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Significance of chiral three-nucleon force contact terms for understanding
of elastic nucleon-deuteron scattering
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M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30348 Kraków, Poland

(Received 16 March 2022; accepted 6 May 2022; published 18 May 2022)

We investigate the importance of the three-nucleon (3N) force contact terms in elastic nucleon-deuteron
(Nd) scattering by applying the N4LO+ chiral semilocal momentum space (SMS) regularized nucleon-nucleon
chiral potential supplemented by N2LO and all subleading N4LO three-nucleon force contact terms. Strength
parameters of the contact terms were obtained by least squares fitting of theoretical predictions to cross
sections and analyzing power data at three energies of the impinging nucleon. Although the N3LO contributions
to the 3N force were completely neglected, the results calculated with the contact terms multiplied by the fit
strength parameters yield an improved description of the elastic Nd scattering observables in a wide range of
incoming nucleon energies below the pion production threshold.
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I. INTRODUCTION

Since the advent of numerically exact 3N Faddeev calcu-
lations [1–3] numerous clear-cut discrepancies between data
and theoretical predictions have been found for observables
in the elastic Nd scattering and deuteron breakup reactions.
Surprisingly, the magnitudes of these discrepancies are to a
large degree independent of the dynamical ingredients used
in the calculations. They are comparable for calculations
which employ high-precision (semi)phenomenological two-
nucleon (2N) potentials supplemented by standard models
of 3N forces (3NF) and for predictions obtained with the
chiral NN and 3N N2LO interactions. The low-energy analyz-
ing power puzzle—a clear underestimation of the maximum
of the vector analyzing power in neutron-deuteron (nd) and
proton-deuteron (pd) elastic scattering at low incoming nu-
cleon laboratory energies (below ≈25 MeV)—is one of the
best known cases [4]. The underprediction of the elastic-
scattering angular distribution, starting at ≈60 MeV, in the
region of the center-of-mass (c.m.) cross-section minimum,
which extends to the backward c.m. angles and grows with the
incoming nucleon energy [5] or a large gap at higher energies
between the measured total cross section for the nd interaction
and theoretical predictions [6,7] are further examples of such
discrepancies. Also, the breakup reaction provides data which
remain unexplained, and the most prominent case is the cross
section of the low-energy space-star geometry in the complete
nd and pd breakup [8].

In the standard approach to a 3N continuum one selects a
high-precision NN potential and augments it by some model
of a 3N force, whose parameters provide a satisfactory de-
scription of the triton binding. The 3N continuum Faddeev
equation is solved with such dynamical input and predictions
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for observables are made. For (semi)phenomenological poten-
tials such an attitude is, from the very beginning, disputable
due to the inconsistency between applied 2N and 3N interac-
tions. The situation dramatically changed with the availability
of chiral two- and many-body forces derived consistently in
the framework of chiral perturbation theory (χPT) [9–15].
The high precision of the description of 2N data achieved
by recent N4LO+ SMS NN potential of the Bochum group
[16] together with the derivation of 3N forces up to N4LO
order of the chiral expansion [17–21] provided a solid basis
for a successful description of the 3N continuum. However,
in spite of great expectations, the results of investigations
performed up to now with the chiral 3N forces restricted
to the third order (N2LO) of the chiral expansion show that
this new dynamics leads practically to the same 3N data
description as the (semi)phenomenological 2N and 3N in-
teractions [22,23]. It means that the chiral 3NF at N2LO,
which contains a 2π -exchange parameter free component
supplemented by two contact terms [17], is more or less
equivalent to the commonly used Urbana IX [24] or TM99
[25] 3NFs.

The situation changed when the Pisa group published
results of calculations for elastic pd scattering below the
deuteron breakup threshold obtained with 3NF containing
subleading N4LO chiral contact terms [26]. They showed that
it is possible to correctly describe the elastic pd scattering
data together with the 3H binding energy by augmenting the
Urbana IX 3NF with the N4LO 3NF contact terms. It indicated
that very probably the missing part of the 3N dynamics in up
to now performed 3N continuum calculations, namely omitted
N4LO contact terms, could be the reason for difficulties in
explaining the discrepancies mentioned above. That offers a
real prospect of even deeper understanding of 3N continuum
data up to the pion production threshold, when chiral 3N
continuum calculations with best chiral NN interaction, sup-
plemented by a chiral 3NF at least up to an N3LO order of
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chiral expansion and including all subleading N4LO contact
terms, becomes available.

The first nonvanishing contributions to the 3N force ap-
pear at N2LO [10,17] and comprise, in addition to the
parameter-free 2π -exchange term, two contact contributions
with strength parameters cD and cE [17,27]. Since the chiral
3NF acquires at N3LO only parameter-free contributions, with
all N4LO contact terms the 3N Hamiltonian depends addi-
tionally on 13 strength parameters cEi of these short-range
3NF components [28,29]. Since two pairs of N4LO contact
terms are identical, the number of free parameters in the 3N
Hamiltonian reduces eventually to 13. They must be fixed by
a fit to the 3N data. This task is comparable if not easier
than in the case of the 2N system, where the Hamiltonian
required determination of 15 free parameters [16]. In the 2N
system fitting parameters to 2N continuum data automatically
provided the correct deuteron binding energy. One can hope
that also for the 3N system strength parameters of the 3NF
contact terms obtained by fitting theoretical predictions for
different observables to 3N continuum data will lead to a 3N
Hamiltonian able to reproduce the binding energies of 3H and
3He.

Using a chiral 3NF in 3N continuum calculations re-
quires numerous time-consuming computations with varying
strengths of the contact terms in order to establish their val-
ues. Fine-tuning of the 3N Hamiltonian parameters requires
an extensive analysis of available 3N elastic Nd scattering
and breakup data. That ambitious goal calls for a significant
reduction of computer time necessary to solve the 3N Fad-
deev equations and to calculate the observables. Thus finding
an efficient emulator for exact solutions of the 3N Faddeev
equations seems to be essential and of high priority.

In Ref. [30] we proposed such an emulator which enabled
us to reduce significantly the required time of calculations. We
tested its efficiency as well as ability to accurately reproduce
exact solutions of 3N Faddeev equations. In Ref. [31] we
introduced a computational scheme based on the perturba-
tive approach of Ref. [30], which even by far more reduced
the computer time necessary to obtain the observables in
the elastic nucleon-deuteron scattering and deuteron breakup
reactions at any energy, and which is well suited for calcula-
tions with varying strengths of the contact terms in a chiral
3NF.

This development of the efficient emulator for 3N contin-
uum calculations enables us to perform an investigation of
3N continuum with the inclusion of all 3NF contact terms
up to the fifth order (N4LO) of the chiral expansion. Our
aim is to check whether, by using the best available chiral
NN potential augmented by the recently developed consistent
N2LO 3NF components [22,23] and including all contact
terms up to N4LO order of chiral expansion, it is possible to
fix parameters of the 3N Hamiltonian by fitting the theoretical
predictions to the 3N continuum data basis. Furthermore, we
verify if such a Hamiltonian will simultaneously reproduce
the 3H and 3He binding energies as well as the nd doublet
scattering length 2and . In addition we would like to examine
what impact such a Hamiltonian will have on the description
of the 3N continuum, e.g., whether its use will eliminate or
reduce the discrepancies mentioned earlier.

The paper is organized as follows: In Sec. II for the con-
venience of the reader we describe the most essential points
of our approach to 3N continuum calculations, especially the
proposed emulator and very fast and efficient scheme for the
computation of elastic scattering observables. The results on
importance of contributions from different N2LO and N4LO
contact terms to numerous nd elastic-scattering observables
as well as on a sensitivity pattern of these contributions are
shown in Sec. III. In Sec. IV we determine the strengths
of contact terms by fitting theoretical predictions to elastic-
scattering data and verify whether the established Hamiltonian
leads to an improved description of Nd elastic-scattering data.
We summarize and conclude in Sec. V.

II. THEORY

For the reader’s convenience we briefly outline the 3N Fad-
deev formalism and the perturbative treatment of Ref. [30].
For details of the Faddeev formalism and numerical perfor-
mance we refer the reader to Refs. [1,32–34].

The 3N Hamiltonian comprises pairwise interactions
vNN = v12 + v23 + v31 and a 3N force V123 = V (1) + V (2) +
V (3), where the latter is decomposed into three Faddeev
components V (i), symmetric in the particle labels j, k �= i ∈
{1, 2, 3}. Since nucleons are treated as identical particles, it is
possible to single out the (2,3) subsystem and use only V (1)

in the Faddeev-type integral equation for the breakup operator
T , which describes Nd scattering [1,32,33]

T |φ〉 = tP|φ〉 + (1 + tG0)V (1)(1 + P)|φ〉 + tPG0T |φ〉
+ (1 + tG0)V (1)(1 + P)G0T |φ〉. (1)

The initial state |φ〉 = |�q0〉|φd〉 describes the free motion of
the neutron and the deuteron with the relative momentum �q0

and contains the internal deuteron wave function |φd〉. The
amplitude for elastic scattering leading to the final nd state
|φ′〉 is then given by [1,33]

〈φ′|U |φ〉 = 〈φ′|PG−1
0 |φ〉 + 〈φ′|V (1)(1 + P)|φ〉

+ 〈φ′|V (1)(1 + P)G0T |φ〉 + 〈φ′|PT |φ〉, (2)

while the amplitude for the breakup reaction reads

〈 �p�q |U0|φ〉 = 〈 �p�q |(1 + P)T |φ〉, (3)

where the free breakup channel state | �p�q 〉 is defined in terms
of the Jacobi (relative) momenta �p and �q.

We solve Eq. (1) in the momentum-space partial-wave
basis |pqα〉, determined by the magnitudes of the Jacobi
momenta p and q and a set of discrete quantum numbers α

comprising the 2N subsystem spin, orbital, and total angular
momenta s, l , and j, as well as the spectator nucleon orbital
and total angular momenta with respect to the center of mass
(c.m.) of the 2N subsystem, λ and I:

|pqα〉 ≡
∣∣∣∣pq(ls) j

(
λ

1

2

)
I ( jI )J

(
t
1

2

)
T

〉
. (4)

The total 2N and spectator angular momenta j and I as well
as isospins t and 1

2 are finally coupled to the total angular
momentum J and isospin T of the 3N system, respectively. In

054004-2



SIGNIFICANCE OF CHIRAL THREE-NUCLEON FORCE … PHYSICAL REVIEW C 105, 054004 (2022)

practice a converged solution of Eq. (1) using partial-wave de-
composition in momentum space at a given energy E requires
taking all 3N partial-wave states up to the 2N angular mo-
mentum jmax = 5 and the 3N angular momentum Jmax = 25

2 ,
with the 3N force acting up to the 3N total angular momentum
J = 7/2. The number of resulting partial waves for given J
(equal to the number of coupled integral equations in two
continuous variables p and q) amounts to 142. The required
computer time to get one solution on a personal computer is
about few hours. In the case when such calculations have to be
performed for a big number of varying 3NF parameters, time
restrictions become prohibitive.

The perturbative approach proposed in Refs. [30,31] leads
to a significant reduction of the required computational time.
It relies on the fact that it is possible to apply a perturbative
approach in order to include the contact terms in 3N con-
tinuum calculations. Let us consider a chiral 3NF V (1) at a
given order of chiral expansion with variable strengths of its
contact terms. The contact terms are restricted to small 3N
total angular momenta and to only few partial-wave states for
a given total 3N angular momentum J and parity π [17,27].
We split the V (1) into a parameter-free term V (θ0) and a sum
of N contact terms ci�Vi with strengths ci:

V (1) = V (θ0) + �V (θ ) = V (θ0) +
N∑

i=1

ci�Vi, (5)

with θ0 = (ci = 0, i = 1, . . . , N ) and θ = (ci, i = 1, . . . , N )
being the sets of contact terms strength values, for which we
would like to find the solution of Eq. (1).

We divide the 3N partial-wave states into two sets: β

and the remaining one, α. The β set is defined by nonva-
nishing matrix elements of �V (θ ). Introducing T (θ0) and
�T (θ ) such that T ≡ T (θ ) = T (θ0) + �T (θ ) and using the
fact that �V (θ ) has nonvanishing elements only for channels
|β〉, one gets from Eq. (1) two separate sets of equations for
〈α|T (θ0)|φ〉 and 〈α|�T (θ )|φ〉 [Eqs. (9) and (10) in Ref. [30]
or Eqs. (6) and (7) in Ref. [31] ]. The first equations in sets
(6) and (7) of Ref. [31] are the Faddeev equations (1) for
T (θ0). The second equation in the set (7) for 〈β|�T (θ )|φ〉
can be solved within the set of channels |β〉 only. Since
�V (θ ) is small, it is possible to neglect the term 〈β|(1 +
tG0)�V (θ )(1 + P)G0�T (θ )|φ〉 in the kernel and arrive at the
following integral equation for 〈β|�T (θ )|φ〉:
〈β|�T (θ )|φ〉 = 〈β|(1 + tG0)�V (θ )(1 + P)|φ〉

+ 〈β|(1 + tG0)�V (θ )(1 + P)G0T (θ0)|φ〉
+ 〈β|(1 + tG0)V (θ0)(1 + P)G0�T (θ )|φ〉
+ 〈β|tPG0�T (θ )|φ〉. (6)

That equation permits one to transfer the linear dependence
on the strengths ci from the �V (θ ) on the �T (θ ). Namely,
let 〈β|�Ti|φ〉 be a solution of Eq. (6) for a set θi = (ci =
1, ck �=i = 0):

〈β|�Ti|φ〉 ≡ 〈β|(1 + tG0)�Vi(1 + P)|φ〉
+ 〈β|(1 + tG0)�Vi(1 + P)G0T (θ0)|φ〉
+ 〈β|(1 + tG0)V (θ0)(1 + P)G0�Ti|φ〉
+ 〈β|tPG0�Ti|φ〉, (7)

then the solution of Eq. (6) is given by

〈β|�T (θ )|φ〉 =
N∑

i=1

ci〈β|�Ti|φ〉. (8)

In this way at a given energy the computation of ob-
servables in the elastic Nd scattering and deuteron breakup
reaction for any combination of strengths ci of contact terms
is reduced to solving once N + 1 Faddeev equations: one
equation for T (θ0) and N equations for �Ti. In the first step,
solution for 〈α(β )|T (θ0)|φ〉 is found. Then Eq. (7) is solved
for 〈β|�Ti|φ〉, from which the 〈α|�Ti|φ〉 is calculated by

〈α|�Ti|φ〉 = 〈α|tPG0

∑
β

∫
p′q′

|p′q′β〉〈p′q′β|�Ti|φ〉

+ 〈α|(1 + tG0)V (θ0)(1 + P)G0

×
∑

β

∫
p′q′

|p′q′β〉〈p′q′β|�Ti|φ〉. (9)

The computations described above need to be done
only once and then for any combination of the strengths
ci 〈α(β )|T (θ = (ci, i = 1, . . . , N ))|φ〉 is obtained by trivial
summation:

〈α|T (θ )|φ〉 = 〈α|T (θ0)|φ〉 +
∑

i

ci〈α|�Ti|φ〉,

〈β|T (θ )|φ〉 = 〈β|T (θ0)|φ〉 +
∑

i

ci〈β|�Ti|φ〉. (10)

For a calculation of elastic-scattering observables, the re-
quired sum of the second and the third terms in Eq. (2) is
obtained by

〈α|V (1)(θ )(1 + P)|φ〉 + 〈α|V (1)(θ )(1 + P)G0T (θ )|φ〉
= 〈α|V (θ0)(1 + P)|φ〉 + 〈α|V (θ0)(1 + P)G0T (θ0)|φ〉

+
∑

i

ci[〈α|�Vi(1 + P)|φ〉 + 〈α|�Vi(1 + P)G0T (θ0)|φ〉

+〈α|V (θ0)(1 + P)G0�Ti|φ〉]
+
∑
i,k

cick〈α|�Vi(1 + P)G0�Tk|φ〉. (11)

This computational scheme constitutes the improved emu-
lator of Ref. [31]. The efficiency of the fitting procedure based
on this emulator can be further increased because the elastic
scattering 〈φ′|U |φ〉 and breakup 〈 �p�q |U0|φ〉 transition ampli-
tudes are linear in the matrix elements 〈pqα|T |φ〉. Therefore,
also the final transition matrix elements are linked to the
strengths ci in the same way as shown in Eqs. (10) and
(11). It allows us at a given energy to perform only once
all required interpolations, integrations over Jacobi momenta,
as well as summations over the partial waves, total angu-
lar momenta, and parities to gain the contributions to the
transition amplitudes, which are independent from the actual
values of strengths ci. Finally, the transition amplitudes for
any particular set of strengths ci are obtained from the same
simple relations as in Eqs. (10) and (11). It reduces radi-
cally the required time to compute observables and permits
to get observables for hundreds of strengths combinations
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in the blink of an eye. An additional beneficial feature of
that emulator, which makes it especially well suited for opti-
mization purposes, is the simple dependence of the transition
amplitudes on the strengths ci, enabling fast and easy access
to the gradient with respect to strength parameters for any
observable.

III. IMPORTANCE OF CONTACT TERMS
IN ELASTIC nd SCATTERING

Equipped with the proposed emulator we investigate the
significance of the 3NF contact terms for understanding the

Nd elastic scattering. To this end we take the state-of-the-art
chiral SMS N4LO+ NN potential of the Bochum group [16]
with the regularization parameter 
 = 450 MeV, combined
with the N2LO chiral 3NF [17] and supplemented by all
subleading N4LO 3NF contact terms [28,29]. Such a Hamil-
tonian comprises altogether 15 short-range contributions to
3NF, two from N2LO [10,17] with the strengths D and E , and
thirteen from N4LO [29] with the strengths Ei, i = 1, . . . , 13.
Denoting �qi = �pi

′ − �pi and �Ki = �pi
′+ �pi

2 , with the individual
initial �pi (final �pi

′) nucleon momenta (i = 1, 2, 3), the N2LO
short-range contributions are given by [10,17]

V N2LO
3N = −

∑
i �= j �=k

gA

8F 2
π

D
�σ j · �q j

�q2
j + M2

π

(�τi · �τ j )(�σi · �q j ) + 1

2

∑
j �=k

E (�τ j · �τk ), (12)

and subleading N4LO short-range 3NF by [29]

V N4LO
3N =

∑
i �= j �=k

E1 �qi
2 + E2 �qi

2�τi · �τ j + E3 �qi
2 �σi · �σ j + E4 �qi

2 �σi · �σ j �τi · �τ j + E5
(
3�qi · �σi �qi · �σ j − �qi

2 �σi · �σ j
)

+ E6
(
3�qi · �σi �qi · �σ j − �qi

2 �σi · �σ j
)
�τi · �τ j + iE7 �qi × ( �Ki − �Kj ) · (�σi + �σ j ) + iE8 �qi × ( �Ki − �Kj ) · (�σi + �σ j )�τ j · �τk

+ E9 �qi · �σi �q j · �σ j + E10 �qi · �σi �q j · �σ j �τi · �τ j + E11 �qi · �σ j �q j · �σi + E12 �qi · �σ j �q j · �σi�τi · �τ j + E13 �qi · �σ j �q j · �σi�τi · �τk . (13)

To all these contact terms we applied the same nonlocal
Gaussian regulator defined in Eq. (13) of Ref. [27] with the
cutoff parameter 
 = 450 MeV. The strengths D, E , and Ei

can be expressed by dimensionless coefficients cD, cE , and cEi

according to [27]

D = cD

F 2
π 
χ

, E = cE

F 4
π 
χ

, Ei = cEi

F 4
π 
3

χ

, (14)

where Fπ = 92.4 MeV is the pion-decay constant and 
χ =
700 MeV.

To explore the role of contact terms in 3N continuum,
partial-wave decomposition (PWD) of these 3NF components
must be performed in momentum space. It has been done in
a standard way [34,35]. The corresponding expressions for
D and E terms can be found in Ref. [17] and for E1 and E7

terms in Ref. [27]. For the remaining N4LO contact terms the
choice of the Faddeev component and its PWD are given in
the Appendix. It turns out that PWD for the E9 and E11 terms
yields the same result. The same was found for the E10 and
E12 terms. Thus only 11 out of 13 N4LO contact terms are
independent.

In view of the large number of contributing short-range
terms one can ask whether it is at all possible to find the unam-
biguous magnitudes of all these strengths using available Nd
elastic-scattering data. Only if the answer is affirmative can
valuable predictions based on the resulting 3N Hamiltonian
be obtained.

Before we answer this pivotal question, let us consider the
patterns, according to which short-range 3NF terms contribute
to different Nd elastic-scattering observables. In particular it
should be examined if some terms are more important than
others for a specific class of observables, and how a pattern

of sensitivity to different 3NF contact terms is changing with
energy.

To that end we performed the 3N continuum Faddeev cal-
culations at five laboratory energies of the incoming neutron
E = 10, 70, 135, 190, and 250 MeV using the dynamical input
defined above and our emulator.

The selected energies cover the range of interesting
discrepancies between theory and data mentioned in the intro-
duction. To find out the pattern of sensitivity to a particular
short-range component we calculated at these energies all
elastic nd scattering observables adding consecutively to the
parameter free 3NF part V (θ0) only one component with a
strength cEi varied between cEi = −2.0 up to cEi = +2.0. The
set of elastic-scattering observables (55 in total) comprised
the differential cross section, nucleon vector and deuteron
vector, and tensor analyzing powers, spin-correlation coeffi-
cients, nucleon to nucleon, nucleon to deuteron, deuteron to
nucleon, and deuteron to deuteron spin transfer coefficients.
For each observable we studied angular variations of predic-
tions themselves as well as a quantity � which shows the sign
and magnitude of the percent deviation from the prediction
with the parameter-free 3NF term [V (θ0)] induced by that
specific 3NF component, averaged over all c.m. angles θk .
Specifically, for a particular observable Obs, and for only one
short-range term with the strength c j active (c j is one of the
strength cD, cE , or cEi , i = 1, . . . , 10, 13), the quantity � is
defined by

� ≡ �(c j ) = 1

Nθ

∑
θk

Obs(c j, θk ) − Obs(θ0, θk )

Obs(θ0, θk )
× 100%,

(15)

with Nθ = 73 and step of θk equal 2.5◦.
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FIG. 1. (left column) The elastic nd scattering differential cross
section dσ

d
at the incoming neutron laboratory energies E = 10,

70, and 190 MeV. The lines depicted by (green) circles show
the results obtained with the SMS N4LO+ NN potential with
the regularization parameter 
 = 450 MeV, supplemented by the
parameter-free 2π -exchange N2LO 3NF. Other lines are the results
when the above dynamics is augmented with a single contact term
of strength ci = −1.0: D: (red) short-dashed, E : (blue) short-dashed-
dotted, E1: (blue) dotted, E2: (violet) short-dashed-dotted, E3: (cyan)
short-dashed-dotted, E4: (maroon) long-dashed-dotted, E5: (brown)
short-dashed-double-dotted, E6: (black) double-dashed-dotted, E7:
(blue) solid, E8: (red) solid, E9: (turquoise) double-dashed-dotted,
E10: (indigo) dotted, and E13: (blue) dashed-double-dotted. In the
right column a percentage deviations � (see text) of the single
contact term predictions with respect to the parameter-free part of
the N2LO 3NF V (θ0) is shown as a function of the strength ci. The
lines in the right column correspond to those in the left column.

In Figs. 1–3 we show the results of this investigation for
three observables: the differential cross section dσ

d
, the nu-

cleon analyzing power Ay, and the deuteron tensor analyzing
power T20, at three energies E = 10, 70, and 190 MeV. In
the left column predictions for these observables, obtained
with parameter-free part of the N2LO 3NF V (θ0), as well as
including in addition consecutively each of the 13 short-range
terms, are shown as a function of the c.m. scattering angle
θ . In the right column the quantity � is displayed for that
particular observable and for each of the 13 short-range terms,
as a function of their strengths.

The pattern of sensitivities exemplified in Figs. 1–3 re-
flects the features common for all studied observables. At

FIG. 2. The same as Fig. 1 but for the nucleon analyzing power Ay.

low energy E = 10 MeV the changes induced by different
short-range components are of the order of about few percent,
with the exception of few terms, which affect significantly a
particular observable (see, for example, Fig. 2 displaying the
dominating impact of the E8 term on Ay). With increasing
energy the pattern changes both with respect to the magni-
tudes of the induced changes and with respect to the number
of appreciably contributing terms. For the cross section (see
Fig. 1), the magnitude of � reaches approximately 100% at
190 MeV with the dominating contributions coming from the
E5 and E8 terms. Similarly, for Ay (Fig. 2) and T20 (Fig. 3), E8

prevails at higher energies and its effects have opposite signs
at 70 and 190 MeV. Such alternating patterns of sensitivities
with respect to the observable, energy, and contributing short-
range contact term, foreshadow a successful determination of
all the contact terms strengths by fitting theoretical predictions
to Nd elastic-scattering data.

It should be emphasized that practically for most of the
studied observables and energies, the contributions from the
N2LO D and E contact terms, expressed in terms of �, do
not belong to the most significant ones. In view of this, to
determine how important the N4LO contact terms are for the
3N bound system, we calculated their expectation values in
the triton arising from the N4LO+ SMS NN force (
 = 450
MeV) alone, taking their strengths ci = 1.0 (see Table I). It is
clear that nearly all short-range terms, with the exception of
the E7 and E8 terms providing negligible contributions, make
comparable and significant contributions to the triton potential
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FIG. 3. The same as in Fig. 1 but for the deuteron tensor analyz-
ing power T20.

TABLE I. Contributions of the N2LO and
N4LO contact terms to the potential energy of
the three nucleons in the triton. These expectation
values were obtained for the 3H wave function
calculated with the SMS chiral N4LO+ NN po-
tential (
 = 450 MeV) and assuming strengths of
contact terms ci = 1.0.

〈ψ3H |Vi|ψ3H 〉
Vi [MeV]

VD 0.1661
VE −1.4294
VE1 0.3463
VE2 −0.4173
VE3 −0.2754
VE4 −1.0390
VE5 −0.9559
VE6 −1.0699
VE7 0.1798 ×10−4

VE8 0.8817 ×10−2

VE9 −0.2407
VE10 1.0571
VE11 −0.2407
VE12 1.0571
VE13 0.3060

energy. Therefore the subleading contact terms seem to play
a significant role not only in 3N continuum but also in the
bound states.

IV. FIXING STRENGTHS OF CONTACT TERMS

Let us come back to the basic question: how precisely and
reliably can all the strengths of the 3NF short-range compo-
nents be determined? The results of the previous section are
promising since they reveal a pattern of high sensitivity
(changing with the observable and energy) to practically all
the short-range components of the considered chiral 3NF, but
this is only a necessary condition. The decisive is the quality
and number of available Nd elastic-scattering data points. As
a consequence of strenuous efforts of experimentalists the
amount and precision of the available pd data has recently
radically improved. Still, the presently accessible pd data base
is not so numerous as the proton-proton (pp) one. Below
the pion production threshold pd data have been taken at a
number of energies on the elastic-scattering cross section, pro-
ton analyzing power, all deuteron vector and tensor analyzing
powers, and in few cases some polarization transfer and spin
correlation coefficients. For the nd data basis the situation
is worse and only at few energies nd elastic-scattering cross
sections and neutron analyzing powers are available, with
larger errors than in the case of the pd data. In addition, for
the nd system also high-precision data for the total nd cross
section have been collected.

In the first step we investigate if the alternating pattern of
large sensitivities found in the previous section and access to
high quality Nd data would be sufficient for a successful de-
termination of all the strengths. To be specific, we assume that
we have high-quality data for the cross section, the nucleon
analyzing power and the deuteron vector and tensor analyz-
ing powers. We generated such pseudodata at five energies
E = 10, 70, 135, 190, and 250 MeV, using our dynamical
input and taking all 13 strengths ci = 1.0. The data covered
the range of the c.m. angles θc.m. ∈ (40◦–170◦) with a step of
5◦ and had the preconditioned relative error of 5%. To these
data we applied the least-squares method by introducing the
χ2(ci ) merit function:

χ2(ci ) =
∑

Obs,θk ,E

[
Obstheor(c j, θk, E ) − Obsexpt(θk, E )

�Obsexpt(θk, E )

]2

, (16)

and looked for minimum of χ2(ci ) with respect to the
strengths ci. To find the minimum we applied the Levenberg-
Marquard method [36,37], which, in addition to χ2 values,
requires also the gradient of χ2 with respect to the parameters
ci. Since the dependence of the elastic-scattering transition
amplitude U [Eq. (2)] on ci has the form

U = Ū +
∑

i

ciUi +
∑
i,k

cickUik, (17)

the gradient of χ2 is quickly accessible for any set of
strengths ci.

Starting from different sets of initial values of strengths ci

we found that it is relatively easy to reproduce very accurately
the values of strengths incorporated in the pseudodata. We
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FIG. 4. The maps of χ 2 per datum point (χ 2/N) values from
fitting the pseudodata at E = 70 MeV with complete (up) and in-
complete (down) theory (see text for explanations).

succeeded in all cases to reproduce the input strengths by
fitting observables at individual energies as well as performing
a multi-energy search when including all energies.

When studying that point we took a step further and in-
vestigated the situation in which the data are fit with an
incomplete theory, that is, when some parts of the underlying
dynamics are missing. Evidently such a situation occurs when

FIG. 5. (left column) The influence of the lacking dynamics on
the results of the least squares fit on the example of pseudodata
(maroon circles) for elastic nd scattering differential cross section dσ

d

as well as for all the nucleon and deuteron analyzing powers:
Ay, iT11, T20, T21, and T22, at E = 70 MeV. The pseudodata were
generated with our emulator using the SMS N4LO+ NN potential
with the regularization parameter 
 = 450 MeV, supplemented with
the N2LO 3NF with the strengths of contact terms cD = 1.0 and
cE = 1.0. To each data point a relative error of 5% was prescribed.
The (blue) dashed-dotted line is the result of 3N calculations with
the above-defined dynamics but omitting the parameter free 2π -
exchange N2LO 3NF term. The (green) dashed line is the result of
the least-squares fit to the pseudodata with this lacking dynamics,
which provided values of cD = 3.98 ± 0.08 and cE = 2.99 ± 0.03.

we try to fix strengths of short-range contact terms without the
N3LO 3NF components included in the calculations. To study
such a case we generated similarly as previously pseudodata
at E = 70 MeV taking chiral dynamics based on N4LO+ NN
SMS interaction supplemented by the complete N2LO 3NF

TABLE II. The data basis used for fixing the strengths of the contact terms ci.

E
[MeV] dσ

d
Ay iT11 T20 T21 T22

10 nd [40], pd [41] nd [42], pd [41,43] pd [43,44] pd [43] pd [43] pd [43]
70 pd [45] pd [46] (65 MeV) pd [45] pd [45] pd [45] pd [45]
135 pd [45,47] pd [48,49] pd [45] pd [45] pd [45] pd [45]
190 pd [48] pd [48] pd [50] pd [50] pd [50] pd [50]
250 nd [51], pd [52] pd [52] pd [53] pd [53] pd [53] pd [53]
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TABLE III. The values of strengths ci

found in the least squares fit to the data from
Table II at the three energies E = 10, 70, and
135 MeV.

cD −1.49 ± 0.06
cE −1.27 ± 0.06
cE1 6.40 ± 0.33
cE2 7.80 ± 0.36
cE3 6.97 ± 0.34
cE4 −2.06 ± 0.13
cE5 −0.36 ± 0.05
cE6 0.52 ± 0.03
cE7 −7.40 ± 0.14
cE8 −2.61 ± 0.05
cE9 −4.59 ± 0.22
cE10 −0.98 ± 0.05
cE13 −1.14 ± 0.05

with strengths of the D and E terms cD = cE = 1.0. To such
pseudodata we performed a least squares fit in order to fix
strengths cD and cE , using original dynamics, omitting, how-
ever, the parameter-free 2π -exchange term in the N2LO 3NF.
The results are shown in Fig. 4 in the form of maps of χ2

per datum point values in space of cD-cE . With complete
dynamics we recovered easily the incorporated strengths and
obtained cD = 1.00 ± 0.08 and cE = 1.00 ± 0.03, reaching at
that point values of χ2 = 0.0. When the fit was performed
with incomplete dynamics we found a significant shift of the
χ2 minimum position to larger values of cD = 3.98 ± 0.08
and cE = 2.99 ± 0.03, with concurrent deterioration of the
quality of data description as evinced by increased minimal
values of χ2 per datum point χ2/N ≈ 80 compared with
χ2/N ≈ 0 for complete dynamics. In Fig. 5 we present in
more detail the quality of pseudodata description by show-
ing pseudodata themselves (maroon circles) and predictions
obtained with the incomplete dynamics (blue dashed-dotted
lines). The (green) dashed line is the result of the least-squares
fit to the pseudodata with incomplete dynamics, which, in gen-

eral, improves slightly description of data but at the expense
of increased strengths of short-range terms D and E .

Since the essential element, namely, the N3LO components
of the chiral 3NF, is missing in our dynamics, in view of
above it is evident that results and conclusions of the present
investigation have to be treated with caution and this study
must be considered as preliminary. It should be repeated when
the N3LO 3NF components become available. Nonetheless,
having that restriction in mind, we are ready to answer our
main question. To this end we prepared Nd elastic-scattering
data base at the five energies E = 10, 70, 135, 190, and
250 MeV, collecting data points for the differential cross sec-
tion, the nucleon vector analyzing power, and the deuteron
vector and tensor analyzing powers, which reflects more or
less the status of the presently available Nd data and which
are listed in Table II, and performed multi-energy least squares
fit to data at three energies (E = 10, 70, and 135 MeV). Since
our 3N continuum calculations neglect the proton-proton (pp)
Coulomb force, whose effects in elastic pd scattering are
restricted mostly to small energies and forward c.m. angles,
we took only pd data at θc.m. > 40◦ when calculating χ2

(altogether, 786 data points).
The resulting values of strengths ci are listed in Table III

together with errors (standard deviations) obtained from the
covariance matrix C(ci, c j ) shown in Table IV. The four
strengths which have large magnitudes belong to the sub-
leading order N4LO: cE1 = 6.40, cE2 = 7.80, cE3 = 6.97, and
cE7 = −7.40. It is interesting to note that only strengths in
this order, mostly those with large magnitude, cE1 , cE2 , and
cE3 , are strongly correlated, as evinced by the values of
the corresponding correlation coefficients: ρ(cE1 , cE2 ) = 0.95,
ρ(cE1 , cE3 ) = 0.98, ρ(cE2 , cE3 ) = 0.93. The strength cE3 is
also strongly correlated with cE4 : ρ(cE3 , cE4 ) = −0.92, and
cE7 with cE8 : ρ(cE7 , cE8 ) = 0.99. There is only a small cor-
relation between cD or cE and all subleading terms as well as
between cD and cE themselves. The final value of χ2 per data
point, χ2/N ≈ 35, indicates that the quality of data descrip-
tion is notably inferior than in the case of the nucleon-nucleon
system. The large value of final χ2/N as well as large mag-
nitudes of some strengths probably reflect the omission of the

TABLE IV. The covariance matrix for the strengths ci determined by the least squares fit of data from Table II at the three energies E = 10,
70, and 135 MeV [the values shown are Cov(ci, c j ) × 1000].

cD cE cE1 cE2 cE3 cE4 cE5 cE6 cE7 cE8 cE9 cE10 cE13

cD 3.914 −0.456 1.412 4.573 0.843 0.844 −0.729 −0.892 1.109 0.267 −0.726 0.123 −0.207
cE 3.560 0.947 −3.571 1.345 −0.633 −0.172 −0.217 −2.416 −0.809 −1.702 0.393 0.571
cE1 108.9 112.8 108.9 −35.13 1.409 −2.418 25.92 7.513 12.99 3.861 0.443
cE2 130.7 113.4 −35.15 −1.995 −3.241 32.43 9.561 −0.534 0.763 −3.332
cE3 112.9 −38.92 1.617 −1.814 27.52 8.068 8.366 1.598 −0.193
cE4 15.97 −1.966 −0.362 −10.50 −3.198 −4.866 0.345 −0.222
cE5 2.415 0.669 0.791 0.281 9.892 1.311 1.766
cE6 0.635 −0.874 −0.226 1.426 −0.226 0.210
cE7 20.33 6.455 3.464 −0.324 −1.463
cE8 2.071 1.041 −0.158 −0.462
cE9 50.23 9.133 8.813
cE10 2.625 1.910
cE13 2.499
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FIG. 6. The elastic Nd scattering differential cross section dσ

d
at

the incoming nucleon laboratory energies E = 10, 70, 135, 190, and
250 MeV. The (red) solid lines were obtained with the SMS N4LO+

NN potential with the regularization parameter 
 = 450 MeV. When
that potential is supplemented with the N2LO 3NF with the strengths
of the contact terms cd = 2.0 and cE = 0.2866 (combination repro-
ducing the 3H binding energy and providing a good description of
the 70 MeV pd cross sections) predictions are displayed with the
(maroon) dotted lines. The (green) dashed lines show the results
obtained with the strengths of contact terms presented in Table III,
fixed in the multi-energy least squares fit to data at E = 10, 70, and
135 MeV (shown in Table II). The (blue) circles and (orange) squares
are 10 MeV nd data from Ref. [40] and pd data from Ref. [41],
respectively. The (blue) circles at other energies are pd data from
70 MeV [45], 135 MeV [45,47], 190 MeV [48], 250 MeV [52]. The
(orange) squares at 250 MeV are 248 MeV nd data of Ref. [51].

N3LO term in the 3NF. Therefore, the present investigation
should be repeated when this term is available.

In Figs. 6–11 we show how well the data from our basis
(the green dashed lines) are described by the 3N Hamiltonian
with fixed, in this way, strengths of contact terms. Since the
least squares fit was performed for data at the three lowest
energies, the results at 190 and 250 MeV should be consid-
ered as predictions. To assess the magnitudes of the contact
terms’ effects we show also predictions based on the NN
SMS N4LO+ potential (the red solid lines) and the results
obtained when the latter was augmented by the N2LO 3NF
with the strengths of D and E terms, cD = 2.0, cE = 0.2866,
determined from the 3H binding energy and the 70 MeV pd
cross section (the maroon dotted lines).

In nearly all cases, the fit to data improves significantly
the description of not only fitted data but also the data at the

FIG. 7. The same as in Fig. 6 but for the nucleon analyzing power
Ay. The data are from 10 MeV (blue) circles nd data [42] and (green)
squares pd data [43], 70 MeV (blue) circles pd data (at 65 MeV)
[46], 135 MeV (blue) circles pd data [49] (orange) squares pd data
[48], 190 MeV (blue) circles pd data [48], 250 MeV (blue) circles
pd data [52].

two largest energies. It is very clear, especially for the cross
section (see Fig. 6), where the discrepancy between data and
theory, found in the region of the cross-section minimum up
to the backward c.m. angles, is practically removed at 70 and
135 MeV. At 190 and 250 MeV, the inclusion of N4LO contact
terms brings the theory closer to data.

For the nucleon Ay and the deuteron vector iT11 analyzing
powers there is a significant improvement of the data descrip-
tion in the maximum of the analyzing power at 10 MeV (see
Figs. 7 and 8). That effect was also found below the deuteron
breakup threshold in Ref. [26] and supports the conclusion
of Ref. [26] that the low-energy analyzing power puzzle may
probably find its solution in the subleading N4LO 3NF con-
tact terms.

A similar picture emerges for the tensor analyzing powers
(see Figs. 9–11); here, however, at the largest energies big
discrepancies to data remain.

The large advancement in the description of the elastic
Nd scattering cross section documented in Fig. 6 at the two
largest energies prompted us to verify the situation for the
total nd scattering cross section. In Fig. 12 we show at a
few energies the SMS N4LO+ NN potential predictions (the
green circles) together with results calculated with this NN
force combined with the N2LO 3NF (blue diamonds). We
display also the total cross section data from Ref. [6] (magenta
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H. WITAŁA, J. GOLAK, AND R. SKIBIŃSKI PHYSICAL REVIEW C 105, 054004 (2022)

FIG. 8. The same as in Fig. 6 but for the deuteron vector ana-
lyzing power iT11. The data are from 10 MeV (blue) circles pd data
[43,44], 70 MeV (blue) circles pd data [45], 135 MeV (blue) circles
pd data [49] (orange) squares pd data [48], 190 MeV (blue) circles
pd data [50] (orange) squares pd data (at 200 MeV) [49], 250 MeV
(blue) circles pd data [52].

circles). Additionally the total cross sections obtained with the
contact terms fixed by the least squares fit (green squares)
are shown at the selected nine energies. Up to 135 MeV,
the inclusion of the 3NF (N2LO or N2LO combined with
contact N4LO terms) agrees with the total cross section data.
However, at 190 and 250 MeV, even the addition of N4LO
contact terms, which significantly improved the description
of the elastic Nd scattering cross section, does not help to
remove the growing energy gap between data and theory. It
means that, very likely, 3NF is not responsible for that dis-
crepancy. Since at these energies pion production starts to play
a role, it is very probably that this new channel, not taken into
account in our purely nucleonic scheme, is responsible for this
discrepancy.

In investigations of the 3N continuum performed up to
now with chiral forces, only N2LO components of a 3NF
were included and the experimental triton binding energy was
essential for determining the low-energy constants cD and
cE , by providing a set of pairs (cD, cE ) which reproduced
that basic quantity (forming the so-called “correlation line”
[22,23,27]). In this way it was ensured that the triton energy
is correctly reproduced. Since the doublet nd scattering length
2and is strongly correlated with the triton binding energy E3H
(often displayed in the form of the so-called Phillips line

FIG. 9. The same as in Fig. 6 but for the deuteron tensor analyz-
ing power T20. The data are from 10 MeV (blue) circles pd data [43],
70 MeV (blue) circles pd data [45], 135 MeV (blue) circles pd data
[50] (orange) squares pd data [49], 190 MeV (blue) circles pd data
[50] (orange) squares pd data (at 200 MeV) [49], 250 MeV (blue)
circles pd data [53].

[38]), it assures also a more or less correct description of this
quantity. In Fig. 13 we show predictions for the triton binding
energy and for the doublet scattering length 2and obtained with
the 3N Hamiltonian based on the SMS N4LO+ NN potential
combined with N2LO 3NF together with all the subleading
N4LO contact terms with the values of strengths of the short-
range components from Table III (D-E13 maroon triangles
left). We show also results for E3H and 2and obtained by
consecutive addition, to 2π -exchange term, of contact terms,
starting from N2LO 3NF (only D and E terms added: DE )
and terminating when all the N4LO contact terms are added
(D + E + E1 + · · · + E13: DE13). We display also the result
for the SMS N4LO+ NN potential (NN red circles) and the
Phillips line [38], along which predictions for E3H and 2and

of (semi)phenomenological NN potentials, alone or combined
with standard 3NFs, congregate. We observe large scattering
of predictions around the Phillips line for different combi-
nations of the contact terms. An especially large deviation
from the Phillips line occurs when contact terms up to E3 are
added, leading to E3H and 2and , which are far away from the
experimental values (E expt

3H = −8.4820(1) MeV and 2aexpt
nd =

0.645 ± 0.03 fm [39]). It is evident that our 3N Hamiltonian
is not able to reproduce the experimental values of the triton
binding energy and the doublet 2and scattering length. It seems
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FIG. 10. The same as in Fig. 6 but for the deuteron tensor analyz-
ing power T21. The data are from 10 MeV (blue) circles pd data [43],
70 MeV (blue) circles pd data [45], 135 MeV (blue) circles pd data
[50] (orange) squares pd data [49], 190 MeV (blue) circles pd data
[50] (orange) squares pd data (at 200 MeV) [49], 250 MeV (blue)
circles pd data [53].

that the strategy for determining the low-energy constants
applied when only N2LO 3NF is included in 3N calculations,
needs to be modified when N4LO short-range terms are also
present. One has to forgo the correlation line and incorporate
the experimental triton binding energy in the fitting procedure
in a different way. One possibility would be to include 2and in
the fit using the same approach as for the scattering, what by
means of the Phillips line would probably provide the correct
binding energy of 3H. Of course, with the availability of the
N3LO 3NF part it should be checked how far the description
of E3H and 2and will be changed by a new set of determined
strengths.

V. SUMMARY AND CONCLUSIONS

In this paper we investigate the significance of the chiral
3NF contact terms for the description of the Nd elastic-
scattering observables for the incoming nucleon energies up
to the pion-production threshold. We used the high-precision
SMS N4LO+ NN potential of Ref. [16] in combination with
the N2LO chiral 3NF supplemented by all the N4LO contact
terms. Our aim was to verify if it would be possible to fix
strengths of all the contact terms by performing a least squares
fit of theory to Nd elastic-scattering data.

FIG. 11. The same as in Fig. 6 but for the deuteron tensor analyz-
ing power T22. The data are from 10 MeV (blue) circles pd data [43],
70 MeV (blue) circles pd data [45], 135 MeV (blue) circles pd data
[45] (orange) squares pd data [49], 190 MeV (blue) circles pd data
[50] (orange) squares pd data (at 200 MeV) [49], 250 MeV (blue)
circles pd data [53].

The main results are summarized as follows:

1. In addition to the two contact terms of the N2LO 3NF
there are thirteen contact terms in the N4LO 3NF,
with two pairs being fully equivalent. Therefore, a
3N Hamiltonian depends altogether on 13 parameters
which are the strengths of those contact terms. They
have to be found by fitting theoretical predictions to 3N
data. We found out that the pattern of sensitivities for
elastic Nd scattering observables to these 3NF compo-
nents is diversified and changes with energy, observable
and contact terms themselves. This provides a good
base to fix the strengths of all the contact terms by fitting
theoretical predictions to Nd data. It should be empha-
sized that, even at lower energies, the N2LO contact
terms are not the most essential and all the short-range
terms contribute equally.

2. Using pseudodata for the cross section and for a com-
plete set of nucleon and deuteron analyzing powers,
generated with our emulator, we checked that indeed
it is possible to extract with high-precision strengths
of all the contact terms by the least squares fit of the-
oretical predictions to such pseudodata. Restricting to
N2LO 3NF only and neglecting parameter-free 2π -
exchange term in the 3NF we discovered implications
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FIG. 12. The total cross section for neutron-deuteron scattering.
The (green) circles are predictions of the SMS N4LO+ NN potential
with the regularization parameter 
 = 450 MeV. That potential sup-
plemented by N2LO 3NF with strengths cD = 2.0 and cE = 0.2866
gives (blue) diamonds (combination of strengths reproducing the 3H
binding energy and the 70 MeV pd cross section data). The squares
are the total nd cross sections obtained with the strengths of N2LO
and N4LO contact terms fixed in the multi-energy (E = 10, 70, and
135 MeV) least-squares fit to Nd data, shown in Table III. The
(magenta) circles are the nd data from [6].

of the missing dynamics on the results of such a proce-
dure. There is a significant shift of determined strengths
with concurrent deterioration of the quality of data
description.

3. Taking available Nd data for the cross section and a
complete set of nucleon and deuteron analyzing powers
at 10, 70, and 135 MeV, we fixed strengths of all the
contact terms by performing a least squares fit to these
data. With a 3N Hamiltonian defined in this way we
received not only a more satisfactory description of
the fitted data but, for most cases, also an improved
description of the data taken at 190 and 250 MeV.
Among others, we found a significant improvement
of the description for the low-energy analyzing power
Ay and iT11 as well as for the cross section at higher
energies in the region around its minimum up to the
backward angles. However, the large gap between the
theory and data for the total nd cross section at energies
above ≈200 MeV remains, showing that it is not due to
missing components of 3NF but results probably from
opening a new channel with real pion production.

4. We found that the improved description of Nd elastic-
scattering data does not lead simultaneously to a good
description of the triton binding energy and the dou-
blet nd scattering length 2and . Especially the scattering
length obtained with fixed strengths of the contact terms
lies far away from its experimental value. It will be

FIG. 13. The doublet nd scattering length 2and and the triton
binding energy E3H [in 18 channel calculations ( jmax = 2)] for
different combinations of 2N and/or 3N forces. The (red) circle
is the result for the SMS N4LO+ NN potential with the regu-
larization parameter 
 = 450 MeV. That potential supplemented
by N2LO 3NF with strengths cD = 2.0 and cE = 0.2866 gives
(blue) star [DE (N2LO)]. Other symbols show results for that NN
potential combined with the N2LO 3NF and supplemented by a
sum of the consecutive N4LO contact terms (all contact terms
with strengths from Table III: (blue) circle (DE ) − D + E N2LO,
(green) square (D − E1 = D + E + E1), (maroon) plus (D − E2 =
D + E + E1 + E2), (blue) plus (D − E4), (red) diamond (D − E5),
(green) square (D − E6), (black) x (D − E7), (blue) diamond (D −
E8), (brown) triangle up (D − E9), (red) triangle down (D − E10),
(maroon) triangle left (D − E13). The (cyan) dashed line is a Phillips
line for (semi)phenomenological interactions from Ref. [38]. The
(black) diamond shows the experimental values of 2and = 0.645 ±
0.003 fm [39] and E3H = −8.4820(1) MeV.

interesting to see if inclusion of N3LO 3NF component
will improve the description of these two quantities.

It should be stressed that, in our dynamics, the N3LO 3NF
component is missing. Therefore, one should take the de-
termined values of the strengths with some caution. From
the theoretical side, efforts to include in the 3N continuum
calculations consistently regularized N3LO 3NF components
are required, which is the aim of the LENPIC Collaboration.
When such a N3LO 3NF becomes available the present study
will be repeated.

The elastic Nd scattering observables are driven by the S
matrix; therefore they are predominantly sensitive to the po-
tential energy of three nucleons, whose main part is given by
the pairwise interactions. Contrary to this, the nuclear bound
states are sensitive to the interplay between the kinetic and
potential energies of nucleons, being thus more sensitive to
3NFs. Based on the presented results it seems very probable
that N4LO contact terms will have also large influence on
spectra of nuclei. Therefore it would be interesting to apply
the nuclear Hamiltonian proposed in the present paper to
bound nuclear systems and see what effects the N4LO con-
tact terms have on the energy spectra and other properties of
nuclei.
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APPENDIX: MOMENTUM-SPACE PARTIAL-WAVE
DECOMPOSITION OF THE N4LO 3NF CONTACT TERMS

Here we introduce our definitions of the Faddeev compo-
nents corresponding to all the different N4LO 3NF contact
terms: E2, E3, E4, E5, E6, E8, E9, E10, and E11. Then we
provide their momentum-space partial-wave decomposition in
the basis |pqα〉. In the following, �p and �q ( �p ′ and �q ′) denote
the relative initial (final) Jacobi momenta. The other vectors,
�qi = �pi

′ − �pi and �Ki = �pi
′+ �pi

2 , are defined by the individual
initial �pi (final �pi

′) nucleon momenta (i = 1, 2, 3).
The partial-wave decomposition for the E1 and E7 terms

can be found in Ref. [27]. For details on our notation we
refer the reader to Ref. [1]. In particular, we use X̂ ≡ 2X + 1,
where X is an integer or a half-integer.

For the E2 term

V3N = E2

∑
i �= j �=k

�qi
2�τi · �τ j, (A1)

we define the Faddeev component as

V (1)
3N = E2 �q1

2(�τ1 · �τ2 + �τ1 · �τ3), (A2)

and arrive at the following matrix elements:

〈p′q′α′|V (1)
3N |pqα〉

= 1

4π4
E2δs′sδl ′0δl0δs j′δs jδT ′T δMT ′ MT δt ′t

×
[

(q2 + q′2)δλ′0δλ0δI ′ 1
2
δI 1

2
− 2

3
qq′δλ′1δλ1δI ′I

]

×
[
−12

√
t̂ t̂ ′(−1)T − 1

2

{
t ′ t 1
1
2

1
2 T

}{
t ′ t 1
1
2

1
2

1
2

}]
. (A3)

For the E3 term,

V3N = E3

∑
i �= j �=k

�qi
2 �σi · �σ j, (A4)

we choose the Faddeev component as

V (1)
3N = E3 �q1

2(�σi · �σ2 + �σ1 · �σ3) (A5)

and obtain

〈
p′q′α′∣∣V (1)

3N

∣∣pqα
〉 = − 1

2π4
6E3δs′sδl ′0δl0δs j′δs jδT ′T δMT ′ MT δt ′t (−1)J− 1

2 ŝ

{
s s 1
1
2

1
2

1
2

}

×
[

(q2 + q′2)δλ′0δλ0δI ′ 1
2
δI 1

2

{
s s 1
1
2

1
2 J

}
−2

3
qq′δλ′1δλ1

√
Î Î ′
{

1 I ′ I
J j j′

}{
1 I ′ I
1 1

2
1
2

}]
. (A6)

For the E4 term,

V3N = E4

∑
i �= j �=k

�qi
2 �σi · �σ j �τi · �τ j, (A7)

we choose the Faddeev component in the following form:

V (1)
3N = E4 �q1

2(�σ1 · �σ2�τ1 · �τ2 + �σ1 · �σ3�τ1 · �τ3), (A8)

and obtain 〈
p′q′α′∣∣V (1)

3N

∣∣pqα
〉 = − 1

2π4
E436

√
ŝŝ′
{

s′ s 1
1
2

1
2

1
2

}
× (−1)J + 1

2 (−1)T ′− 1
2

√
t̂ t̂ ′
{

t ′ t 1
1
2

1
2 T

}{
t ′ t 1
1
2

1
2

1
2

}

× δll ′δl ′0δl0δs j′δs jδT ′T δMT ′ MT

[(
q2 + q′2)δλ′0δλ0δI ′ 1

2
δI 1

2

{
s′ s 1
1
2

1
2 J

}

−2

3
qq′δλ′1δλ1

√
Î ′ Î (−1)s′+s

{
I ′ 1 I
1
2 1 1

2

}{
I ′ 1 I
j J j′

}]
. (A9)

For the E5 term,

V3N = E5

∑
i �= j �=k

(3�qi · �σi �qi · �σ j − �qi
2 �σi · �σ j ), (A10)

our definition of the Faddeev component is

V (1)
3N = E5[3 �q1 · �σ1( �q1 · �σ2 + �q1 · �σ3) − �q1

2(�σ1 · �σ2 + �σ1 · �σ3)] (A11)
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and we get

〈p′q′α′|V (1)
3N |pqα〉 = 1

2π4
E56

√
ŝŝ′
{

s′ s 1
1
2

1
2

1
2

}
δl ′0δl0δ j′s′δ jsδs′sδtt ′δT ′T δMT ′ MT

[
3q′q′

√
Î ′

Ĵ
(−1) j′+I ′+sδλ0δI 1

2
〈1010|λ′0〉

×
∑

S′
Ŝ′
√

Ŝ′(−1)S′
{

J I ′ j′
1
2 S′ λ′

}⎧⎨
⎩

S′ J λ′
s′ s 1
1
2

1
2 1

⎫⎬
⎭+ 3qq

√
Î Ĵ (−1) j+I+s′

δλ′0δI ′ 1
2
〈1010|λ0〉

×
∑

S

√
Ŝ(−1)S

{
J I j
1
2 S λ

}⎧⎨
⎩

S J λ

s s′ 1
1
2

1
2 1

⎫⎬
⎭− 2q′q

√
Î Î ′(−1)J+ 1

2 + j′δλ′1δλ1

{
I ′ 1 I
1
2 1 1

2

}{
I ′ 1 I
j J j′

}

+ (−1)J+ 1
2

{
(q2 + q′2)δλ′0δλ0δI ′ 1

2
δI 1

2

{
s′ s 1
1
2

1
2 J

}
− 2

3
qq′δλ′1δλ1

√
Î ′ Î
{

I ′ 1 I
1
2 1 1

2

}{
I ′ 1 I
j J j′

}}]
.

(A12)

For the E6 term,

V3N = E6

∑
i �= j �=k

(
3�qi · �σi �qi · �σ j − �qi

2 �σi · �σ j
)
�τi · �τ j, (A13)

our choice of the Faddeev component reads

V (1)
3N = E6

[(
3 �q1 · �σ1 �q1 · �σ2 − �q1

2 �σ1 · �σ2
)
�τ1 · �τ2 + (

3 �q1 · �σ1 �q1 · �σ3 − �q1
2 �σ1 · �σ3

)
�τ1 · �τ3

]
, (A14)

and we get

〈p′q′α′|V (1)
3N |pqα〉 = − 1

2π4
E636

√
ĵ ĵ′
{

j′ j 1
1
2

1
2

1
2

}
δll ′δl ′0δl0δs′ j′δs j

[
3q′q′

√
Î ′

Ĵ
(−1) j′+ j+I ′

δλ0δI 1
2
〈1010|λ′0〉

×
∑

S′
Ŝ′
√

Ŝ′(−1)S′
{

J I ′ j′
1
2 S′ λ′

}{
S′ J λ′
1
2

1
2 1

}
+ 3qq

√
Î Ĵ (−1) j′+ j+Iδλ′0δI ′ 1

2
〈1010|λ0〉

×
∑

S

√
Ŝ(−1)S

{
J I j
1
2 S λ

}⎧⎨
⎩

S J λ

s s′ 1
1
2

1
2 1

⎫⎬
⎭− 2q′q

√
Î Î ′(−1)J+ 1

2 + j′δλ′1δλ1

{
I ′ 1 I
1
2 1 1

2

}{
I ′ 1 I
j J j′

}

−(−1)J+ 1
2

{
(q2 + q′2)δλ′0δλ0δI ′ 1

2
δI 1

2

{
s′ s 1
1
2

1
2 J

}
−2

3
qq′δλ′1δλ1

√
Î ′ Î (−1) j+ j′

{
I ′ 1 I
1
2 1 1

2

}{
I ′ 1 I
j J j′

}}]

×
[
δT ′T δMT ′ MT

√
t̂ t̂ ′(−1)T ′− 1

2

{
t ′ t 1
1
2

1
2 T

}{
t ′ t 1
1
2

1
2 1

}]
. (A15)

For the E8 term,

V3N = iE8

∑
i �= j �=k

�qi × ( �Ki − �Kj ) · (�σi + �σ j )�τ j · �τk, (A16)

we choose the Faddeev component as

V (1)
3N = iE8[ �q1 × ( �K1 − �K2) · (�σ1 + �σ2)�τ2 · �τ3 + �q1 × ( �K1 − �K3) · (�σ1 + �σ3)�τ3 · �τ2] (A17)

and get

〈p′q′α′|V (1)
3N |pqα〉

= − 1

8π4
E8δT ′T δMT ′ MT δt ′t 6(−1)t

{
1
2

1
2 1

1
2

1
2 t

}[
−

√
2
(
1 − (−1)s′+s

)
(−1)J+ 1

2

×
(

qpδl ′0δλ′0δl1δλ1δs′ j′δI ′ 1
2

√
ĵ Î

{
1 s s′
j 1 1

}{
s′ j 1
I 1

2 J

}
− qp′δl ′1δλ′0δl0δλ1δs jδI ′ 1

2

√
ĵ′Î
{

1 s′ s
j′ 1 1

}{
j′ s 1
I 1

2 J

}
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− q′ pδl ′0δλ′1δl1δλ0δs′ j′δI 1
2

√
ĵ Î ′
{

1 s s′
j 1 1

}{
j s′ 1
I ′ 1

2 J

}
+ q′ p′δl ′1δλ′1δl0δλ0δs jδI 1

2

√
ĵ′Î ′
{

1 s′ s
j′ 1 1

}{
s j′ 1
I ′ 1

2 J

})

+ 12qq′δl ′0δλ′1δl0δλ1δs′sδs′ j′δs j

(
δI ′I (−1)I+ 1

2

{
1
2 1 I
1 1

2 1

}
+ δs1

√
Î Î ′(−1)I ′+I+J+ 1

2

{
1 I I ′
1
2 1 1

}{
1 I I ′
J 1 1

})]
.

(A18)

For the E9 term,

V3N = E9

∑
i �= j �=k

�qi · �σi �q j · �σ j, (A19)

we define the Faddeev component as

V (1)
3N = E9[ �q1 · �σ1( �q2 · �σ2 + �q3 · �σ3)] (A20)

and get

〈p′q′α′|V (1)
3N |pqα〉 = 1

2π4
E9δtt ′δT ′T δMT ′ MT

{
s′ s 1
1
2

1
2

1
2

}√
ŝŝ′
[(

1−(−1)s+s′

2

){
−

√
2q′ pδl ′0δλ′1δl1δλ0δ j′s′δI 1

2

×
√

ĵ Î Î ′(−1) j′+I ′+J+s
∑

S

√
Ŝ

{
s j 1
J S 1

2

}{
1
2 s S
J I ′ j′

}{
J I ′ j′
1
2 S 1

}

−
√

2qp′δl ′1δλ′0δl0δλ1δ jsδI ′ 1
2

√
ĵ′Î Î ′(−1) j+I+J+s′ ∑

S

√
Ŝ

{
s′ j′ 1
J S 1

2

}{
1
2 s S
s′ 1

2 1

}{
J I j
1
2 S 1

}

+ 2qpδl ′0δλ′0δl1δλ1δ j′s′δI ′ 1
2

√
ĵ Î Ĵ (−1)I ′− 1

2 −J−s
∑
L,S

L̂
√

Ŝ(−1)L+S

⎧⎨
⎩

1 s j
1 1

2 I
L S J

⎫⎬
⎭
⎧⎨
⎩

J S L
s′ s 1
1
2

1
2 1

⎫⎬
⎭

+ 2q′ p′δl ′1δλ′1δl0δλ0δ jsδI 1
2

√
ĵ′Î ′(−1)I− 1

2 −J+s′ ∑
L′,S′

L̂′Ŝ′(−1)L′+S′

⎧⎨
⎩

1 s′ j′

1 1
2 I ′

L′ S′ J

⎫⎬
⎭
⎧⎨
⎩

J S′ L′
s s′ 1
1
2

1
2 1

⎫⎬
⎭
⎫⎬
⎭

+
(

1 + (−1)s+s′

2

){
− 3q′q′δl0δl ′0δλ0δ jsδ j′s′δI 1

2

√
Î ′

Ĵ
(−1) j′−I ′+s+1〈1010|λ′0〉

×
∑

S′
Ŝ′
√

Ŝ′(−1)S′
{

J I ′ j′
1
2 S′ λ′

}⎧⎨
⎩

S′ J λ′
s′ s 1
1
2

1
2 1

⎫⎬
⎭− 3qqδl0δl ′0δλ′0δ jsδ j′s′δI ′ 1

2

√
Î Ĵ (−1) j−I+s′+1〈1010|λ0〉

×
∑

S

Ŝ(−1)S

{
J I j
1
2 S λ

}⎧⎨
⎩

S J λ

s s′ 1
1
2

1
2 1

⎫⎬
⎭

+2q′qδl0δl ′0δλ1δλ′1δ jsδ j′s′
√

Î Î ′(−1)J+ 1
2 + j′

{
I ′ 1 I
1
2 1 1

2

}{
I ′ 1 I
j J j′

}}]
. (A21)

For the E10 term,

V3N = E10

∑
i �= j �=k

�qi · �σi �q j · �σ j �τi · �τ j, (A22)

we choose the Faddeev component

V (1)
3N = E10 �q1 · �σ1[ �q2 · �σ2�τ1 · �τ2 + �q3 · �σ3�τ1 · �τ3] (A23)
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and get

〈p′q′α′|V (1)
3N |pqα〉 = 1

2π4
E10

{
s′ s 1
1
2

1
2

1
2

}√
ŝŝ′
(

− 6δT ′T δMT ′ MT

√
t̂ t̂ ′(−1)T − 1

2

{
t ′ t 1
1
2

1
2 T

}{
t ′ t 1
1
2

1
2

1
2

})

×

⎡
⎢⎣(1 − (−1)l+l ′

2

)⎧⎪⎨
⎪⎩−

√
2q′ pδl ′0δλ′1δl1δλ0δ j′s′δI 1

2

√
ĵ Î Î ′(−1) j′+I ′+J+s

×
∑

S

√
Ŝ

{
s j 1

J S 1
2

}{ 1
2 s S

s′ 1
2 1

}{
J I ′ j′
1
2 S 1

}
−

√
2qp′δl ′1δλ′0δl0δλ1δ jsδI ′ 1

2

√
ĵ′Î Î ′(−1) j+I+J+s′

×
∑

S

√
Ŝ

{
s′ j′ 1

J S 1
2

}{ 1
2 s S

s′ 1
2 1

}{
J I j
1
2 S 1

}
+ 2qpδl ′0δλ′0δl1δλ1δ j′s′δI ′ 1

2

√
ĵ Î Ĵ (−1)I ′− 1

2 −J−s

×
∑
L,S

L̂
√

Ŝ(−1)L+S

⎧⎪⎨
⎪⎩

1 s j

1 1
2 I

L S J

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

J S L

s′ s 1
1
2

1
2 1

⎫⎪⎬
⎪⎭+ 2q′ p′δl ′1δλ′1δl0δλ0δ jsδI 1

2

√
ĵ′ Î ′(−1)I− 1

2 −J+s′

×
∑
L′,S′

Ŝ′L̂′(−1)L′+S′

⎧⎪⎨
⎪⎩

1 s′ j′

1 1
2 I ′

L′ S′ J

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

J S′ L′

s s′ 1
1
2

1
2 1

⎫⎪⎬
⎪⎭
}

+
(

1 + (−1)l+l ′

2

){
− 3q′q′δl0δl ′0δλ0δ jsδ j′s′δI 1

2

×
√

Î ′

Ĵ
(−1) j′−I ′+s+1〈1010|λ′0〉

∑
S′

Ŝ′
√

Ŝ′(−1)S′
{

J I ′ j′
1
2 S′ λ′

}⎧⎪⎨
⎪⎩

S′ J λ′

s′ s 1
1
2

1
2 1

⎫⎪⎬
⎪⎭

−3qqδl0δl ′0δλ′0δ jsδ j′s′δI ′ 1
2

√
Î Ĵ (−1) j−I+s′+1〈1010|λ0〉

∑
S

Ŝ(−1)S

{
J I j
1
2 S λ

}⎧⎪⎨
⎪⎩

S J λ

s s′ 1
1
2

1
2 1

⎫⎪⎬
⎪⎭

+2q′qδl0δl ′0δλ1δλ′1δ jsδ j′s′
√

Î Î ′(−1)J+ 1
2 + j′

{
I ′ 1 I
1
2 1 1

2

}{
I ′ 1 I

j J j′

} ⎫⎪⎬
⎪⎭
⎤
⎥⎦. (A24)

There are three additional contact terms coming with
strengths E11, E12, and E13. For the E11 term,

V3N = E11

∑
i �= j �=k

�qi · �σ j �q j · �σi, (A25)

we choose the Faddeev component as

V (1)
3N = E11[ �q1 · �σ2 �q2 · �σ1 + �q1 · �σ3 �q3 · �σ1]. (A26)

For the E12 term,

V3N = E12

∑
i �= j �=k

�qi · �σ j �q j · �σi�τi · �τ j, (A27)

we choose the Faddeev component

V (1)
3N = E12[ �q1 · �σ2 �q2 · �σ1�τ1 · �τ2 + �q1 · �σ3 �q3 · �σ1�τ1 · �τ3]. (A28)

For the E13 term,

V3N = E13

∑
i �= j �=k

�qi · �σ j �q j · �σi�τi · �τk, (A29)

we choose the Faddeev component

V (1)
3N = E13[ �q1 · �σ2 �q2 · �σ1�τ1 · �τ3 + �q1 · �σ3 �q3 · �σ1�τ1 · �τ2]. (A30)

The partial-wave decomposition of the E11 term is identical
to that of the E9 term and the partial-wave decomposition of
the E12 term is identical to that of the E10 term. The partial
wave decomposition of the E13 term differs from that of the
E10 term only by a factor of (−1)t+t ′

.
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