculations are only run if the Gaussian process is uncertain
as to the actual PES value. As NEB is not a grid-based method,
it can sensibly be paired with a Gaussian process emulator that
is updated as necessary while NEB runs. In this way, the LAP
can be determined using far fewer DFT evaluations than is
necessary in DPM.

The ability to determine the exit points is essential for
determining fission-fragment yields [54,55]. The minimum
action provides information on SF half-lives. In this context,
the NEB method described in this paper is expected to speed
up the global calculations of nuclear fission for r-process
simulations and studies of superheavy nuclei stability.
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[32] W. Brodziński and J. Skalski, Instanton-motivated study of
spontaneous fission of odd-a nuclei, Phys. Rev. C 102, 054603
(2020).

[33] M. Baranger, M. Strayer, and J.-S. Wu, Nuclear collec-
tive motion with full nonlinearity, Phys. Rev. C 67, 014318
(2003).

[34] B. C. Garrett and D. G. Truhlar, A least-action variational
method for calculating multidimensional tunneling probabili-
ties for chemical reactions, J. Chem. Phys. 79, 4931 (1983).

[35] G. Mills and H. Jónsson, Quantum and Thermal Effects in H2

Dissociative Adsorption: Evaluation of Free Energy Barriers in
Multidimensional Quantum Systems, Phys. Rev. Lett. 72, 1124
(1994).

[36] G. Mills, H. Jónsson, and G. K. Schenter, Reversible work
transition state theory: Application to dissociative adsorption of
hydrogen, Surf. Sci. 324, 305 (1995).

[37] H. Jónsson, G. Mills, and K. W. Jacobsen, Nudged elastic band
method for finding minimum energy paths of transitions, in
Classical and Quantum Dynamics in Condensed Phase Simula-
tions, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World
Scientific, 1998), pp. 385–404.

[38] G. Henkelman, B. P. Uberuaga, and H. Jónsson, A climbing
image nudged elastic band method for finding saddle points and
minimum energy paths, J. Chem. Phys. 113, 9901 (2000).

[39] G. Henkelman and H. Jónsson, Improved tangent estimate in
the nudged elastic band method for finding minimum energy
paths and saddle points, J. Chem. Phys. 113, 9978 (2000).

[40] The Atomic Simulation Environment Documentation, https://
wiki.fysik.dtu.dk/ase/ase/neb.html.

[41] B. Peters, A. Heyden, A. T. Bell, and A. Chakraborty, A grow-
ing string method for determining transition states: Comparison
to the nudged elastic band and string methods, J. Chem. Phys.
120, 7877 (2004).

[42] A. Mamdouh, J. Pearson, M. Rayet, and F. Tondeur, Large-scale
fission-barrier calculations with the ETFSI method, Nucl. Phys.
A 644, 389 (1998).

[43] P. Möller, D. G. Madland, A. J. Sierk, and A. Iwamoto,
Nuclear fission modes and fragment mass asymmetries in a
five-dimensional deformation space, Nature (London) 409, 785
(2001).

[44] A. Iwamoto, P. Möller, D. G. Madland, and A. J. Sierk, Mass
division in nuclear fission and isotope effect, J. Nucl. Sci.
Technol. (Abingdon, U. K.) 39, 332 (2002).

[45] P. Möller, A. J. Sierk, and A. Iwamoto, Five-Dimensional
Fission-Barrier Calculations from 70Se to 252Cf, Phys. Rev. Lett.
92, 072501 (2004).

[46] Z.-M. Wang, W.-J. Zhu, X. Zhu, C.-L. Zhong, and T.-S. Fan,
236U multi-modal fission paths on a five-dimensional deforma-
tion surface, Commun. Theor. Phys. 71, 417 (2019).

054302-10

https://doi.org/10.1088/0034-4885/79/11/116301
https://doi.org/10.1088/1361-6471/abab4f
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1098/rspa.1937.0248
https://doi.org/10.1103/RevModPhys.44.320
https://doi.org/10.1016/0375-9474(73)90022-5
https://doi.org/10.1016/0375-9474(81)90471-1
https://doi.org/10.1016/0370-2693(78)90085-0
https://doi.org/10.1103/PhysRevC.88.064314
https://doi.org/10.1103/PhysRevC.90.061304
https://doi.org/10.1103/PhysRevC.93.011304
https://doi.org/10.1103/PhysRevC.96.061301
https://doi.org/10.1103/PhysRevC.92.064315
https://doi.org/10.1103/PhysRevC.93.044315
https://doi.org/10.1103/PhysRevLett.127.012501
https://doi.org/10.1016/0003-4916(86)90096-5
https://doi.org/10.1016/0370-2693(89)90806-X
https://doi.org/10.1143/ptp/87.5.1171
https://doi.org/10.1007/BF01288972
https://doi.org/10.1103/PhysRevC.91.044606
https://doi.org/10.1103/PhysRevC.77.064610
https://doi.org/10.1016/j.physletb.2020.136042
https://doi.org/10.1103/PhysRevC.102.054603
https://doi.org/10.1103/PhysRevC.67.014318
https://doi.org/10.1063/1.445586
https://doi.org/10.1103/PhysRevLett.72.1124
https://doi.org/10.1016/0039-6028(94)00731-4
https://doi.org/10.1063/1.1329672
https://doi.org/10.1063/1.1323224
https://wiki.fysik.dtu.dk/ase/ase/neb.html
https://doi.org/10.1063/1.1691018
https://doi.org/10.1016/S0375-9474(98)00576-4
https://doi.org/10.1038/35057204
https://doi.org/10.1080/18811248.2002.9715198
https://doi.org/10.1103/PhysRevLett.92.072501
https://doi.org/10.1088/0253-6102/71/4/417


NUDGED ELASTIC BAND APPROACH TO NUCLEAR … PHYSICAL REVIEW C 105, 054302 (2022)

[47] V. Ásgeirsson, B. O. Birgisson, R. Bjornsson, U. Becker,
F. Neese, C. Riplinger, and H. Jónsson, Nudged elastic
band method for molecular reactions using energy-weighted
springs combined with eigenvector following, J. Chem. Theory
Comput. 17, 4929 (2021).

[48] D. Sheppard, R. Terrell, and G. Henkelman, Optimization meth-
ods for finding minimum energy paths, J. Chem. Phys. 128,
134106 (2008).

[49] J. J. Moré and T. S. Munson, Computing mountain passes and
transition states, Math. Program. 100, 151 (2004).

[50] N. L. Vaquero, T. R. Rodríguez, and J. L. Egido, On the impact
of large amplitude pairing fluctuations on nuclear spectra, Phys.
Lett. B 704, 520 (2011).

[51] N. L. Vaquero, J. L. Egido, and T. R. Rodríguez, Large-
amplitude pairing fluctuations in atomic nuclei, Phys. Rev. C
88, 064311 (2013).

[52] M. Warda, A. Staszczak, and W. Nazarewicz, Fission modes of
mercury isotopes, Phys. Rev. C 86, 024601 (2012).

[53] J. Berger, M. Girod, and D. Gogny, Microscopic analysis of
collective dynamics in low energy fission, Nucl. Phys. A 428,
23 (1984).

[54] J. Sadhukhan, S. A. Giuliani, Z. Matheson, and W. Nazarewicz,
Efficient method for estimation of fission fragment yields of r-
process nuclei, Phys. Rev. C 101, 065803 (2020).

[55] J. Sadhukhan, S. A. Giuliani, and W. Nazarewicz, Theoretical
description of fission yields: Toward a fast and efficient global
model, Phys. Rev. C 105, 014619 (2022).

[56] A. Baran, J. A. Sheikh, J. Dobaczewski, W. Nazarewicz,
and A. Staszczak, Quadrupole collective inertia in nuclear
fission: cranking approximation, Phys. Rev. C 84, 054321
(2011).

[57] S. A. Giuliani and L. M. Robledo, Non-perturbative collective
inertias for fission: A comparative study, Phys. Lett. B 787, 134
(2018).

[58] K. Washiyama, N. Hinohara, and T. Nakatsukasa, Finite-
amplitude method for collective inertia in spontaneous fission,
Phys. Rev. C 103, 014306 (2021).

[59] A. Baran, Z. Łojewski, K. Sieja, and M. Kowal, Global
properties of even-even superheavy nuclei in macroscopic-
microscopic models, Phys. Rev. C 72, 044310 (2005).

[60] W. Quapp and D. Heidrich, Analysis of the concept of mini-
mum energy path on the potential energy surface of chemically
reacting systems, Theor. Chim. Acta 66, 245 (1984).

[61] N. Dubray and D. Regnier, Numerical search of discontinu-
ities in self-consistent potential energy surfaces, Comput. Phys.
Commun. 183, 2035 (2012).

[62] A. Zdeb, M. Warda, and L. M. Robledo, Description of the
multidimensional potential-energy surface in fission of 252Cf
and 258No, Phys. Rev. C 104, 014610 (2021).

[63] N.-W. T. Lau, R. N. Bernard, and C. Simenel, Smoothing of 1D
and 2D discontinuities in potential energy surfaces, Phys. Rev.
C 105, 034617 (2022).

[64] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevC.105.054302 for the algorithms, videos, and

details on MEP and LAP equivalence conditions, and the Euler-
Lagrange implementation.

[65] See https://pyneb.dev.
[66] V. Ásgeirsson, A. Arnaldsson, and H. Jónsson, Efficient eval-

uation of atom tunneling combined with electronic structure
calculations, J. Chem. Phys. 148, 102334 (2018).

[67] L. Verlet, Computer “experiments” on classical fluids. I. Ther-
modynamical properties of Lennard-Jones molecules, Phys.
Rev. 159, 98 (1967).

[68] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch,
Structural Relaxation Made Simple, Phys. Rev. Lett. 97, 170201
(2006).

[69] J. Guénolé, W. G. Nöhring, A. Vaid, F. Houllé, Z. Xie, A.
Prakash, and E. Bitzek, Assessment and optimization of the
fast inertial relaxation engine (FIRE) for energy minimization
in atomistic simulations and its implementation in LAMMPS,
Comput. Mater. Sci. 175, 109584 (2020).

[70] E. W. Dijkstra, A note on two problems in connexion with
graphs, Numer. Math. 1, 269 (1959).

[71] R. Weinstock, Calculus of Variations: With Applications to
Physics and Engineering (Dover Publications, Inc., New York,
1974).

[72] Numerical Solution of Boundary Value Problems (BVP), https:
//reference.wolfram.com/language/tutorial/NDSolveBVP.html.

[73] V. Lakshminarayanan and S. Varadharajan, Dynamic program-
ming, the Fermat principle, and the eikonal equation revisited,
J. Optim. Theory Appl. 95, 713 (1997).

[74] K. Müller and L. D. Brown, Location of saddle points and
minimum energy paths by a constrained simplex optimization
procedure, Theor. Chim. Acta 53, 75 (1979).

[75] O.-P. Koistinen, F. B. Dagbjartsdóttir, V. Ásgeirsson, A. Vehtari,
and H. Jónsson, Nudged elastic band calculations accelerated
with Gaussian process regression, J. Chem. Phys. 147, 152720
(2017).

[76] J. Bartel, P. Quentin, M. Brack, C. Guet, and H.-B. Håkansson,
Towards a better parametrisation of Skyrme-like effective
forces: A critical study of the SkM force, Nucl. Phys. A 386,
79 (1982).

[77] J. Dobaczewski, W. Nazarewicz, and M. V. Stoitsov, Nuclear
ground-state properties from mean-field calculations, Eur. Phys.
J. A 15, 21 (2002).

[78] J. Dobaczewski and P. Olbratowski, Solution of the Skyrme–
Hartree–Fock–Bogolyubov equations in the cartesian deformed
harmonic-oscillator basis. (IV) HFODD (v2.08i): A new ver-
sion of the program, Comput. Phys. Commun. 158, 158 (2004).

[79] R. Navarro Perez, N. Schunck, R.-D. Lasseri, C. Zhang, and
J. Sarich, Axially deformed solution of the Skyrme–Hartree–
Fock–Bogolyubov equations using the transformed harmonic
oscillator basis (III) HFBTHO (v3.00): A new version of the
program, Comput. Phys. Commun. 220, 363 (2017).

[80] J. A. Garrido Torres, P. C. Jennings, M. H. Hansen, J. R. Boes,
and T. Bligaard, Low-Scaling Algorithm for Nudged Elastic
Band Calculations Using a Surrogate Machine Learning Model,
Phys. Rev. Lett. 122, 156001 (2019).

054302-11

https://doi.org/10.1021/acs.jctc.1c00462
https://doi.org/10.1063/1.2841941
https://doi.org/10.1007/s10107-003-0489-0
https://doi.org/10.1016/j.physletb.2011.09.073
https://doi.org/10.1103/PhysRevC.88.064311
https://doi.org/10.1103/PhysRevC.86.024601
https://doi.org/10.1016/0375-9474(84)90240-9
https://doi.org/10.1103/PhysRevC.101.065803
https://doi.org/10.1103/PhysRevC.105.014619
https://doi.org/10.1103/PhysRevC.84.054321
https://doi.org/10.1016/j.physletb.2018.10.045
https://doi.org/10.1103/PhysRevC.103.014306
https://doi.org/10.1103/PhysRevC.72.044310
https://doi.org/10.1007/BF00549673
https://doi.org/10.1016/j.cpc.2012.05.001
https://doi.org/10.1103/PhysRevC.104.014610
https://doi.org/10.1103/PhysRevC.105.034617
http://link.aps.org/supplemental/10.1103/PhysRevC.105.054302
https://pyneb.dev
https://doi.org/10.1063/1.5007180
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1016/j.commatsci.2020.109584
https://doi.org/10.1007/BF01386390
https://reference.wolfram.com/language/tutorial/NDSolveBVP.html
https://doi.org/10.1023/A:1022638309280
https://doi.org/10.1007/BF00547608
https://doi.org/10.1063/1.4986787
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1140/epja/i2001-10218-8
https://doi.org/10.1016/j.cpc.2004.02.003
https://doi.org/10.1016/j.cpc.2017.06.022
https://doi.org/10.1103/PhysRevLett.122.156001

