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The renormalization of iterated one-pion exchange (OPE) is studied in chiral effective field theory (χEFT) for
the antinucleon-nucleon (NN) system. The OPE potential is cut off at a certain distance and contact interactions
are represented by a complex spherical well with the same radius. We investigate the dependence on the cutoff
radius of the phase shifts, inelasticities, and mixing angles for the low partial waves in NN scattering. We
show that renormalization requires additional contact interactions compared to the expectation based on naive
dimensional analysis. Results after renormalization are compared with the state-of-the-art energy-dependent
partial-wave analysis of NN data. We compare our conclusions with applications of χEFT to the nucleon-nucleon
system.
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I. INTRODUCTION

Chiral effective field theory (χEFT) is an effective the-
ory of QCD for momenta below the nonperturbative scale
MQCD ∼ 1 GeV. The most general Lagrangian density in-
volving baryons and pions is constructed based on symmetry
arguments, particularly approximate chiral symmetry, while
the details of short-range dynamics are parametrized by
interaction strengths or “low-energy constants” (LECs). Ob-
servables are calculated in a systematic expansion in powers
of Q/MQCD, where Q is the characteristic momentum of the
process under consideration [1]. The model independence
of the approach is guaranteed by order-by-order renor-
malization. Since Weinberg’s seminal articles [2,3], χEFT
has been applied to a variety of nuclear, hypernuclear,
and antinuclear systems [4]. Here we discuss the renor-
malization of the antinucleon-nucleon (NN) system at low
energies.

Weinberg’s original approach [2,3] to the nucleon-nucleon
(NN) system was based on the assumption that all LECs
satisfy naive dimensional analysis (NDA) [5]. Weinberg
identified the origin of the breakdown in the perturbative
expansion of the amplitude in the “reducible” diagrams that
contain NN-only intermediate states. He suggested that the
potential—defined as the sum of “irreducible” diagrams—
be expanded in Q/MQCD, and each successive truncation
be solved for exactly in the Lippmann-Schwinger equa-
tion or, equivalently, the Schrödinger equation. Following
the initial success of this approach for NN [6,7], signif-
icant improvements [8,9] have made chiral potentials the

standard input for the “ab initio” methods [10] that nowadays
dominate low-energy nuclear physics. Weinberg’s proposal
for the NN potential was extended to the NN system in
Refs. [11,12].

However, it has been known for a long time that NN
amplitudes, and thus observables, obtained with Weinberg’s
prescription are not renormalization-group (RG) invariant. In
any EFT, contributions from virtual states require a regu-
lator, both for the loops in the potential and the loops in
the Lippmann-Schwinger equation (automatically generated
by the solution of the Schrödinger equation). Observables
should be RG invariant, i.e., independent of the form of the
regulator and the value of the cutoff �, in the sense that they
approach finite results as � becomes much larger than other
scales in the problem. In the NN case two types of problems
have been found. In the 1S0 channel, the exact solution of
the Schrödinger equation with one-pion exchange (OPE) and
the chiral-symmetric contact interaction demanded by NDA
cannot be renormalized [13,14] without a chiral-symmetry-
breaking contact interaction that according to NDA should
be suppressed by m2

π/M2
QCD, where mπ is the pion mass. At

fixed quark masses, this LEC underestimation has only mild
consequences. The second deficiency is more serious, though:
in partial waves beyond S waves where the tensor part of
OPE is attractive, momentum-dependent LECs are necessary
[15,16], which are also inappropriately attributed to higher
orders by NDA.

The origin of the failure of NDA is the nonperturbative
character of the NN amplitude at leading order (LO). NDA
results from the assumption of naturalness [17,18] applied
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FIG. 1. Cutoff dependence of the phase shifts in the spin-singlet S and P waves at the laboratory energies of 10 MeV (black solid line), 50
MeV (red dashed line), and 100 MeV (green dotted line), for Vc = Wc = 0.
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FIG. 2. Phase shifts (left panels) and inelasticities (right panels) of the spin-singlet P waves against laboratory momentum. The (red)
dashed lines are from iterated one-pion exchange for b = 0.2 fm and Vc = Wc = 0, while (black) solid lines are the results of the PWA [40,41].
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FIG. 3. Cutoff dependence of mNVc (left panels) and mNWc (right panels) for the spin-singlet S waves. The PWA phase shifts and
inelasticities are fitted at Tlab = 20 MeV.
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FIG. 4. Residual cutoff dependence of the phase shifts and inelasticities in the spin-singlet S waves at the laboratory energies of 10 MeV
(black solid line), 50 MeV (red dashed line), and 100 MeV (green dotted line), for Vc and Wc in Fig. 3.
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FIG. 5. Phase shifts (left panels) and inelasticities (right panels) of the spin-singlet S waves against laboratory momentum. The (red) dashed
lines are from iterated one-pion exchange for b = 0.2 fm and Vc,Wc from Table II, while (black) solid lines are the results of the PWA [40,41].

to the perturbative series [19]. It is well known that non-
perturbative renormalization can be significantly different,
however [20]. For example, in the 3S1 channel Weinberg’s
prescription seems to fail when one examines individual LO
diagrams for the amplitude [21], and yet it is consistent
nonperturbatively [14,22]. An attractive, singular power-law
potential, such as the ∼ − r−3 of the OPE tensor force, re-
quires an LEC in every wave where it is treated exactly
[23,24]. In the 3S1 channel NDA happens to prescribe such
an LEC; in other waves, it misses them. The resulting cutoff
dependence reflects the fact that the LECs are in fact en-
hanced by the nonperturbative RG running, being suppressed
only by powers of the parameter controlling OPE—the
pion decay constant fπ ∼ MQCD/4π—instead of MQCD. The
principle of naturalness applied to this case demands the in-
clusion of the LECs at lower orders than suggested by NDA
[15,16,25].

Once LO is corrected, RG invariance can be maintained
at higher orders if subleading interactions are treated in
distorted-wave perturbation theory [26]. A reasonable de-
scription of the NN system results [27–35]. Properties of the

TABLE I. Values of −τ1 · τ2 S12 in the uncoupled spin-triplet P
waves.

Partial wave 13P0
33P0

13P1
33P1

−〈τ1 · τ2 S12〉 −12 +4 +6 −2

triton [36–38] and the alpha particle [37] also come out well,
but an enhancement of few-body forces might take place in
heavier nuclei [39].

In this paper, we study the renormalization of the NN
scattering amplitude arising from the iteration of OPE to all
orders—a possible approach to an LO interaction adopted, for
example, in Refs. [11,12]. We use the results of the Gronin-
gen energy-dependent partial-wave analysis (PWA) [40,41],
which provide an excellent description of the available data
for elastic pp → pp and charge-exchange pp → nn scat-
tering below 925 MeV/c antiproton laboratory momentum.
As for the NN system [25,33,42], we expect suppression
factors of angular momentum to make OPE perturbative in
high partial waves. Accordingly, we focus here on the low-
est waves: the uncoupled S and P and the coupled S-D and
P-F partial waves. We perform an analysis similar to that of
Ref. [15], except that we use a coordinate-space regulator as
in Refs. [14,23,43], which resembles the boundary conditions
employed in the Groningen PWA. We find that, as in the NN

TABLE II. Values of the real (Vc) and imaginary (Wc) compo-
nents of the short-range potential at b = 0.2 fm for the uncoupled S
and P partial waves, obtained by fitting to the PWA “data” [40,41] at
Tlab = 20 MeV.

Partial wave 11S0
31S0

13P0
33P1

Vc(fm−1) −13.9 −14.6 −147.4 −3.0
Wc(fm−1) −2.6 −1.4 −25.5 −22.2
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FIG. 6. Cutoff dependence of the phase shifts and mixing angles εJ in the spin-triplet coupled S-D waves at the laboratory energies of
10 MeV (black solid line), 50 MeV (red dashed line), and 100 MeV (green dotted line), for Vc = Wc = 0.

case, renormalization requires more LECs than suggested by
NDA. Lacking further information, we assume that a short-
range LEC contains an imaginary part at the same order as
the real part, to account for NN annihilation into mesons
at small distances. The LECs are fitted to phase shifts and
inelasticities from the PWA at certain energies, with phase
shifts and inelasticities at other energies and mixing angles
being postdictions of the EFT at LO. Because isospin breaking
is a higher-order effect, we work in the isospin basis. In future
publications we plan to investigate the extent to which OPE
can be treated perturbatively in some of the low NN partial
waves [44,45] and the ordering of other interactions, such as
two-pion exchange (TPE).

This paper is organized as follows. In Sec. II, we describe
the OPE potential and our choice of the regulator, and identify
the partial waves that might need counterterms. In Sec. III, we
explain our renormalization strategy and present our results.

The conclusions are summarized in Sec. IV, where we also
give an outlook.

II. ONE-PION EXCHANGE AND
CONTACT INTERACTIONS

At low energies, antinuclear systems are made of nucleon
(N) and antinucleon (Nc) degrees of freedom: nonrelativistic
fermions with the same mass mN � 940 MeV and long-range
interactions [46,47] related by G parity, which is equiva-
lent to charge conjugation together with isospin symmetry.
For processes involving momenta Q on the order of the
pion mass mπ � 138 MeV, the three pions (πa, a = 1, 2, 3)
must also be included explicitly as pseudo-Goldstone bosons
from the spontaneous breaking of chiral symmetry, with a
decay constant fπ � 92.4 MeV and interactions constrained
by the approximate chiral symmetry of the QCD dynamics.
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FIG. 7. Cutoff dependence of the phase shifts in the uncoupled spin-triplet P waves at the laboratory energies of 10 MeV (black solid line),
50 MeV (red dashed line), and 100 MeV (green dotted line), for Vc = Wc = 0.

OPE arises from the first few terms in the chiral Lagrangian
density

LNN = N†

(
i∂0 + ∇2

2mN

)
N + Nc†

(
i∂0 + ∇2

2mN

)
Nc

− 1

2
πa

(
∂2 + m2

π

)
πa

+ gA

2 fπ
(N† �στ aN + Nc† �στ aT Nc) · �∇πa + · · · , (1)

where gA � 1.29 is the axial-vector coupling constant and τ a

(�σ ) are the Pauli matrices for isospin (spin). We focus on the
strong interactions and electromagnetic terms are not shown.

After renormalization, the energy transfer between
(anti)nucleons is of order Q2/mN and the pion propagator
can be taken as approximately static. The OPE potential for
the NN system is derived from Eq. (1): at LO, it reads in
configuration space

Vπ = − g2
Am3

π

16π f 2
π

τ1 · τ2 [vS (mπ r) �σ1 · �σ2 + vT (mπ r) S12], (2)

where S12 = 3 �σ1 · r̂ �σ2 · r̂ − �σ1 · �σ2 is the tensor operator, and

vS (x) = e−x

3x
, (3a)

vT (x) =
(

1 + x + x2

3

)
e−x

x3
. (3b)

Because the G parity of the pion is −1, Eq. (2) has the opposite
sign as OPE for NN (cf., for example, Ref. [15]). Two orders

down in the Q/MQCD expansion, chiral-symmetry-breaking
corrections represent the Goldberger-Treiman discrepancy,
which increases the strength of static OPE [48,49], while
chiral-symmetric corrections to the pion-(anti)nucleon
interaction account for recoil [6]. At this order TPE also
appears [6].

From NDA, one expects the iteration of the OPE po-
tential in Eq. (2) in low partial waves to be a series in
powers of Q/ fπ , and thus to require a full solution of
the Schrödinger equation for Q ∼ fπ 	 MQCD [50]. In the
absence of fine tuning, fπ should set the scale for di-
mensionful parameters in the amplitude, such as scattering
lengths and volumes. Indeed, the majority of these values
extracted with a chiral potential in Refs. [11,12] have natural
sizes.

However, the OPE potential is singular: it diverges as r−3

and needs to be regularized. Our choice of regulator is made
for ease of comparison with the Groningen PWA [40,41],
which follows the procedure laid out in the Nijmegen PWAs
of Refs. [51–53]: the partial-wave Schrödinger equation is
solved for the coupled pp and nn channels with a long-range
potential outside a radius r = b = 1.2 fm. The long-range
potential is taken to consist of the electromagnetic interaction,
OPE, and TPE [54,55]. At r = b a boundary condition is
chosen that, for convenience, corresponds to a spherical well
which is independent of energy, depends on the spin and
isospin of the partial wave, and is complex to account for the
annihilation into mesons. This strategy allows us to use the
code of the PWA to solve the Schrödinger equation with only
OPE for r > b. However, the boundary is now regarded as the
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regulator: varying the value of b corresponds to varying the
ultraviolet cutoff � ≡ 1/b.

The Lagrangian density in Eq. (1) contains contact in-
teractions among (anti)nucleons with an arbitrary number
of derivatives, which represent the short-distance QCD dy-
namics. For NN , these are complex: annihilation generates
mesonic states with energies on the order of 2mN that can-
not be accounted for as explicit degrees of freedom in the
EFT. (One example is the annihilation diagram into one pion,
related to OPE by crossing, which would be present in a
relativistic theory.) In addition to imaginary parts, annihila-
tion also generates real contributions to the LECs, making
them different from those for NN . Like any other EFT LECs,
these contact interactions must appear at orders no higher
than where they are needed to remove arbitrary regulator
dependence. In this first approach, we assume that the real and
imaginary parts are equally important in power counting. This

is in line with the scattering lengths from Refs. [11,12], where
typically real and imaginary parts are of comparable size.
Note that there are annihilation states containing soft pions
which give rise to long-range effects, but their contributions
to elastic scattering are suppressed by powers of (Q/4π fπ )2,
as for other irreducible loops.

With our regulator, the contact interactions, which are
(derivatives of) Dirac delta functions in configuration space,
are smeared with a spherical well [14,23,43]. Schematically,
for a channel c,

Cc Ocδ
(3)(r) → 3Cc

4πb3
θ (b − r)Pc ≡ (Vc+iWc) θ (b−r)Pc,

(4)

where Cc is a complex LEC, Oc is a combination of deriva-
tives, Pc is the projection operator on channel c, and the real
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against laboratory momentum. The (red) dashed lines are from iterated one-pion exchange for b = 0.2 fm and Vc = Wc = 0, while (black)
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inelasticities are fitted at Tlab = 20 MeV.

short-range parameters Vc and Wc from different channels are
independent. For a different way of defining the counterterms
of the annihilation, see Refs. [11,12].

Just like the NN case [15,16], whether a short-range in-
teraction is needed at LO in a certain channel hinges on the
tensor part of OPE being attractive. We denote a channel
by 2I+1 2S+1LJ , where I (S) is the total isospin (spin) and
L (J) is the orbital (total) angular momentum. Because the
Pauli principle does not apply to the NN system, the total
isospin is independent of other quantum numbers, unlike NN .
Moreover, due to annihilation there are four times as many
phase parameters (phase shifts, inelasticities, and mixing an-
gles) compared to np scattering, viz., 8 phase parameters are
required for J = 0 and 20 phase parameters for each value of
J �= 0 [53,56]. For uncoupled partial waves, the S matrix is
just a complex number, written as

S = η e2iδ, (5)

where δ is the phase shift and η (0 � η � 1) is the inelasticity
due to annihilation. For the coupled spin-triplet partial waves
with L = J ∓ 1 (J � 1) the 2 × 2 S matrix is parametrized as
[40,52]

SJ = exp(iδ̄) exp(iεJσx ) HJ exp(iεJσx ) exp(iδ̄), (6)

where δ̄ is a diagonal matrix with real entries δJ−1,J and δJ+1,J ,
and εJ is the mixing angle. The matrix HJ parametrizes the
inelasticities. It is written as

HJ = exp(−iωJσy)

(
ηJ−1,J 0

0 ηJ+1,J

)
exp(iωJσy), (7)

where ηJ−1,J and ηJ+1,J are the inelasticities (0 � ηJ∓1,J � 1)
and ωJ is the mixing angle for inelasticity. The S matrix
for the coupled partial waves is thus written in terms of six
parameters.

The sign of the singular tensor force depends on the matrix
elements of τ1 · τ2 and S12. The operator τ1 · τ2 = 2I (I + 1)
− 3 = −3,+1 for I = 0, 1, respectively, always makes one
channel attractive and its isospin partner repulsive. The matrix
elements of the tensor force have the same properties as for
NN . The spin-singlet channels do not have singular long-range
forces because the matrix elements of S12 between those chan-
nels vanish. In the coupled channels, the eigenvalues of S12 are
−4 and 2, regardless of J: one eigenchannel is attractive, the
other repulsive. On account of τ1 · τ2, the isoscalar channel is
most attractive. Therefore, one short-range interaction is ex-
pected at LO for every coupled channel where OPE is iterated
to all orders. This leaves us with the uncoupled spin-triplet
channels, which are P waves in this paper. We tabulate in
Table I the values of the matrix element of −τ1 · τ2 S12 in
these channels.

In summary, as far as S and P waves are concerned, a short-
range interaction is expected at LO in: (i) the lower wave of
each of the coupled channels, that is, 13S1, 33S1, 13P2, and 33P2;
(ii) the uncoupled channels 13P0 and 33P1. In contrast, NDA
predicts an LO short-range interaction only in the S waves.
Since we see no reason to demote an LEC, we also include
short-range interactions in 11S0 and 31S0. (These interactions
break chiral symmetry [13,14].) In the next section we confirm
numerically the need for the additional P-wave LECs and
compare the phase shifts they yield with the PWA.
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FIG. 14. Residual cutoff dependence of the phase shifts, inelasticities, and mixing angles in the 13S1 - 13D1 waves at the laboratory energies
of 10 MeV (black solid line), 50 MeV (red dashed line), and 100 MeV (green dotted line), for Vc and Wc in Fig. 13.

III. RENORMALIZATION AND RESULTS

Our strategy is the following. The parameters of OPE are
known, and we first solve the partial-wave Schrödinger equa-
tion with Vc = Wc = 0. We check the cutoff dependence of the
phase shifts and mixing angles before renormalization. [In-
elasticities are trivial, ηJ∓1,J = 1, and their mixing angles ωJ

are not well defined by Eq. (7).] We show the results at various
representative laboratory energies (Tlab = 10, 50, 100 MeV).
For each partial wave where significant cutoff dependence is
found, we adjust the short-range spherical well as function
of b. Here Vc and Wc play the role of counterterms, whose
cutoff dependence ensures that physical observables be cutoff
independent within error bars. We determine Vc and Wc from
the phase shift and inelasticity of the Groningen PWA [40] at
some energy. The PWA results we show here contain more
points but are consistent with the values in Tables VIII and

IX of Ref. [40], which assume isospin symmetry. The fit
results are not significantly sensitive to the choice of fitting
energy, which is taken to be Tlab = 20 MeV. After verifying
that cutoff independence is achieved, we take a cutoff value
� ∼ MQCD (specifically, � = 5 fm−1) and compare phase
shifts, inelasticities, and mixing angles as functions of the
laboratory momentum plab with the PWA.

Since the tensor force is the determining factor for the
renormalization of OPE, we split the analysis between spin-
singlet and triplet channels.

A. Singlet channels

OPE is not singular in the spin-singlet channels and by
itself generates no essential cutoff dependence in the solu-
tion of the Schrödinger equation. Phase shifts in the lowest
waves—11S0, 31S0, 11P1, and 31P1—can be seen in Fig. 1 for
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FIG. 15. Residual cutoff dependence of the phase shifts, inelasticities, and mixing angles in the 33S1 - 33D1 waves at the laboratory energies
of 10 MeV (black solid line), 50 MeV (red dashed line), and 100 MeV (green dotted line), for Vc and Wc in Fig. 13.

various laboratory energies. All phase shifts approach finite
values as the cutoff � increases, with the fastest variation
for � � 4π fπ ∼ MQCD. Given that �σ1 · �σ2 = −3, isospin-
singlet phases are attractive and relatively large on account
of τ1 · τ2.

In the P (and higher) waves NDA suggests LECs only at
N2LO (and higher orders). The phase shifts and inelasticities
for the 11P1 and 31P1 channels from iterated OPE are shown as
function of the laboratory momentum in Fig. 2 for a cutoff
well into the region where very little cutoff dependence is
seen in Fig. 1. A good description of the empirical values
is found for plab � 250 MeV/c, discrepancies increasing as
momentum increases, as expected in a low-energy EFT. In
11P1, however, the phase shift becomes repulsive at large
momentum, indicating that another contribution becomes as
important as OPE and challenging the convergence of a power
counting where OPE is treated alone as LO and iterated.

In fact, the magnitudes of δ and 1 − η are relatively small,
suggesting that pions might be perturbative in these waves as
in the corresponding NN cases [33].

In contrast, NDA prescribes LECs in the S waves even
though they are not needed for renormalization of iterated

TABLE III. Values of the real (Vc) and imaginary (Wc) compo-
nents of the short-range potential at b = 0.2 fm for the coupled S-D
and P-F partial waves. Those of S and P waves are obtained by fitting
to the PWA “data” [40,41] at Tlab = 20 MeV, while those of D and F
waves are set to be 0 by hand.

Partial wave 13S1
13D1

33S1
33D1

13P2
13F2

33P2
33F2

V (fm−1) −37.3 0 −18.8 0 −83.7 0 −44.5 0
W (fm−1) −7.4 0 −43.4 0 −9.3 0 −0.4 0

054005-12



RENORMALIZATION OF ONE-PION EXCHANGE IN … PHYSICAL REVIEW C 105, 054005 (2022)

 60

 90

 120

 150

 180

 0  150  300  450

� 
(d

eg
)

plab (MeV/c)

13S1

b = 0.2 fm
PWA

 60

 90

 120

 150

 180

 0  150  300  450

� 
(d

eg
)

plab (MeV/c)

13S1

b = 0.2 fm
PWA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  150  300  450

�

plab (MeV/c)

13S1

b = 0.2 fm
PWA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  150  300  450

�

plab (MeV/c)

13S1

b = 0.2 fm
PWA

 0

 5

 10

 15

 0  150  300  450

� 
(d

eg
)

plab (MeV/c)

13D1

b = 0.2 fm
PWA

 0

 5

 10

 15

 0  150  300  450

� 
(d

eg
)

plab (MeV/c)

13D1

b = 0.2 fm
PWA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  150  300  450

�

plab (MeV/c)

13D1
b = 0.2 fm

PWA
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  150  300  450

�

plab (MeV/c)

13D1
b = 0.2 fm

PWA

 0

 5

 10

 15

 20

 0  150  300  450

� J

plab (MeV/c)

13S1-13D1

b = 0.2 fm
PWA

 0

 5

 10

 15

 20

 0  150  300  450

� J

plab (MeV/c)

13S1-13D1

b = 0.2 fm
PWA

 0

 5

 10

 15

 20

 25

 0  150  300  450

�
J

plab (MeV/c)

13S1-13D1

b = 0.2 fm
PWA

 0

 5

 10

 15

 20

 25

 0  150  300  450

�
J

plab (MeV/c)

13S1-13D1

b = 0.2 fm
PWA

FIG. 16. Phase shifts and mixing angle (left panels) and inelasticities and their mixing angle (right panels) for the coupled 13S1 - 13D1 waves
against laboratory momentum. The (red) dashed lines are from iterated one-pion exchange for b = 0.2 fm and Vc,Wc from Table III, while
(black) solid lines are the results of the PWA [40,41].

OPE. Since there is no obvious reason to demote the short-
range interactions, we include them and fit the corresponding
Vc, Wc to the phase shifts and inelasticities of the PWA at
the chosen low energy. The resulting LECs, all attractive, are
shown in Fig. 3. The magnitudes of Vc are about 10 to 20 times
larger than those of Wc for large �. The simultaneous itera-
tion of OPE and short-range interactions induces new cutoff
dependence, shown in Fig. 4. Still, the amplitude is renor-
malized (at least at a fixed pion mass), and phase shifts and
inelasticities approach new values as the cutoff increases. The
LECs increase the attraction of the 11S0 phase shift, overcome
the 31S0 OPE repulsion, and introduce a nonzero inelasticity.
The resulting phase shifts and inelasticities at a large cutoff,
where Vc and Wc take the values given in Table II, are shown as
functions of the laboratory momentum in Fig. 5. A very good
description of the empirical values is obtained through most of

the displayed momentum range. (The nonmonotonic behavior
of the 11S0 phase shift at low momentum has no significance
because it is within the errors we expect for both the PWA and
the EFT.) Neither the 11S0 strong attraction nor the significant
inelasticities could be reproduced without the LECs, in line
with the NDA expectation.

Thus, a satisfactory, renormalized description of the spin-
singlet channels is obtained at low energies with a LO that
consists of iterated OPE and S-wave short-range interactions.
However, the nonmonotonic behavior of the 11P1 phase shift
in the PWA reflects a short-range repulsion, which at plab ∼
400 MeV/c entirely cancels the OPE attraction. The expan-
sion of the amplitude for momenta in that region will not
converge unless the two effects are accounted for at the same
order. The extent to which pions can be treated perturbatively
in these waves should be investigated in future work. While
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FIG. 17. Phase shifts and mixing angle (left panels) and inelasticities and their mixing angle (right panels) for the coupled 33S1 - 33D1 waves
against laboratory momentum. The (red) dashed lines are from iterated one-pion exchange for b = 0.2 fm and Vc,Wc from Table III, while
(black) solid lines are the results of the PWA [40,41].

this is the case in higher NN partial waves [33], the effects
of the additional OPE strength in I = 0 NN waves need to
be studied. We turn now to the spin-triplet channels where
renormalization of OPE is more dramatic.

B. Triplet channels

The tensor force makes OPE strong in some NN spin-triplet
channels already at relatively low momenta [15,25,42,57].
The remarkable cutoff dependence of iterated OPE in some
NN channels is evident in Figs. 6 –8, which display the cou-
pled S-D, uncoupled P, and coupled P-F waves, respectively.
As expected, there is strong cutoff dependence in the coupled
channels and attractive uncoupled P waves.

OPE is repulsive in the uncoupled 33P0 and 13P1

waves and we see that they indeed require no LECs for

renormalization. NDA also does not prescribe LECs at LO. In
Fig. 9 we compare the iterated-OPE phase shifts and inelas-
ticities for � = 5 fm−1 with the PWA results. Except for the
larger inelasticity gap in 33P0, discrepancies are comparable to
those for the spin-singlet P waves in Fig. 2, which also do not
require counterterms.

In the other two uncoupled spin-triplet waves, 13P0 and
33P1, where the OPE tensor force is singular and attractive,
the cutoff dependence of the phase shifts is very obvious.
The oscillation structure seen in the NN 33P0 channel [15] is
evident, especially in the analogous NN 13P0. It represents the
repeated appearance of shallow bound states as � increases.
In between the regions of fast variation there are plateaus that
become less visible as the energy increases. These two NN
channels require counterterms, which again we fit to the PWA
at Tlab = 20 MeV. The running of the corresponding LECs
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FIG. 18. Cutoff dependence of mNVc (left panels) and mNWc (right panels) for the coupled spin-triplet P waves. The PWA phase shifts and
inelasticities are fitted at Tlab = 20 MeV.

Vc and Wc is shown in Fig. 10. In each of the Vc there is a
striking “ankle” structure associated with a dip in the corre-
sponding Wc, beyond which Vc is much larger in magnitude
than Wc. These short-range interactions—attractive but not as
much as the singular OPE they replace at short distances—
prevent the appearance of shallow bound states and guarantee
the cutoff independence of the phase shifts and inelasticities;
see Fig. 11. This generalizes for NN the result found for
33P0 in NN [15,16]. We plot the observables as functions of
the laboratory momentum in Fig. 12 for b = 0.2 fm, where
the LECs take the values given in Table II. The quality of the
reproduction of the PWA values is even higher than for the
spin-singlet S waves in Fig. 5, where counterterms are also
present.

The cutoff dependence in the coupled waves exhibits the
same oscillatory patterns, although it is weaker in the chan-
nels with higher angular momentum, particularly 33D1 and
33F2 where tensor OPE is weak. NDA prescribes short-range
interactions in 13S1 and 33S1. As before, we adjust the cor-
responding LECs as functions of the cutoff in order to keep
the S-wave phase shifts and inelasticites at Tlab = 20 MeV
fixed. The corresponding Vc and Wc are shown in Fig. 13.
The periodic behavior of Vc in 13S1 is similar to that seen
with the same regulator in Ref. [23], and it is accompanied
by an oscillatory behavior in Wc. In the 33S1 channel, where
the tensor OPE is weaker, we find an “ankle” structure in
Vc, as before. We suspect that this is the beginning of a pe-
riodic pattern similar to 13S1, just with a larger amplitude and
lower frequency. These features are more visible in Wc. With
the counterterms, the oscillatory behavior of observables is

damped, and they all now approach definite values asymp-
totically, as seen for 13S1 - 13D1 in Fig. 14 and 33S1 - 33D1 in
Fig. 15. As expected in an EFT, the residual cutoff dependence
increases with energy. For the channel with stronger OPE, I =
0, oscillations are still visible, but their amplitude decreases
as � increases. The residual cutoff dependence is particu-
larly small for I = 1. For both isospin values, η = 1 in the
D wave where Wc = 0. The renormalization with an S-wave
counterterm is analogous to the coupled 3S1 - 3D1 channel
in the NN system [14,22]. Using the values of the LECs at
b = 0.2 fm, given in Table III, we compare observables with
the PWA in Figs. 16 and 17 for 13S1 - 13D1 and 33S1 - 33D1,
respectively. The best agreement might have been expected
in the S-wave phase shifts and inelasticities, where LECs
were fitted. The higher-energy discrepancies will presumably
be reduced at higher orders. Empirical inelasticities in the
D waves are very close to 1, consistent with the absence of
an imaginary counterterm in those channels. The inelasticity
mixing is relatively large for I = 0 but well described for both
isospin values. For I = 1, also the D-wave phase shift and the
D-F mixing angle are postdicted well. Overall, the agreement
is similar to other channels that contain a counterterm, except
for the I = 0 D phase shift and S-D mixing angle εJ , where
the discrepancies resemble more those in channels without
counterterms.

The situation is similar in the coupled P-F waves, except
that NDA prescribes no short-range interactions to accompany
OPE. In fact, OPE is weaker than in S-D waves and it is
questionable whether it should be iterated. This is already the
case for 33P2 - 33F2 in NN [35] and exacerbated here, where
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FIG. 19. Residual cutoff dependence of the phase shifts, inelasticities, and mixing angles in the 13P2 - 13F2 waves at the laboratory energies
of 10 MeV (black solid line), 50 MeV (red dashed line), and 100 MeV (green dotted line), for Vc and Wc in Fig. 18.

phase shifts and mixing angles are small and the cutoff depen-
dence of iterated OPE is mild in the cutoff range we examine.
However, if OPE is iterated the cutoff dependence needs to be
ameliorated, particularly in 13P2 where strong cutoff depen-
dence is seen at all but the very lowest energies. Experience
with NN [15,16] tells us that it is sufficient to add counterterms
in the P waves. The result from fitting them to the phase shifts
and inelasticities at Tlab = 20 MeV is displayed in Fig. 18. The
behavior in the channel where OPE is larger, 13P2, is similar
to that in 13S1 (Fig. 13): oscillations and Vc much larger in
magnitude than Wc. In contrast, there is no obvious oscillation
in 33P2, where Vc is positive when � is large, which is different
from other channels. The residual cutoff dependence is plotted
in Figs. 19 and 20 for 13P2 - 13F2 and 33P2 - 33F2, respectively.
Mirroring the similarity in counterterm behavior, 13P2 - 13F2

resembles 13S1 - 13D1 (Fig. 14), while qualitatively 33P2 - 33F2

is similar to 33S1 - 33D1 (Fig. 15). With the values for Vc and Wc

in Table III, the momentum dependence of the resulting phase
shifts, inelasticities, and mixing angles at b = 0.2 fm are com-
pared with the PWA in Fig. 21 for 13P2 - 13F2 and in Fig. 22
for 33P2 - 33F2. With some exceptions, the EFT results start to
differ markedly from empirical values for plab � 300 MeV/c,
when structures appear where the PWA is smooth. [There is
a small dip-bump structure at very low energies in the plot
of the 33P2 - 33F2 ωJ , which might be due to the numerical
implementation of Eq. (7) in a region where one η equals 1
and the other is very close to 1.]

Therefore, we have confirmed that the renormalization of
iterated OPE in spin-triplet NN scattering requires (in general
complex) counterterms in the 13S1, 33S1, 13P0, 33P1, 13P2, and
33P2 channels. This was what was expected from the singular
attractive nature of OPE. Higher spin-triplet waves will expe-
rience the same phenomenon, although the centrifugal barrier
must reduce the need to iterate OPE in these waves. This is the
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FIG. 20. Residual cutoff dependence of the phase shifts, inelasticities, and mixing angles in the 33P2 - 33F2 waves at the laboratory energies
of 10 MeV (black solid line), 50 MeV (red dashed line), and 100 MeV (green dotted line), for Vc and Wc in Fig. 18.

case for the NN system [15,25], and should be more so here
for I = 1, where OPE is weaker.

IV. CONCLUSIONS AND OUTLOOK

In summary, we have adapted the framework of the
partial-wave analysis for NN scattering [40,41] to study
the renormalization of the iterated static one-pion-exchange
potential in low partial waves. Both the PWA and the
Weinberg approach followed by the Jülich group [11,12]
are based on the exact solution of the Schrödinger (or
the equivalent Lippmann-Schwinger) equation with the G-
parity-transformed version of NN potentials obtained from
chiral EFT at large distances. However, they differ in
their accounting of short-range physics: the PWA uses an
energy-independent spherical well with two parameters for
each wave, while the Jülich potential employs a separable

regulator with short-range parameters mostly dictated by
naive dimensional analysis (for the imaginary parts, some
higher powers of momenta are included). We have imple-
mented here the requirement that the short-range interaction
provide order-by-order renormalizability. Power counting in-
dicates that the leading-order long-range potential is OPE,
which should be iterated for momenta comparable with the
pion decay constant, at least in the lower waves [4]. In a
first approach to renormalizability in the NN system, we have
examined iterated OPE together with a spherical well in the S
and P waves.

In the S waves, coupled or not, NDA prescribes short-
range interactions at the same order as one-pion exchange
[2,3]. The 1S0 waves converge with respect to the cutoff even
without the short-range LECs, and once the latter are included
a good description of the PWA is seen. In contrast, in the
coupled 3S1 - 3D1 waves the LECs are needed just as in NN
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FIG. 21. Phase shifts and mixing angle (left panels) and inelasticities and their mixing angle (right panels) for the coupled 13P2 - 13F2 waves
against laboratory momentum. The (red) dashed lines are from iterated one-pion exchange for b = 0.2 fm and Vc,Wc from Table III, while
(black) solid lines are the results of the PWA [40,41].

[14,22] to remove the strong cutoff dependence, and a PWA
description of more or less the same quality as the singlet
channels results after renormalization. In the S waves inelas-
ticities are relatively high, in line with the NDA assumption
that real and imaginary parts of the LECs are of the same
order.

In contrast, NDA, based on perturbation theory, assigns
P-wave short-range interactions to next-to-next-to-leading or-
der, that is, two orders down in the Q/MQCD expansion [6,7].
By construction of NDA, if this estimate were correct there
would be no significant cutoff dependence at leading order.
We have verified explicitly that this is the case for 1P1 waves
where tensor OPE vanishes, as well as 33P0 and 13P1 where
it is repulsive. The PWA phase shifts are not large and are
well described at low momenta, but agreement deteriorates
quickly with laboratory momenta above 250 MeV/c. Without

short-range interactions, there are no inelasticities, in line with
the small PWA values of 1 − η, except for 33P0.

The story is different for the remaining P waves: one finds
strong cutoff dependence in those waves where OPE has a
−r−3 singularity in an eigenchannel of the tensor operator.
This is particularly true of the uncoupled 13P0 and the coupled
13P2 - 13F2 waves, where the tensor force is the strongest and
three phase-shift cycles are seen in the cutoff range 2 to
10 fm−1. In 13P0, the spikes occur at cutoffs similar to those
in 13S1, starting at a � below 500 MeV. From the naturalness
perspective, there is no justification for the absence of coun-
terterms in these P waves. 13P0 and 13P2 are also the P-wave
channels where inelasticities are relatively large. Just as for
3S1 - 3D1, one complex counterterm per wave is sufficient for
renormalization and a good description of the PWA results at
low momenta.
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FIG. 22. Phase shifts and mixing angle (left panels) and inelasticities and their mixing angle (right panels) for the coupled 33P2 - 33F2 waves
against laboratory momentum. The (red) dashed lines are from iterated one-pion exchange for b = 0.2 fm and Vc,Wc from Table III, while
(black) solid lines are the results of the PWA [40,41].

Our work raises several questions. We have considered
only LO here, to highlight the problems of NDA when OPE
is iterated in waves beyond S. Our results are fully consistent
with the NN case studied in Ref. [15]. The different running
of the LECs is likely due to the different regulator, since
it resembles the running of S-wave LECs in the uncoupled,
annihilation-free problem tackled in Ref. [23] with the same
regulator. For NN , the renormalized description of the empir-
ical phase shifts improves at higher orders [27–35]. One may
hope that, likewise, the description of the NN PWA [40,41]
will improve at higher orders, where the chiral two-pion-
exchange potential used in the PWA appears. The question
is whether TPE accounted for perturbatively, as required by
renormalization, will produce the desired effects.

A related issue is the relative importance of the real and
imaginary parts of the LECs. There seems to be a correlation

between the magnitude of the inelasticity and the strength
of the real part of the potential: the channels with higher
inelasticity have a short-range potential at LO, either be-
cause of NDA or OPE renormalization, or both. It is not
clear whether this means the imaginary part should be LO,
as assumed here, or merely an enhancement of a subleading
correction. A resolution probably requires the study of con-
vergence in a calculation where imaginary parts are treated in
perturbation theory.

Even more fundamental is the question of whether the
power counting we discuss here can be revised more drasti-
cally. It is straightforward to apply our procedure to higher
partial waves, but the centrifugal barrier should render OPE
perturbative at the low energies of interest. When OPE is
iterated, there are problems already in the P waves. De-
spite the proper low-momentum behavior, at momenta above
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300 MeV/c structures appear in 3P2 - 3F2 waves that are not
seen in the PWA, while the converse holds for 11P1. These
discrepancies could be due to an unnecessary iteration of
OPE [35], which results from not accounting for suppres-
sion from angular-momentum factors. The convergence of
perturbative pions in the P and higher waves should be
investigated.

Moreover, for almost all phase shifts we assigned values
at zero energy found in the Groningen PWA by extrapolation
from higher energies. With one exception, we had no trouble
fitting the LECs, whether they were required by renormal-
ization or by the power counting used in NN . For 31S0, we
could find a solution only with attractive LECs that overcome
the OPE repulsion, which suggests that the phase shift should
start at 180 degrees, as is the case in the PWA for 11S0, 13S1,
33S1, and 13P0. The issue of the value of the zero-energy phase
shift is tied to the existence of shallow bound states, which
for N̄N have a long and uncertain history; see for example

the compilation of recent results in Ref. [58] or the broader
review [59]. Shallow bound states certainly demand at least
some interaction to be treated nonperturbatively at LO, but
if they are absent perturbation theory might be sufficient. We
plan to return to this issue in the future.
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