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In this work, the traditional two-variable few-body integrodifferential equations approach is reviewed. Bound-
ary conditions are implemented in both the hyperradial and hyperangular domains. A novel procedure of
including effects of higher partial waves of the interaction potential is introduced. The new approach reproduces
results obtained by an exact method for boson systems. These results suggest that many-body correlations are
negligibly small in systems with short-range interactions and that effect of higher partial waves are adequately

accounted for by the revised hypercentral potential.
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I. INTRODUCTION

Many of the methods in few-body physics are capable
of treating known features of the systems and degrees of
freedom of constituents exactly. However, the implementation
of their full capacity is prohibited by resulting complexities
as the number of constituents increases. Examples of such
methods are the widely used Faddeev formalism [1] and
the hyperspherical harmonics expansion (HHE) method [2,3].
The exact implementation of the Faddeev formalism is limited
to, at most, four-particle systems, while the HHE method is
limited to less than seven-particle systems.

The few-body integrodifferential equations approach
(IDEA) [4] circumvent shortcomings associated with few-
body methods by considering two approximations. The
IDEA [4,5] uses the Faddeev formalism to treat explicitly only
two-particle correlations, and approximates effects of higher
partial waves. These approximations reduce the many-body
Schrodinger equation in hyperspherical coordinates to a sys-
tem of coupled two-variable Faddeev-type integrodifferential
equations, the form of which does not change as the number
of constituents of the system changes. The system of coupled
equations reduces to one two-variable equation in the case of
systems of identical particles. This single integrodifferential
equation can treat systems of up to a million particles [6]. The
description of quantum few-body systems using this approach
has shown considerable success in studies of various nuclear
and atomic few-body as well as many-body quantum mechan-
ical systems [7-9].

Although the IDEA is extensively discussed in the lit-
erature, an explicit implementation of boundary conditions
in the angular domain [10] is still lacking. The direct solu-
tion of the integrodifferential equation explored in Ref. [11]
for bound states reveals that the convergence of the nu-
merical solution is sensitive to the boundary behavior of
the amplitudes. This paper proposes a modification to the
IDEA that accounts for boundary conditions of the ampli-
tudes in both the hyperradial and hyperangular domains. This

2469-9985/2022/105(5)/054003(5)

054003-1

results in regularized integrodifferential equations for s-wave
potentials.

In the IDEA, effects of higher partial waves are accounted
for by introducing a zeroth order hypercentral potential
multipole to the s-projected integrodifferential equations. Tra-
ditionally, the potential multipoles are determined using a
parameter that depends on the size of the system. However,
such a procedure faces challenges when the size of the system
is large [12]. In this work, the procedure for determining
the hypercentral potential is revised to be independent of the
number of particles, and the procedure for the inclusion of
the hypercentral potential in the s-projected integrodifferential
equations is revised to be physically meaningful.

In Sec. II, the many-body Faddeev integrodifferential equa-
tions are presented. The derivation entails the elimination of
first-order derivatives from the kinetic energy operator from
the standard IDEA equations, introducing explicit boundary
conditions in the angular domain. Test calculations with the
new integrodifferential equations are conducted on A-boson
systems with A = 10 at most. Results are presented and dis-
cussed in Sec. III. Conclusions are reported in Sec. IV.

II. FORMALISM

The derivation of the integrodifferential equations for few-
body systems is now commonplace in the literature. In this
section, only features of the derivation that are relevant to the
goal of revising the equations are recalled.

A. Regularization

Consider a system of A identical bosons, each with mass
m and position vector 7; (i = 1, 2, ..., A). Internal properties
of this system are extracted by eliminating the center-of-mass
kinetic energy. That is achieved in the Jacobi coordinates
defined by the vectors 7j; = /2i/(i + 1) (Fiy1 — le:l 7i/i),
where 7jy =7, — 7, and N = A — 1. However, the dynami-
cal equation for the system is more conveniently solved in
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hyperspherical coordinates (r, Q2y) where r € [0, 00) is the
hyperradius and Qy = {wy, ..., wy; @2, ..., oy} a set of an-
gles, constituted by the spherical polar angles w;(6;, ¢;) of the
Jacobi vectors and hyperangles ¢; € [0, %n]. The definitions
of these coordinates are readily found in the literature [3,10].
In hyperspherical coordinates, ny = r cos gy.

When the bosons interact only through two-body potentials
V(#;;), where 7;; = 7; — 7}, the total interactions in the sys-
tem are given by ij V(#;;). In the Faddeev formalism, the
Schrodinger wave function for the system is expressed in the
form [13]

A
W(r, Q) =Y ¥ij(r, Q) (1)
ij
where ;;(r, Qy) are Faddeev-type two-body amplitudes.
These %A(A — 1) amplitudes satisfy the coupled
equations [4]

A
(To — E) ¥ (r, Qu) = =V (7)) Z Y, Qn), (2
i

obtained from the Schrodinger equation for the system, where
Ty is the internal kinetic energy operator and E is the energy
of the system. The kinetic energy woperator has the general

form
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Note that Eq. (6) do not involve any approximation. Ap-
proximations accounting for only two-body correlations are

introduced, in the next subsection.
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B. Two-body correlation

Two-body correlation are dominant in systems in which
constituents are weakly interacting or interacting through
short-range forces. The summation over {kl} in (6) consti-
tutes permutations of particles in, or kinematic rotations of,
the system. When three-body and higher order correlations
are neglected, the resulting wave functions of the system are
invariant under rotations in the D — 3 subspace spanned by the
vectors 7y, . . . , jy—1 [14]. Such invariance is expressed by the
property

L2 Q)i (r, 2v) = 0, ®)

which also implies that the amplitudes depend mainly on
the global coordinate r and the local vector 7;;. That is,
the amplitudes can be expressed in the form 1/}1«.,-(r, Qy) =
Y (Q2n) F(r,7;j), where Y;(Qy) are hyperspherical

L2(Qv_1) —
n ( .N21) PA)1|
SN~ @n

where £2(Qy) is the grand orbital angular momentum op-
erator. This operator is constructed through the recurrence
relation
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with £2(2)) = £2(w) and Qy = {wn, ¢n; Qy—1}. The opera-
tors £2(w;) are orbital angular momentum operators associated
with the Jacobi vectors ;.

It is noted that in (3) and (4), the first-order derivatives
have singularities associated with them. To eliminate these
first-order derivatives, one introduces the reduced two-body
amplitudes

Vij(r, Q)

Wij(r, S) = rGA=D/2(sin @y )BAD12 cos gy

&)

and the corresponding reduced total wave function
W(r, Qn) = Z?] V;j(r,Qy). The reduced amplitudes
satisfy the bouhdary conditions ; (1, Qy) =0 for r =0,
oy =0, and gy = %n. The condition &ij(oo, Q) = 0 is also
considered when determining bound states. The reduced
amplitudes solve the coupled equations

A
Vij(r, Qy) — Evij(r, Qv) = =V (7)) Z Vi (r, Qn), (6)

kl

(

harmonics and [L] a set of quantum numbers. However,
Y(0;(R2y) = constant for states that satisfy (8). F(r, 7;;) can
be expanded in spherical harmonics ¥, (wy) as

F(r,7j) = Y For ri)¥" (on), ©)
14

were £ is the orbital angular momentum quantum number with
azimuthal projection m;,. Note that the same spherical harmon-
ics arise in the case of the two-body interaction potentials.

The equations defining the amplitudes F(r,7;;) are ob-
tained by applying condition (8) and the expansion (9) in (6),
and then project the equations onto the 7;; space through the
overlap integral (wyQ2y-1)| Eq. (6)) to obtain

BPl. 1/ e+ oA
T4+ —=(— — - Fo(r,
[ r2(a¢}v cos’gy  sin® ww)} o)

— EFy(r, ¢n)

A
=-V(r ¢N><sz’N > P, QN>>, (10)
kl

where Q) = wyQy_1 and [2(wy) — L€+ 1) 1Y (wy) =
0 was used. The evaluation of the integral on the right-hand
side of (10) is discussed, for example, in Refs. [14,15]. In
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terms of the new variable z = cos 2¢y, the integration leads
to

Gi(r,z) = <Q/N

A
PR UG 9N>> (11)

kl

+1
=Fz(r,z)+/ ug(2) fo(z, 2) Fo(r, ) w(z) d7/,

(12)
where u;(z) f;(z, 7') is a projection kernel, u,(z) = (1 + z)%/2,
and w(z) = (1 — 2)*(1 + z)? is the weight function with o =
(3A—8)/2 and B = ¢+ 1/2. The nonlocal kernel has the
form

fe(z2) =) [Ne(0£00)5, + Na(0£]00)%, ]
K

PEP ()PP (D)

X _—

e (13)

where K = 2n + £, (0€ | 0¢ ), are Raynal-Revai coefficients,
N, =2(A—-2) with c=7x/3, and N; = %(A —2)(A-3)
with d = 7 /2. Here N, is the number of pairs of bosons when
either k or [ labels the same boson as either i or j, and Ny is
the number of pairs when {k/} and {ij} label different pairs,
ie., {kl} # {ij}.

Equations (10) are now transformed by introducing the
variable z € [—1, +1] and considering (12). This leads to the
regularized two-variable integrodifferential equations

Bl 4.
[__<T, + —2TZ> - E]n(r, 7) = =V(r,2)G(r,2), (14)
m r

where the functional form of V (r, z) is known and
82 ) 052 _ % ,82 _ %
- = - —_

072 dz 2(1—=2z) 2(1+2)

is the parameterized angular kinetic energy operator. These
equations are to be solved with the constraints

T.=(1-72)

s5)

Fi(0,z) = Fy(00,2) =0,
Fy(r,—1) = Fy(r, +1) = 0, (16)

as indicated in (5). The solution to Eq. (14) is spatially
symmetric [13] with respect to particle permutations, which
is consistent with the symmetry requirement for systems of
bosons. Equations (14) with the boundary conditions (16),
which are here called regularized s-projected IDE (rSIDE),
form part of the main results of this work. These results
improve the traditional few-body s-projected IDE by incor-
porating angular boundary conditions explicitly. In the next
subsection, the procedure of including effects of higher partial
waves in (14) is discussed.

C. Effects of higher partial waves

Equations (14) hold for s-projected potentials where all the
bosons, except the interacting pair, are in the s state [4]. Ef-
fects of higher partial waves of the potential are then taken into

account by introducing the hypercentral potential multipole

JVapdey [T Va0 =20+ 2)fdz

Vi =
) JaQ S5 =20+ 2)dz

a7
in (14). This definition of Vy(r) utilizes the parameter o which
depends on the number of particles in the system. However, in
weakly interacting systems, effects of two-body higher partial
waves should be more significant in the interaction region
than anywhere else in the system. That is, two-body higher
partial waves are felt more by the spectator particles nearest
to the interacting pair, as explained in Ref. [16]. This is to be
expected when only two-body correlations are dominant.

The above argument suggests that the evaluation of (17)
with o = % =(A=3)and B8 = %, for any A, should ade-
quately account for the effects of higher partial waves in the
system. For this reason, the hypercentral potential is evaluated
by

—1)%s
Vo) = =

+1

/ V(ro)(1=2)"%dz,  (18)

~1

where 343 is the Kronecker delta function, for A > 3, which
is independent of variation of o and free of the challenges
highlighted in Ref. [12]. This form of hypercentral potential is
the zeroth multipole of the expansion of V (r, z) in Chebyshev
polynomials of the first kind, 7,(z) (= v/1 — 22 U,_1(z) ) re-
lating to (15), where U,,(z) are Chebyshev polynomials of the
second kind.

Since the purpose of the hypercentral potential is to
include effects of higher partial waves of the interaction
potential, V(r) should be added to the two-body poten-
tial and V(r,z) should be replaced with V(r, z) + Vy(r)
in (14). One then can subtract the total %A(A —DVW(r) =
> [V(rij)dSQn/ [ dQy from the left-hand side so that the
resulting equations still sum up to the Schrodinger equation.
Note that the opposite approach is implemented in the tradi-
tional IDEA [17]. The procedure outlined above leads to the
regularized integrodifferential equations

/. 4. 1
[__<T, + _2TZ) — —AA = DVy(r) — E]Fg(r, 2)
m r 2

= —[V(r,2) + Vo(r)]Ge(r, 2). 19)

Equations (19) revise the traditional few-body IDEA by in-
corporating angular boundary conditions explicitly as well as
modify the incorporation of the hypercentral potential in the
equations. Equations (19) are here called regularized IDEA
(rIDEA).

These equations can be solved with any of the numerical
methods that are applicable the Faddeev integrodifferential
equations. In this paper, the Lagrange-mesh method [11,18-
20] is used. Illustrative applications of (14) and (19) are dis-
cussed in the next section.

III. ILLUSTRATIONS

The integrodifferential equations (14) were solved directly
using the Lagrange-mesh method [11]. Ground-state energies
E, for A-boson systems interacting through the central Volkov
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TABLE 1. Calculated ground-state energy Ey(MeV) for few-
boson systems with the central Volkov potential.

—Eyp(MeV)
A rSIDE fIDEA Ref.

3 8.4309 8.460 2
8.4309 8.464 6 (3]

4 28.845 29.844
30.252 30.418 [3]

5 66.831 68.340
66.893* 68.280 [3]

6 121.662 123.180
121.738" 122.776 (3]

7 193.129 194.453
200.136 [12]

8 281.176 282.253
285.808 [12]

9 385.809 386.649
386.640 [12]

10 507.064 507.698
512.193 [12]

2K max = 6 (all waves).
PKmax = 8 (all waves).

nucleon-nucleon potential [21] with A ranging from 3 to 10
were calculated. The description of nuclear interactions with
central potentials is not realistic [3,22] because it does not take
into account significant degrees of freedom of the nucleons.
However, this potential is widely used in the literature as a
test case in many methods and provides benchmark results to
compare with. The Volkov potential has the form

V(rij) = Ve /% 4 Vye il (20)

where Vi = 144.86 MeV, V4, = —83.34 MeV, ap = 0.82 fm,
and aq = 1.6fm. The nucleon mass m such that */m =
41.47 MeV fm? was used and a maximum hyperradial range
of r,, = 30 fm was adopted. Convergence was reached quite
rapidly with a very low number of basis size (N, = N, = 30)
for all the systems considered.

The calculated ground-state energies for boson systems
with A = 3 to A = 10 are presented in Table I. In Table, it can
be notice that the rIDEA results do not differ much (=1 MeV)
from the rSIDE results, in all the systems. This observation,
also reported in Refs. [5,16], suggests that contributions of
higher partial waves to ground-state energies do not appear
to depend on the number of particles in the system when
two-body correlations are dominant.

In Ref. [3], ground-state energies of boson systems with
A =3,4,5, 6 are presented for the Volkov potential. The
results were obtained by solving the Schrodinger equation ex-
actly for the systems using the HHE method. The “s-wave”
results of this reference correspond to the rSIDE results while
the “all waves” results correspond to the rIDEA results of this
work. The results of this work are compared with those pre-
sented in the reference. As can be seen, the rIDEA reproduces
the all waves exact results almost exactly (<1% differences)
for all the A < 6 systems. On the other hand, the rSIDE and

the s-wave results are identical for A = 3, but differ by about
5% for A = 4. However, the rSIDE results are 1% closer to the
Kax = 0 results. In the absence of the s-wave results for the
A = 5and A = 6 systems, it is tempting to compare the rSIDE
results with the intermediate all waves results of Ref. [3]. The
rSIDE results differ by <1% with those of the Kj,,,x = 6 and
Kinax = 8 all waves, respectively, for the A =5 and A =6
systems.

In general, it observed that there are small differences
between the rSIDE and the rIDEA results. This could be an
indication that effects of higher partial waves of short-range
interaction potentials in few-body systems are small but sig-
nificant. This agrees with the findings of Ref. [5]. Also, small
differences are observed between the rIDEA results and the
HHE method results. These small differences in the results of
the two approaches can be confidently interpreted as an indi-
cation that the IDEA and the HHE method are equivalent and,
therefore, generate similar solutions [13], and that A-body
correlations (A > 3) are not significant in systems interacting
via short-range potentials. These claims could not be made
with confidence in the past because the comparisons were
made with interpolated results from the adiabatic solutions of
IDEA [5]. The results presented above are direct solutions of
the rIDEA.

In Ref. [12], ground-state energies for A =7, 8, 9, 10
bosonic systems are presented for the Volkov potential. The
results are obtained by solving the integrodifferential equa-
tions using the perturbation method. As explained in the
reference, the perturbation solution is not always reliable,
but generates satisfactory solutions. On the other hand, the
projection method, although exact, has convergence chal-
lenges. It should be noted that in both solution methods,
the angular domain is not regularized, higher potential mul-
tipoles are employed, and the A-dependent weight function
w(z) is used. The results of this work are compared with
the perturbation results of Ref. [12]. It is declared in the
reference that the results from the projection method had
not converged. Since the present results are converged and
have been shown to consistently compare very well with
exact results of Ref. [3], they provide a test of accuracy
to the results of Ref. [12]. Whereas the energies for A = 8
and A = 9 are reproduced to within 1% and 0.01%, respec-
tively, the energies for the A =7 and A = 10 systems are
overestimated by 3% and 1%, respectively. The perturbation
solutions of the integrodifferential equation can be accepted as
satisfactory.

IV. CONCLUSION

The traditional few-body integrodifferential equations ap-
proach has been reviewed. Dirichlet boundary conditions
were implemented in the hyperradial and hyperangular do-
mains. Procedures for the evaluation of the hypercentral
potential and for the inclusion of effects of higher partial
waves of the interaction potential have been revised. Results
obtained with the modified integrodifferential equations ap-
proach converge rapidly and reproduce those obtained with
the hyperspherical harmonics approach, an exact method,
to within 5% for boson systems interacting through the
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Volkov potential. These results suggest that contributions
from effects of higher partial waves to the ground state of
few-body systems are small, that many-body correlations
are not significant in systems interacting through short-range

potentials, and that the IDEA is equivalent to the HHE
method. Work is under way to clarify the impact of these
changes on other features of the integrodifferential equations
approach.
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