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Applicability of semiclassical methods for modeling laser-enhanced fusion rates in a realistic setting
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In the context of the potential laser-induced enhancement to the rates of DHe3 and DT fusion, we discuss
the frequently-used Wentzel-Kramers-Brillouin (WKB) method and the imaginary-time method (ITM). For
static external electric fields, we find that these methods predict significant enhancement to the fusion cross
section for electric-field strengths >1014 V/m, especially at low values (≈ keV) for the enter-of-mass (CoM)
energy. When considering dynamic electric fields, this enhancement can be amplified by considering increased
photon frequencies. However, we also provide a review of the region of laser-parameter phase space where
these semiclassical methods are applicable. We conclude that this allowable region decreases for higher photon
frequencies in conjunction with lower values for the electric-field strength, motivating the need for future
experiments to test the predictions of these methods and their ranges of validity.
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I. INTRODUCTION

Nuclear fusion has the potential of providing a much
needed clean source of energy, and with steady techno-
logical advances is becoming an ever more approachable
goal [1–3]. Fusion is made possible through the process
of quantum-mechanical tunneling. Though this process has
been discovered and used since around the dawn of quantum
mechanics itself [4–8], it is still very elusive in terms of un-
derstanding. Fortunately, this has not prevented the scientific
community from using it to explain a plethora of observ-
able events, including field ionization, nuclear fusion, and
α decay. Though fusion is a ubiquitous process throughout
the Universe [9,10], the conditions to achieve nuclear fusion
on a terrestrial level, whether through magnetic confinement
fusion [11–13] or inertial confinement fusion [14–19], are
extremely difficult to achieve. A relatively new avenue to help
achieve higher fusion rates is the potential enhancement from
high-power lasers.

The effects of a strong external laser field on the tun-
neling process have been the subject of much research over
the last decades [20–38]. The overall consensus has arisen
that a strong external laser field has the capability to en-
hance the tunneling probability. The majority of disagreement
originates from how much enhancement can be expected as
a function of the laser parameters, such as the intensity, or
equivalently the electric-field strength, the photon energy, the
temporal profile of the pulse, and the level of coherence.
With the advent of increasingly more powerful laser facilities
(LCLS [39], SACLA [40], EuXFEL [41,42], PAL-XFEL [43],
SwissFel [44]), the potential laser-induced enhancement to
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quantum tunneling, and in particular to fusion reactions, may
usher in a new era of laser-fusion science.

The theoretical modeling of the effect of an external laser
field on the nuclear process of fusion is very challenging.
Researchers frequently resort to perturbative methods, such
as a Floquet-like approach (used in, e.g., Refs. [32,34])
or the use of the Kramers-Henneberger (KH) approxi-
mation (used in, e.g., Refs. [23,33,35]) or semiclassical
approaches, such as the Wentzel-Kramers-Brillouin (WKB)
method (e.g., Refs. [30,32,36]) or the imaginary-time method
(ITM) (e.g., Refs. [22,30,45]). However, despite numerous
theoretical models being used to predict laser-induced fusion
enhancement, the present lack of any controlled experimental
verification has led to varying conclusions about the practi-
cality of laser-induced enhancement, i.e., whether current-day
or near-future laser facilities will allow for observable fusion
enhancement. Preceding works have attempted to determine
those laser parameters for which a significant enhancement to
the transparency, and/or the fusion cross section, would be
achieved (see Refs. [32–38]). However, it is never really dis-
cussed exactly how much a “significant” enhancement entails,
or how much is needed to be experimentally observable. The
work of Queisser and Schützhold [32] sets an enhancement
in the transparency by one or two orders of magnitude as a
goal, whereas the work of Lv et al. [33] is satisfied with an
increase in the cross section by a factor of around 5. The work
of Wang [34] indicates an increase to the cross section by at
least an order of magnitude is necessary, whereas the work of
Kohlfürst et al. [35] considers an order-of-magnitude increase
to the tunneling rate. In addition, these estimates are typically
made for a fixed set of center-of-mass (CoM) energies, at
which enormous enhancements may be highlighted (up to
eight to twelve orders of magnitude [32,34,36]). However,
on the one hand a large enhancement to an already minute
cross section may not be enough for experimental verification,
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while on the other hand a large enhancement that only persists
for a very small range of CoM energies may get “washed
away” in an experiment.

In light of this, the goal of this paper is the following:
we wish to determine whether the aforementioned and fre-
quently used semiclassical approaches are in fact capable of
achieving accurate predictions of laser-enhanced fusion rates
in a way that is immediately verifiable by an experiment on
a laser-created plasma state [46]. In doing so, we will discern
the realm of applicability of these semiclassical methods and
comment on their practicality regarding the aforementioned
goal. We did not perform a similar analysis for perturba-
tive methods as these are typically used in the literature to
obtain qualitative predictions of laser-induced enhancement
that justify further research and the use of more sophisticated
methods (see, e.g., Refs. [30,32]).

The paper is structured as follows: in Sec. II we elaborate
on calculable theoretical quantities of phenomenological rel-
evance. In addition we briefly outline the WKB method and
the ITM and apply them to the fusion process in the absence
of an external laser field for clarification. Subsequently, we
show how to incorporate the relevant laser parameters into
these frameworks and discuss their ranges of applicability. In
Sec. III we apply these methods to calculate the enhancement
in fusion rates stemming from the introduction of both a
constant, time-independent (static) electric field and a time-
dependent (dynamic) electric field. We also compare with
prior theoretical predictions. Section IV provides conclusions
and an outlook.

II. THEORY

The fusion reactions that will be considered in this paper
are deuterium-helium fusion and deuterium-tritium fusion:

2
1D + 3

2He → 4
2He + 1

1
p+18.3 MeV, (1)

2
1D + 3

1T → 4
2He + 1

0n +17.6 MeV. (2)

D and T refer to the isotopes 2
1H and 3

1H, respectively. In the
absence of an external laser field, the fusion cross section is
modeled by the phenomenological form [10,16]

σ (E ) = S(E )

E TE , (3)

where E is the CoM energy of the two fusing particles, S(E )
is the astrophysical S factor, which is assumed to be a slowly
varying function of E , and TE is the tunneling transparency.
The astrophysical S factor for DHe3 and DT fusion used
throughout this work was obtained from the work of Bosch
and Hale [47] and provides a parametrized form for S(E ).
This parametrization is valid for CoM energies in the ranges
of [0.3,900] and [0.5,550] keV for DHe3 and DT, respectively.
The transparency is dominated by its exponential nature and
is approximated as [7]

TE = e−
√

EG
E , (4)

where the Gamow energy EG = 2μπ2κ2/h̄2, with μ the re-
duced mass, and κ = e2Z1Z2/(4πε0). The modification to this
transparency factor as a result of a high-power laser field

is how the fusion cross section will be enhanced. From the
enhanced transparency, the cross section is obtained and this
cross section is subsequently used to obtain the reactivity
〈σv〉, given by [10,16]

〈σv〉 =
( μ

2πkBT

)3/2
∫

d3v exp
(
− μ

2kBT
v2

)
σ (v)v, (5)

where kB is the Boltzmann constant, T is the temperature, v
is the relative velocity of the reduced two-particle system, and
v = |v|. As an approximation, a thermal Maxwellian velocity
distribution may be assumed, leading to a representation with
respect to the CoM energy:

〈σv〉 =
√

8

μπ (kBT )3

∫ ∞

0
dE S(E ) exp

(
−

√
EG

E − E
kBT

)
.

(6)

In doing so, the relations E = μv2/2 and d3v = 4πv2dv were
used. The integral over E is practically handled by means of
a cutoff value. The reactivity is accurate to within an order of
magnitude if the cutoff is at least the energy at the Gamow
peak, which is the CoM value for which the exponential in the
integrand has a maximum, at Epeak = (EGk2

BT 2/4)1/3. With the
reactivity, the total fusion yield can be easily estimated after
determining the irradiated volume, which can be obtained
provided the laser focus spot size and the density of the target.

In the upcoming semiclassical approaches, the laser-
induced modification to the transparency will appear as a
direct result from including the external electric field in
the potential that is considered. The dynamics of the fu-
sion process are governed by the two-body time-dependent
Schrödinger equation (TDSE), which can be reduced to two
one-body TDSEs: one for the center-of-mass motion and one
for the relative motion. An excellent pedagogical elabora-
tion on obtaining these equations is given by Mişicu and
Rizea [23]. We need only concern ourselves with the rel-
ative motion, governed by an effective reduced one-body
Schrödinger equation, presented in the length gauge:

ih̄
∂ψ (r, t )

∂t
=

[
− h̄2

2μ
∇2

r + V (r) − eZeffr · E(t )

]
ψ (r, t ),

(7)

where r denotes the relative separation coordinate between
the two fusing particles and V (r) describes the Coulomb and
nuclear potential in the absence of a laser field. The effective
charge is given by Zeff = (Z1A2 − Z2A1)/(A1 + A2), with Zi

and Ai the charge number and atomic number of the ith fusing
particle. The electric field is denoted by E(t ). An important
note is that this equation is derived by assuming the Coulomb
gauge, i.e., the vector potential A is purely transversal, so that
E(t ) = −∂A(t )/∂t , and also by assuming the dipole approx-
imation, i.e., E(r, t ) ≈ E(t ). This is a valid approximation so
long as the wavelength of the laser field is much larger than
the spatial extent of the interacting system, i.e., the extent
of the sub-barrier tunneling region. We will use this to place
clear restrictions on the applicability of the upcoming models.
The reason for employing the length gauge in favor of the
more frequently employed velocity gauge (where the r · E(t )
part is replaced by p · A(t )/μ; see, e.g., [23,32,33,36]) is that
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this allows us to distinguish between time-independent (static)
electric fields and time-dependent (dynamic) electric fields.
(In the velocity gauge, a static electric field still implies a
dynamic vector potential.)

We emphasize that, as we model a two-body fusion reac-
tion, we are neglecting plasma effects, such as the screening
from electrons (briefly discussed in Queisser et al. [32]) and
the effect of the laser on the velocity distribution of the parti-
cles. Our sole focus will be on the enhancement caused by the
deformation of the Coulombic potential caused by the external
laser field.

We proceed with an outline of the two semiclassical ap-
proaches that are employed in this work.

A. Semiclassical approaches

The semiclassical approximation can be made in the case
when the action functional S[q], with q denoting a set of gen-
eralized coordinates, between two spacetime points (qa, ta)
and (qb, tb) is much larger than h̄, i.e.,

S[q] =
∫ tb

ta

dtL(q, q̇, t ) � h̄, (8)

where the L denotes the Lagrangian L = T − V , T being the
kinetic energy and V the potential energy. This is equiva-
lent to the transition amplitude between the aforementioned
spacetime points being dominated by the contribution of
the trajectory, qeom, which obeys the classical equation of
motion, hence the term “semiclassical.” For this trajectory,
the Lagrangian obeys the Euler-Lagrange equations, and
the action functional, S[q], reverts to Hamilton’s principle
function, S (qeom). It can be shown [20,45] that in the semi-
classical approximation the transparency can be calculated
via

T = e−2 ImS/h̄. (9)

There are two semiclassical methods we will be employing
to calculate the above expression: the Wentzel-Kramers-
Brillouin (WKB) method [48,49] and the imaginary-time
method (ITM) [45]. For each of these methods, S is given
by

S =
{± ∫

tunnel dr p(r) for WKB,∫
tunnel dt[L + E] for ITM.

(10)

For the WKB method, the imaginary part can be read off by
using

p(r) =
√

2μ[E − V (r)] = i
√

2μ[V (r) − E], (11)

and the choice in the sign of ImS is taken, in conjunction with
the integration over the tunneling region, in such a way that
the result is positive, ensuring an exponentially decaying be-
havior in the transparency. For the ITM, L is the conventional
Lagrangian and the integration is taken over the time it takes
to tunnel through the barrier. Applying the change of coordi-
nate t = −iτ , with τ = it the imaginary-time coordinate, will

allow for the imaginary part to be easily read off as follows:

SITM =
∫ tE

0
dt

[
μ

2

(
∂r(t )

∂t

)2

− V (r(t )) + E
]

=
∫ −iτE

0
d (−iτ )

[
μ

2

(
∂r(τ )

∂ (−iτ )

)2

− V (r(τ )) + E
]

= i
∫ −iτE

0
dτ

[
μ

2

(
∂r(τ )

∂τ

)2

+ V (r(τ )) − E
]
. (12)

Thus, we can see that if the potential does not explicitly
depend on t , r(τ ) describes the classical trajectory of a particle
moving in the potential −V . For a time-dependent potential,
the change in coordinate t = −iτ must be done explicitly
in the potential as well, but can perfectly well be treated
with the ITM. Conversely, the standard WKB method does
not consider time dependence and is ill suited for time-
dependent potential barriers. Time-dependent extensions of
the WKB method do exist [32,50–52] and are in principle
rather straightforward to implement. However, in doing so
one arrives at a set of coupled ODE equations, for which it
is not clear what initial conditions ought to be imposed when
integrating for the solution (see Refs. [50–52]). An excellent
review is provided in Ref. [52]. In light of this, we will not em-
ploy the WKB method for time-dependent electric fields. This
was part of the reason for desiring a clear distinction between
static and dynamic electric fields and preferring the length
gauge in our modeling of the laser field. We highlight ahead of
our results that the WKB method and ITM agreed with each
other in both the field-free and the static-field configurations,
as will be shown in Secs. II B and III A, respectively.

Let us clarify the use of these approaches by recovering the
transparency in the absence of an external electric field.

B. Field-free transparency

In the absence of an external electric field, the potential
that defines the barrier under which the fusing particles must
tunnel is given by

Vl (r) = κ

r
+ h̄2l (l + 1)

2μr2
, (13)

where l denotes the azimuthal quantum number. This potential
only accounts for r ∈ [R,∞), where R denotes the length
scale below which the strong nuclear force dominates over
the Coulomb potential and is taken to be R = 1.44(A1/3

1 +
A1/3

2 ) [16]. Below this value, we assume a constant, flat nu-
clear potential well. Note that the centrifugal term (dependent
on l) is a positive contribution to the potential. The larger
l is, the larger the potential barrier through which to tunnel
becomes. For that reason, it is common to only consider
l = 0, for which the tunneling is most probable. Thus, we
are working with V (r) = κ/r. For two fusing particles with
a CoM energy E , the tunneling barrier is defined by the region
R � r � RE , where R is equal to 3.891 fm for both DHe3 and
DT and the classical turning point RE = κ/E is defined by the
condition V (RE ) = E .

WKB. To calculate the field-free transparency in the
WKB approximation, we wish to calculate, from Eq. (9),
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TE = exp (−2 ImSE/h̄) with [Eqs. (10) and (11)]

ImSE =
∫ RE

R
dr

√
2μ

(κ

r
− E

)
, (14)

where the integration limits have preemptively been switched
to ensure a positive result. In this case, the integral can
be evaluated analytically (see, e.g., Ref. [48]), and results
in

ImSE =
√

2μE
[

RE cos−1

(√
R

RE

)
−

√
R(RE − R)

]
. (15)

Making the approximation R/RE 
 1, this can be reduced to

ImSE ≈
√

2μE
[REπ

2
− 2

√
RRE

]
,

lim
R→0

ImSE →
√

2μERE
π

2
. (16)

With RE = κ/E , the last expression recovers the Gamow en-
ergy from the value of −2 ImSE/h̄ as

−2

h̄

√
2μERE

π

2
= −

√
2μκ2π2

h̄2E
= −

√
EG

E , (17)

revealing that the Gamow form for the transparency [Eq. (4)]
is the result of applying the WKB method with the additional
assumption of R = 0 [7].

ITM. To calculate the field-free transparency in the ITM
approximation, we wish to calculate TE = exp (−2 ImSE/h̄),
with

SE =
∫ tE

0
dt

[
μṙ2(t )

2
− κ

r(t )
+ E

]
. (18)

To find the required sub-barrier solutions for r(τ ) and ṙ(τ )
in imaginary time τ , we solve for the classical equations of
motion in the sub-barrier region with a sign-flipped potential:

μr̈(τ ) = − d

dr

(
− κ

r(τ )

)
= − κ

r2(τ )
, (19)

with the boundary conditions r(0) = RE and ṙ(0) = 0. This
is simply Kepler’s problem, if we were to redefine κ =
Gm1m2, which has been extensively studied and for which a
parametrized solution is available:{

r(ξ ) = RE cos2 ξ

2 ,

τ (ξ ) = RE
2

√
μ

2E (ξ + sin ξ ),
(20)

for 0 � ξ � ξF < π and r(ξF ) = R. Note that R → 0 is
equivalent to ξF → π . One can check that this solution
satisfies the original equation of motion, Eq. (19), and addi-
tionally find that ṙ(ξ ) = −(2E/μ)1/2 tan(ξ/2). As such, we
obtain

SE = i
∫ −iτE

0
dτ

[
μ

2

(
dr(τ )

dτ

)2

+ V − E
]

= iE
∫ −iτE

0
dτ

[
4

1 + cos ξ
− 2

]
,

ImSE = 2E
[

ξF

2

√
2κ2μ

E3
− τE

]

=
√

μE
2

RE [ξF − sin ξF ], (21)

where the tunneling time is τE = τ (ξF ) − τ (0) = τ (ξF ).
The ITM exactly recovers the WKB exponent if we
assume R/RE 
 1. This can be easily seen by using
ξF = 2 arccos (

√
R/RE ), with the approximation arccos(x) ≈

π/2 − x for small x, and sin[2 arccos(x)] = 2x
√

1 − x2. As
R is of the order of a few fm and RE is of the order of
pm for most E , the WKB method and ITM are practically
indistinguishable.

When including the effects of an external electric field
in the potential, the relevant integrals will no longer have
analytically closed solutions and will instead be evaluated
numerically.

C. Accounting for nonzero R

From the previous section, we have seen that the Gamow
form that we use to model the fusion cross section [Eq. (3)] is
equivalent to a WKB/ITM description in the limit R = 0 fm.
However, for our upcoming calculations, we wish to keep R
nonzero for the reasons that (a) it models a more physically
realistic system and (b) the integrands in the WKB and ITM
exponents diverge for r → 0. For their numerical treatment
this divergence is kept at bay by keeping R nonzero. However,
this choice has two consequences.

First, if R is nonzero, the potential exhibits a maximum at
r = R and there exist values of E that exceed this maximum
V (R). In such cases, we are no longer considering quantum
tunneling. The requirement that E < V (R), or equivalently
R < RE = κ/E , sets upper limits on allowable CoM energies
E , which are 750 and 375 keV for DHe3 and DT respec-
tively. This in turn sets upper limits on the temperatures T
for which an accurate reactivity estimate is possible. For an
order-of-magnitude calculation, we mentioned that the cut-
off energy for the reactivity integral should be at least the
Gamow peak, at Epeak = (EGk2

BT 2/4)1/3. So, the largest allow-
able temperatures for reactivity estimates become kBT ≈ 600
keV and kBT ≈ 450 keV for DHe3 and DT, respectively. This
restriction does not arise when assuming R = 0 as in that case
R = 0 < RE for all energies E . At this point, however, we note
that an even stricter restriction occurs for the upper bound of
E by the requirement of ImS > h̄. For nonzero R, the upper
limits on E become 183 and 66.8 keV, for DHe3 and DT
respectively, corresponding to allowable temperatures of up
to kBT ≈ 72 keV and kBT ≈ 31 keV, respectively. Keeping
R = 0 only the reduces the upper bound for DT fusion to
a value of 295 keV (kBT ≈ 295 keV). For DHe3, ImS > h̄
remains true for CoM energies up to 1.18 MeV, so the upper
bound for DHe3 at R = 0 comes from the limitation of the
astrophysical S factor, at 900 keV (kBT ≈ 785 keV).

Second, keeping R nonzero will induce an error in the
cross section from the astrophysical S factor, which must be
corrected for in the following way. The astrophysical S factor
is obtained in the literature from the Gamow-result for the
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tunneling cross section [Eq. (3)]. From experimental values of
σ (E ), a discrete selection of points for S(E ) may be inferred,
which are subsequently fitted and parametrized [47,53]. How-
ever, the obtained fit for S(E ) came from using the prior ansatz
that the transparency takes on the form exp ( − √

EG/E ), as-
suming R = 0. Thus, to keep R nonzero, we ought to obtain
an R-dependent S factor, denoted by SR(E ), from the relation

σ (E ) = SR(E )

E e−
√

ẼG(R)/E , (22)

where a redefined, R-dependent, Gamow energy can be ex-
tracted from the WKB result at nonzero R [Eq. (15)], given
by

ẼG(R) = 8μκ2

h̄2

[
cos−1

(√
R

RE

)
− R

RE

√(RE
R

− 1
)]2

.

(23)

For comparison of our results to the values in the literature,
we ought to parametrize SR ourselves using the R-dependent
ansatz in Eq. (22). However, to avoid this tedious work, we
may instead write SR(E ) in terms of the old S factor, denoted
as S0(E ), as follows:

SR(E )

S0(E )
= σ (E )Ee+

√
ẼG(R)/E

σ (E )Ee+√EG/E = e
√

ẼG(R)/E−√EG/E . (24)

If this correction factor is not used, an unphysically large
enhancement can already be seen in the reactivity for the field-
free case, between the assumptions of R = 0 and R �= 0. This
is illustrated in Fig. 1. One can see that the erroneous result of
R �= 0 with S0(E ) (dashed lines) predicts a consistent unphys-
ical enhancement of around an order of magnitude compared
to the conventional usage of the R = 0 result with S0(E ) (solid
lines). The R = 0 result with S0(E ) nearly perfectly coincides
with the R �= 0 result corrected with SR(E ) (dotted lines),
thus illustrating that, to accurately compare our result with
previous literary work, the use of SR(E ) is necessary. Results
are only shown up to those temperatures where the reactivity
is certain to be within an order of magnitude, corresponding to
the temperatures mentioned in the previous paragraph. These
values coincide with the cutoff energy used in the reactiv-
ity integral, and the fact that they differ explains the slight
difference between the R = 0 result with S0(E ) (solid lines)
and the R �= 0 result corrected with SR(E ) (dotted lines). In
cross section calculations, we will use SR(E ) consistently and
assume that it remains unaltered when including an external
laser field.

In the next section, we show how an external electric field
is included in the WKB method and the ITM and go over the
relevant laser parameters.

D. Inclusion of an external laser field

When including a static external electric field, the potential
becomes [Eq. (7)]

VE (r) = κ

r
− eZeff r|E| cos θ, (25)

100 101 102 103

kBT [keV]

10−20

10−19

10−18

10−17

10−16

10−15

10−14

σ
v

[c
m

3 s
−1

]

DHe3

DT

R = 3.891 fm with SR(E)

R = 0 with S0(E)

R = 3.891 fm with S0(E)

Field-free reactivity; S0(E) vs SR(E)

FIG. 1. The field-free reactivity for DHe3 (red) and DT (blue)
fusion. The solid and dashed lines correspond to the WKB result
using S0(E ) for the cases of both R = 0 (solid) and R = 3.891 fm
(dashed). The dotted lines refer to the results from WKB for R =
3.891 fm using the rescaled SR(E ). The dashed lines illustrate that
using a nonzero R in conjunction with S0(E ) may predict unphysical
enhancements to the reactivity of up to one order of magnitude
as compared the conventional method depicted by the solid lines.
Conversely, the agreement between the solid and dotted lines justifies
the use of SR(E ) when considering a nonzero R.

where |E| is the static-field amplitude and θ ∈ [0, π ] defines
the angle between the relative particle motion and the polar-
ization direction. Note that θ = 0 or θ = π denote that the
polarization of the electric field is in the radially outward
or inward direction, respectively. Also, the case θ = π/2 is
equivalent to the field-free case. For brevity, we will employ
the notation λ ≡ eZeff|E|. In the following formulation, it is
assumed that the CoM energy is unaffected by the external
field, which enables us to use the same definition of E from
the field-free case. This assumption will also be used for the
upcoming dynamical case.

The region under which the fusing particles must tunnel in
this case is defined by r ∈ [R, RE ], where RE is defined by the
condition E = VE (RE ), which gives

RE = −E ± √
E2 + 4κλ cos θ

2λ cos θ
, (26)

where only the positive branch recovers lim|E|→0 RE = RE .
The change in the classical turning point caused by the de-
formation of the potential is the underlying cause for why
laser-induced enhancement (or indeed suppression as we shall
see in a bit) is possible. Even though RE can never be-
come negative, note that it can become complex if E2 <

−4κλ cos θ . This may occur only when cos θ < 0 and is an
artifact of the employed dipole approximation. The validity
in the use of the dipole approximation, requiring λlaser �
|RE − R|, sets a lower bound on the CoM energy E for which
the approach in this paper is applicable. At large r, the λr cos θ

part of the potential dominates and can be made arbitrarily
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FIG. 2. Schematic static-case illustration of the deformation to
the potential, as a function of r, caused by increasing values of |E|
for the cases cos θ > 0 (a) and cos θ < 0 (b). In the illustration,
the value |E2| is larger than |E1|. The schematic shows that in the
case of cos θ > 0 a classical turning point can always be defined,
whereas in the case of cos θ < 0 this may not always be the case. If a
classical turning point can be defined for cos θ < 0 (by increasing
E or decreasing |E|) a suppression to the fusion cross section is
expected compared to the field-free case rather than an enhancement.

and unphysically large. This is shown in Fig. 2, which de-
notes a schematic of the deformation of the potential VE (r)
to be tunneled through as a function of r for electric-field
strengths |E1| and |E2|, with |E1| < |E2| for cos θ > 0 (left)
and cos θ < 0 (right). One clearly sees that for higher |E| val-
ues at cos θ > 0 there will always be an intersection between
VE (r) and E . Conversely, for cos θ < 0, the potential may be
deformed such that tunneling becomes impossible at the given
E , for which |RE − R| → ∞, which obviously violates the
use of the dipole approximation. A discussion surrounding the
employed approximations and the consequent region of phase
space where the semiclassical approaches may be applied will
be given in the upcoming Sec. II E. If a classical turning point
can be defined for cos θ < 0 (by increasing E or decreasing
|E|) a suppression to the fusion cross section is expected com-
pared to the field-free case rather than an enhancement. We
proceed by calculating the new static-field transparency, TE =
exp (−2 ImSE/h̄), with the WKB method and with ITM.

WKB. To calculate the static-field transparency in the WKB
approximation, we wish to calculate

ImSE =
∫ RE

R
dr

√
2μ

(κ

r
− λr cos θ − E

)
, (27)

where the integration limits were chosen again to ensure ex-
ponential decay in the end. The relevant integral is evaluated
numerically using Clenshaw-Curtis quadrature.

ITM. With our new potential VE (r) = κ/r − λr cos θ , our
classical sub-barrier equation of motion becomes

μr̈(τ ) = − κ

r2(τ )
− λ cos θ, (28)

which is readily solved using any conventional ODE solver.
To calculate the static-field transparency we calculate

ImSE =
∫ τE

0
dτ

[
μ

2

(
dr(τ )

dτ

)2

+ VE − E
]
, (29)

along the solution of Eq. (28).

As for a dynamic external electric field, the time depen-
dence of the external laser field is assumed to be harmonic
throughout this work, i.e.,

Vω(r, t ) = κ

r
− λr cos θ cos(ωt + ϕ), (30)

where ω is the angular photon frequency and ϕ denotes
the phase of the electric field. In Sec. III D we will briefly
comment on other temporal profiles. As was mentioned previ-
ously, we are only considering the ITM for the dynamic case.
To calculate the dynamic-field transparency with the ITM,
Tω = exp (−2 ImSω/h̄), we wish to calculate

ImSω =
∫ τω

0
dτ

[
μ

2

(
dr(τ )

dτ

)2

+ Vω(τ ) − E
]
, (31)

with Vω(τ ) = κ/r − λr cos θ cos ϕ cosh(ωτ ) and where, as
before, the trajectory along which we integrate is the solution
to the sub-barrier equation of motion:

μr̈(τ ) = − κ

r2(τ )
− λ cos θ cosh(ωτ ) cos ϕ. (32)

With the entire theoretical framework laid out, we are in a
position to discuss all approximations and restrictions that are
imposed in the next section.

E. Applicability of semiclassical approaches

In order to use the semiclassical approaches elaborated on
in the prior sections, the following necessary restrictions are
required:

(1) The imaginary part of the action in the transparency
exponent must be much larger than h̄, as a consequence
of Eq. (8):

ImS � h̄. (33)

Practically, the more lax restriction of ImS > h̄ is
employed.

(2) The classical turning point must always be larger than
R.

(3) The use of a one-particle Schrödinger equation ne-
glects all kinds of initial correlation effects between
the fusing particles, as well as relativistic effects.

(4) The presence of the external electric field is mod-
eled using the dipole approximation, for which the
wavelength of the laser must be much larger than the
spatial extent of the system under consideration, i.e.,
λlaser � |RE − R|.

(5) The definition of E remains unaltered when consider-
ing an external electric field.

(6) The parametrized version of the astrophysical S factor
is limited to a certain range of CoM energies [47]. In
addition, it is assumed that an external electric field
does not affect this term.

For the field-free case, we need not be concerned with the
dipole approximation. The other points above limit the range
for allowable CoM energies to E ∈ [0.3, 183] keV and E ∈
[0.5, 66.8] keV for DHe3 and DT fusion, respectively. The
low values for the upper limit stem from the first point in
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FIG. 3. The region in phase space (E, |E|) for which the semi-
classical approaches in this paper are valid in the static case for DHe3

fusion [(a),(c)] and DT fusion [(b),(d)], at θ = 0 [(a),(b)] and θ = π

[(c),(d)]. Allowed pairs of (E, |E|) are shown by the colored regions,
where the red region denotes the stricter restriction of ImS � 10h̄
as opposed to the more lax ImS � h̄ used elsewhere. The large
reduction to the allowable region of phase space at θ = π comes
from the breakdown of the dipole approximation when cos θ < 0 and
already occurs at, for instance, (E, |E|) = (1 keV, 1015 V/m) for both
systems.

keeping ImS > h̄. If we impose the more strict ImS > 10h̄,
these ranges are reduced dramatically to E ∈ [0.3, 8.75] keV
and E ∈ [0.5, 2.35] keV, respectively.

When considering an electric field, we need a value for
the laser wavelength λlaser in the condition λlaser � |RE − R|,
which is practically handled with λlaser � 10|RE − R|. The
wavelength λlaser is easily related to the photon energy h̄ω in
the dynamic case. However, when considering a static electric
field, we have no such parameter ω. In that case, we account
for the dipole approximation as follows. The static-field re-
sults are still applicable to a dynamic scenario so long as the
timescale of the laser field is much larger than the timescale
of the tunneling process. From the trajectories found with the
ITM, this tunneling timescale was found to be of the order of
10 as or smaller. Thus, our static-field results are still applica-
ble to dynamic laser fields on a timescale of around 100 as or
longer, corresponding to photon energies up to h̄ω ≈ 41 eV.
This in turn sets a lower limit on λlaser of 30 nm. Thus, for a
static field, we practically used 3 nm � |RE − R| to account
for the dipole approximation.

We show the allowed region in phase space (E, |E|) im-
posed by the aforementioned approximations and conditions
for the two extreme cases of θ = 0 and θ = π in the static-
field case in Fig. 3. An upper limit on the electric-field
strength is placed at the Schwinger limit of |E| = 1018 V/m,
near which spontaneous pair production is expected to sub-
stantially occur. The colored regions denote allowed pairs of
(E, |E|), where the red region denotes the stricter restriction
of ImS � 10h̄ as opposed to the more lax ImS � h̄ used
elsewhere. The region enclosed by the vertical dashed lines
denote those values of E for which the S-factor parametriza-
tion of Bosch and Hale [47] is valid. Worthy of note is that the
transition between the forms of the two rows in Fig. 3 is not
continuous. A sudden change occurs as θ varies between the

10−2 10−1 100 101 102 1031012
1013
1014
1015
1016
1017
1018

|E
|[V

/m
]

h̄ω = 1 keV

(a)
DHe3 at θ = 0

10−2 10−1 100 101 102 1031012
1013
1014
1015
1016
1017
1018
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(b)
DT at θ = 0
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(c)
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Im S ≥ 10h̄

Im S ≥ h̄

FIG. 4. The region in phase space (E, |E|) for which the semi-
classical approaches in this paper are valid for DHe3 fusion [(a), (c)]
and DT fusion [(b), (d)], at h̄ω = 1 keV [(a), (b)] and h̄ω = 10 keV
[(c), (d)], with θ = 0 and ϕ = 0. Allowed pairs of (E, |E|) are shown
by the colored regions, where the red region denotes the stricter
restriction of ImS � 10h̄ as opposed to the more lax ImS � h̄
used elsewhere. The region of phase space where the semiclassical
methods are valid is seen to diminish for increasing h̄ω.

cases of cos θ > 0, cos θ = 0, and cos θ < 0, whereas keeping
the sign of cos θ fixed and varying θ accounts for small but
continuous changes. For cos θ = 0 the shapes of course revert
to rectangles with the red and blue widths ranging from 0.3 to
8.75 keV and from 8.75 to 183 keV for DHe3, and from 0.5 to
2.35 keV and from 2.35 to 550 keV for DT.

A plot similar to Fig. 3 is shown for the dynamic case
with h̄ω = 1 keV and h̄ω = 10 keV at θ = 0 and ϕ = 0 in
Fig. 4. One can see the vast reduction of allowed phase
space as compared to the static case, which becomes worse
for higher values of h̄ω. This is mainly attributed to a break-
down of the dipole approximation in the affected regions.
Note that from the relation T = exp (−2 ImS/h̄) an enhance-
ment to the transparency is captured by a reduction in ImS .
Thus, when attempting to capture this enhancement by means
of semiclassical methods, for which one inherently requires
ImS � h̄, one will inevitably encounter scenarios where the
predictions are no longer within their realm of applicability.

III. RESULTS

In this section we calculate the modification to the trans-
parency as a result of a static and a dynamic external electric
field and determine their effects on the fusion cross sec-
tion and reactivity.

A. Static-field enhancement

The values for ImSE at θ = 0 in the WKB method and
with ITM are compared to each other in Fig. 5. The value
of h̄ = 0.6582 eV fs is also shown to illustrate ImSE > h̄.
One can see that the WKB (lines) and the ITM (dots) results
practically overlap. Note that a lower value of ImSE denotes
a larger enhancement to the transparency. We emphasize that
the scales on the y axes in Fig. 5 differ between the DHe3

and DT results. This is done for aesthetic reasons to showcase
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FIG. 5. The static-field value of ImSE at θ = 0 for DHe3 (a) and
DT (b) at electric-field strengths |E| = 1013 V/m to |E| = 1017 V/m.
The lines and dots refer to the WKB and ITM result respectively.
Also shown are the field-free values (|E| = 0 V/m) and the value
of h̄ = 0.6582 eV fs (black dotted line). Note that the scales on the
y axes differ and that the two legends refer to both plots simultane-
ously. A reduction in ImSE signifies enhancement with respect to the
field-free case, which starts to set in for both systems at |E| > 1014

V/m and is more prominent for lower values of E .

the DT results more clearly. In addition, the two legends
refer to both plots simultaneously. We will adhere to similar
conventions for all subsequent figures in this paper. One can
conclude from Fig. 5 that nearly no enhancement is present for
electric-field strengths below a certain critical value, which
echoes the conclusions of Queisser and Schützhold [32], Lv
et al. [33], and Liu et al. [36]. An important observation from
Fig. 5 is that this critical field value depends on E . For low
values of E enhancement appears to set in for both systems
at |E| > 1014 V/m. However, at higher values for E , the
enhancement appears to wane, which is partly why we do not
show higher E values than 10 keV. This trend is also present
in the works of Wang [34] and Liu et al. [36]. Lastly, note that
the enhancement is more prominent for DHe3 than it is for DT.
We expect this to be a consequence of the fact that the product
Z1Z2 is larger for DHe3 (Z1Z2 = 2) than for DT (Z1Z2 = 1)
for the following reason. As the Coulomb repulsion in DHe3

is larger than in DT, the field-free classical turning point RE is
also larger for DHe3 than for DT, when considering the same
CoM energy E . From Fig. 2 it is clear that an external laser
field deforms the potential more drastically further away in
the tail, rather than close to the origin. Hence, the inclusion
of the external laser field reduces the classical turning point
much more in the case of DHe3 than in DT and thus causes a
more pronounced enhancement to the former. Therefore, even
though a larger Coulomb repulsion would hinder a typical fu-
sion process, we conclude that the laser-induced enhancement
is actually larger in this case.

Figure 6 shows the effect of a static electric field on the
fusion cross sections. Again, any enhancement appears to
be most prominent for lower values of E . By considering a
specific CoM value, e.g., E = 1 keV, we can highlight vast
enhancements to the cross section when considering the am-
bitious, but realistic, field strengths of |E| = 1015 V/m and
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FIG. 6. The static-field cross section at θ = 0 for DHe3 (a) and
DT (b) at electric-field strengths |E| = 1013 V/m to |E| = 1017 V/m.
The lines and dots refer to the WKB and ITM result respectively,
which are seen to agree well with one another. Additionally, the field-
free values practically overlap with the results for |E| = 1013 V/m.
One can see noticeable enhancements for |E| > 1014 V/m, which are
more prominent for lower values of E .

|E| = 1016 V/m. These enhancements are six to eleven orders
of magnitude for DHe3 fusion and one to four orders of mag-
nitude for DT fusion. However, Fig. 6 illustrates that these
large enhancements do not persist for most CoM energies.
The resulting effect on the reactivity is shown in Fig. 7, given
a thermal Maxwellian velocity distribution. The cutoffs for
the energy integral were 183 and 66.8 keV for DHe3 and DT
respectively, corresponding to the largest shown values for the
temperatures at kBT = 72 keV and kBT = 31 keV. The reac-
tivity plots show that the enhancement to the cross sections is
not enough to result in an overall effect when integrating
over E , with the extreme case of |E| = 1017 V/m being the
exception. We note that even though the absolute values for
the reactivity may be rather crude, regarding the used ap-
proximation of a thermal Maxwellian velocity distribution,
the relative enhancement in the reactivity between different
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FIG. 7. The static-field reactivity at θ = 0 for DHe3 (a) and DT
(b) at electric-field strengths |E| = 1013 V/m to |E| = 1017 V/m.
The solid lines and dots refer to the WKB and ITM result respec-
tively. Also shown are the field-free values. The large laser-induced
enhancements to the cross section are seen to have a lasting impact
only for the most extreme values of |E|.
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values for the electric-field strength |E| does not depend on
this choice. Based on the prediction from the transparency and
cross section calculations, a noticeable enhancement will only
be present for a relatively small range of CoM energies, at
least for |E| values that are attainable at present-day facilities
(<1016 V/m). Subsequently, an overall enhancement in the
reactivity as a result of the potential deformation alone is not
expected to appear. We do note that Fig. 7 depicts a log-log
plot, so enhancements below an order of magnitude, though
present, are hardly discernible. For example, the enhance-
ments to the reactivity at kBT = 1 keV for |E| = 1016 V/m
are factors of 1.67 and 1.43 for DHe3 and DT respectively.

The question remains whether or not the estimates for the
transparency enhancements may have been underestimated
regarding the use of the semiclassical methods. Despite the
results presented thus far being within their realm of ap-
plicability, the WKB method for example is well known to
deteriorate in accuracy as E decreases. For CoM energies far
below the largest potential values of the barrier, the WKB
method can underestimate the transparency predictions by
several orders of magnitude [9]. The use of semiclassical
approaches would be unwarranted if unphysical results can be
encountered even in the regime where the employed approach
fulfills the validity requirements. We return to this point in
Sec. III D when considering the dynamic-field case. Let us
first comment on the effect of the polarization angle θ in a
more realistic setting.

B. Polarization angle averaging

The angle between the relative movement of fusing parti-
cles and the polarization direction of the external laser field
will be, to a large degree, random in a real experiment. The
results presented thus far were given in the best-case scenario
of maximal enhancement at θ = 0. However, suppression is
expected to occur for those angles with cos θ < 0, as is intu-
itively clear from Fig. 2. Therefore, we must average over the
angle θ to determine whether any enhancement remains in a
real experimental setting. The averaging is done with respect
to the cross section as

σave(E, |E|) = 1

2

∫ π

0
dθ σ (E, |E|, θ ) sin θ. (34)

However, recall that cases exist with cos θ < 0 for which there
is no more tunneling possible, which was an artifact from
using the dipole approximation where we ought not to. How
should this be handled during the averaging? Simply equaling
σ (E, |E|, θ ) = 0 in that case will artificially skew the average
towards an overall smaller enhancement. To avoid this, we
will only show averaged cross section values at those values of
(E, |E|) for which all values of θ ∈ [0, π ] provided a physical
result. These are shown as dots in Fig. 8 for electric-field
strengths from |E| = 1013 V/m to |E| = 1017 V/m. The lines
in Fig. 8 refer to the WKB result for the cross section at the
fixed angle of θ = 0. One can see that, even when averaging
over polarization directions, an overall enhancement is still
expected to arise in the static-field case, albeit by a much
smaller amount as compared to θ = 0. Also, the amount of
points for which data can be acquired is heavily limited.
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FIG. 8. The static-field cross sections (WKB result) for DHe3

(a) and DT (b) at electric-field strengths |E| = 1013 V/m to |E| =
1017 V/m. The lines and dots refer to the cases of θ = 0 and av-
eraged over θ , respectively. Averaged values are only shown if all
θ ∈ [0, π ] provided physical answers for a given set of input param-
eters. Though the θ -averaged cross section is found to be generally
smaller than the cross section at θ = 0, an overall net enhancement
can still be observed in the former case.

We now turn to comparing these results with other theoret-
ical predictions from the literature.

C. Theoretical predictions comparison: Static

The large majority of works in the literature have employed
the use of the velocity gauge and therefore consider the fre-
quency, and consequent photon energy, of the laser field as
a parameter in their enhancement estimates. As our field is
static, we have no such parameter. However, we noted before
that the static-field results are still applicable to a dynamic
scenario for photon energies up to h̄ω ≈ 40 eV.

The work of Wang [34] considered the effect of near-
infrared lasers on DT fusion. They predicted an enhancement
to the θ -averaged DT fusion cross section of nine orders of
magnitude at E = 1 keV for an 800-nm laser (h̄ω = 1.55 eV)
at I = 5 × 1021 W/cm2 (|E| = 2 × 1014 V/m). At E = 5 keV
and E = 10 keV for the same laser parameters their en-
hancement was two orders of magnitude and one order of
magnitude, respectively. However, for the same parameters
we predict an enhancement by factors of 1.135, 1.006, and
1.002, respectively. The discrepancy between our results and
those of Wang stems from the fact that the Coulomb barrier
is ignored in Ref. [34], which is incidentally mentioned as a
similar cause for discrepancy in Ref. [36].

Next, we consider the work of Liu et al. [36], which
considers DT fusion using the WKB method. The difference
with the current work is that the classical turning point is not
determined analytically, but rather determined from a Monte
Carlo sampling of many classical prebarrier trajectories of a
Gaussian wave packet. At E = 1 keV and h̄ω = 1 eV they see
θ -averaged cross section enhancements occur at intensities
I = 1020 W/cm2, I = 1021 W/cm2, and I = 1022 W/cm2 by
3, 6, and 7 orders of magnitude, respectively. At those same
parameters, we found enhancements by factors of 1.0701,
1.0866, and 1.2166, respectively. The discrepancy may be
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FIG. 9. The dynamic-field enhanced results for ImSω as a func-
tion of the CoM energy E , calculated by the ITM at θ = 0 for DHe3 at
electric-field strengths |E| = 1014 V/m to |E| = 1017 V/m and vari-
ous photon energies h̄ω. A larger enhancement is expected for higher
h̄ω. However, this enhancement can be unphysically large, especially
for lower values of |E|, showcasing the reduced applicability of the
semiclassical methods at increasing h̄ω.

caused by the use of a time-dependent potential in the inher-
ently time-independent WKB expression for the transparency
[Eqs. (9) and (10)] in Ref. [36], though admittedly it is not
explicitly mentioned how the time dependence is handled. We
discuss their dynamic enhancement predictions in Sec. III F.

We now proceed by considering the enhancement due to
dynamic external electric fields.

D. Dynamic-field enhancement

In this section, we assume θ = 0 and ϕ = 0. An averaging
over the phase angle ϕ is briefly addressed in Sec. III E.
Figure 9 shows ImSω as a function of the CoM energy E
for DHe3 fusion. Each panel denotes a different electric-field
strength, ranging from |E| = 1014 V/m to |E| = 1017 V/m,
and shows the results for different values of h̄ω at a given
field strength. The results from Fig. 9 show an increased
enhancement for increasing photon energy h̄ω as compared
to the static-field case (consistently shown as the red curve
in this section), most prominently for higher values of |E|
and again for lower values of E . However, Fig. 9 reveals a
worrying trend, as for higher values of h̄ω the values of ImSω

may be of the order of and even far below h̄, whereas the ITM
is only valid in the limit of ImSω � h̄. The sudden drop in
ImSω for decreasing values of E are undoubtedly unphysical,
as they lead to enormous enhancements in the cross section,
shown in Fig. 10. And this despite being in the range of
applicability of semiclassical methods. The results indicate
that the range of applicability of the ITM in the dynamic
case is more restricted for low electric-field strengths. In the
case of |E| = 1017 V/m all values of ImSω are larger than h̄
for all h̄ω. For the cross sections in Fig. 10, the solid lines
refer to the results obtained from the transparency shown in
Fig. 9. The dots refer to cross section results obtained with the
much more strict requirement of ImSω > 10h̄ to determine if
the unphysical exponential enhancement at low E disappears.
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FIG. 10. The dynamic-field enhanced cross section as a function
of the CoM energy E , calculated by the ITM at θ = 0 for DHe3,
at electric-field strengths |E| = 1014 V/m to |E| = 1017 V/m and
photon energies h̄ω. The lines refer to results obtained from the
requirement that ImSω > h̄ and the dots were obtained using the
more strict requirement ImSω > 10h̄. One can see that the unphys-
ical enhancements that arose from the rapidly decreasing values of
ImSω with decreasing E (Fig. 9) persist in the cross section, even
when ImSω > 10h̄.

However, Fig. 10 shows that it may persist even then, espe-
cially at lower values of |E|. The inevitable conclusion is that
the dynamic-field enhancement cannot be suitably described
by semiclassical approaches. The region of phase space that
gives accurate results is far too restricted to be able to provide
reactivity estimates and thus they are not presented here. The
results for ImSω for DT fusion largely mimic the behaviors
of Figs. 9 and are omitted for this reason. The dynamically
enhanced fusion cross section for DT is presented in Fig. 11
for completeness.

Temporal profiles other than a harmonic one were also con-
sidered. Similar to Ref. [32], we considered a Gaussian pulse
and a de Sauter pulse, where the time dependence is changed
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FIG. 11. The dynamic-field enhanced cross section as a function
of the CoM energy E , calculated by the ITM at θ = 0 for DT,
at electric-field strengths |E| = 1014 V/m to |E| = 1017 V/m and
various photon energies h̄ω. The solid lines refer to results obtained
from the requirement that ImSω > h̄ and the dots were obtained
using the more strict requirement ImSω > 10h̄. The behavior from
Fig. 10 is largely mimicked.
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from cos(ωt ) to exp{−(ωt )2} and 1/ cosh2(ωt ) respectively.
Unfortunately, the only differences we saw to the enhanced
cross sections in these cases were in regions where the results
showed the unphysically large artifacts. For this reason, we
omitted these plots.

E. Phase angle averaging

The final parameter to model the external laser field left to
discuss is the phase angle present in the time dependence as
cos(ωt + ϕ). Assuming ϕ to be a constant, we may assign its
value to the one at t = 0 and average the cross section from
ϕ = 0 to ϕ = 2π as

σave(E, |E|, θ, ω) = 1

2π

∫ 2π

0
dϕ σ (E, |E|, θ, ω, ϕ). (35)

Note that the phase-angle averaging introduces a degree of
incoherence into the laser field. Unfortunately, a similar con-
clusion was found as when different temporal profiles were
considered. Namely, the only differences that were observed
between the ϕ-averaged case and ϕ = 0 were in regions where
the enhancements were unphysical. Therefore, these plots
were omitted as well. However, for those parameters where
the results did appear physically justifiable, we could hardly
discern a difference between the phase-averaged results and
the field-free results. This is in disagreement with the conclu-
sion presented by Queisser and Schützhold [32] that dynamic
enhancement will also occur with incoherent light sources.
However, a definite answer to this question would be provided
given accurate dynamic cross-section enhancements for lower
values of E , which is unfortunately not possible within the
semiclassical approximation.

F. Theoretical predictions comparison: Dynamic

Despite the limited range of applicability of the ITM in the
dynamic case, we may compare our enhancement results for
DT fusion with other theoretical works.

The work of Queisser and Schützhold [32] predicts signif-
icant enhancement to the transparency for E = h̄ω = 1 keV,
provided either |E| = 1013 V/m or |E| = 1015 V/m, depend-
ing on the method employed. It is not stated what is meant
with “significant,” but with the dynamic-field calculation us-
ing the ITM we found enhancements to the cross section at
E = 1 keV and |E| = 1013 V/m by a factor of 50 and a factor
of ≈5 × 106 for |E| = 1015 V/m. However, these large en-
hancements are unphysical as evidenced by Fig. 11. Realistic
enhancement factors are likely to be much smaller. Queisser
and Schützhold also predict a significant enhancement factor
can be seen at E = 9 keV and h̄ω = 27 keV for electric-field
strengths below |E| = 1013 V/m. We predict at E = 9 keV,
h̄ω = 27 keV, and |E| = 1013 V/m an enhancement factor to
the cross section of 1.024. However, Queisser and Schützhold
did mention their predictions are less reliable in this regime.

The work of Lv et al. [33] makes predictions for the
DT fusion cross section enhancement using the Kramers-
Henneberger (KH) approximation, which is applicable if the
time period of the laser is much smaller than the time scale
of the fusion process. It is stated that their method is ap-

TABLE I. Predictions for the enhancement factor to the cross
section using the dynamic-field ITM at laser parameters that cor-
respond to nd = 9 in Ref. [33] at E = 64 keV. Also shown are the
values for ImS/h̄. We find hardly any enhancement occurs at these
values, mainly attributed to the consideration of the relatively high
value of E = 64 keV.

h̄ω (keV) |E| (V/m) σω/σE ImSω/h̄

1.0 5.059 ×1015 1.0008 1.0445
2.5 3.162 ×1016 1.0037 1.0431
5.0 1.265 ×1017 1.0143 1.0378
7.5 2.846 ×1017 1.0318 1.0292
10.0 5.059 ×1017 1.0561 1.0176

plicable for h̄ω � 1 keV. Predictions are made with respect
to the dimensionless parameter nd = e

√
2cμ0I/(5μω2R),

which, with the intensity being I = cε0|E|2/2, becomes nd =
e|E|/(5μω2R). A single value of nd defines a curve in the
(|E|, h̄ω) plane consistent of pairs that lead to the same en-
hancement. At E = 64 keV and nd = 9, they predicted an
enhancement to the θ -averaged cross section by a factor of
4.77. For a handful of photon energies in the keV regime and
corresponding electric-field strengths that satisfy the relation
nd = 9, we show our dynamic-field enhancement to the cross
section at E = 64 keV in Table I. Nearly no enhancement is
predicted for any of the suggested parameters, as it was shown
for the enhancements to be most prevalent for low values of
E in the ITM. Interestingly, this illustrates a qualitative differ-
ence between the results of the ITM and KH approximation,
again showcasing the need for experimental validation.

Finally, we reconsider the work of Liu et al. [36], which
also made predictions to the DT fusion θ -averaged cross
section enhancement at a photon energy of h̄ω = 1 keV. For
this value, and with E = 1 keV and I = 1026 W/cm2, I =
1027 W/cm2, and I = 1028 W/cm2, they find enhancements
by factors of ≈ 5, 102, and 105, respectively. These parameters
unfortunately lie outside of the validity range of our approach.

The vast differences in theoretical predictions for the
enhancements come from the fact that the laser-induced en-
hancement does not set in until some critical value for the
electric-field strength is reached. As different models predict
different critical values, their enhancement predictions may
indeed differ by several orders of magnitude. This was already
shown in Fig. 5 of Liu et al. [36], which compares their work
with Lv et al. [33] and Wang [34]. A similar critical photon
energy is also expected to exist, as mentioned by Queisser
and Schützhold [32], but could not be determined due to the
restricted applicability of semiclassical methods in this work

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have employed two frequently used
semiclassical approaches, the WKB method and the ITM, to
calculate the enhancement in the fusion rates expected to arise
from an external laser field, for the cases of DHe3 and DT
fusion. The goals were to go beyond a simple prediction of en-
hancement at a few select CoM energies and laser parameters
in order to provide a more accurate and realistic enhancement
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prediction that is to be expected during a real experiment,
and to determine whether semiclassical approaches are ca-
pable of doing so. The conclusion is that a large range of
input parameters is necessary to make accurate predictions
similar to an experiment and that semiclassical approaches
are not applicable for the entire necessary region in phase
space. Especially the combination of small |E| and large h̄ω

hinders the use of these methods. Furthermore, even where
the semiclassical approaches ought to be valid, the predicted
result may still diverge at low CoM energies in the dynamic
case.

With the purpose of actually designing a laser-enhanced
fusion experiment, the optimal laser parameters will most
accurately be found by going beyond semiclassical methods.
The KH approximation is an excellent start to consider the
enhancement at high h̄ω, but the method seems to indicate
larger enhancements for lower values of h̄ω [33,37], where

the method is less accurate. A connection can be made to
the low-h̄ω regime by extending the framework presented in
Ref. [34] to include a Coulomb-Volkov state. Alternatively,
the R-matrix method may be employed to calculate the trans-
parency, similar to what was done in Ref. [54]. A benchmark
can be made with the transparency calculated from the full nu-
merical solution of the time-dependent Schrödinger equation.
This development is currently underway.
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