Erratum: Nonthermal nuclear reactions induced by fast α particles in the solar core [Phys. Rev. C 91, 028801 (2015)]

Victor T. Voronchev D

(Received 30 November 2021; published 1 April 2022)

DOI: 10.1103/PhysRevC.105.049901

On p. 4 of the original paper, a simplified method was used to estimate the influence on the ¹⁷O number density n_{17O} in the solar core of fast α particles generated in the ⁷Li(p, α) α reaction. The estimation was based on an analysis of the rate equation for n_{17O} , Eq. (13), neglecting or allowing for the term $R_{\alpha}{}^{14}$ _{N.nonth}, Eq. (8), that is the nonthermal ¹⁴N(α, p) ¹⁷O reaction rate provided by the $p + {}^{7}$ Li α particles. At steady state, this equation takes a form of an algebraic balance equation for which it was not difficult to determine the ¹⁷O number density enhancement δ_{17O} caused by the term $R_{\alpha}{}^{14}$ _{N.nonth}.

However, in our later study [1] it was suggested that the algebraic method may not provide high accuracy for $\delta_{17_{O}}$ as it does not directly operate with solar reaction kinetics controlling built-up and burn-up of carbon-nitrogen-oxygen (CNO) elements. Therefore, a more accurate evaluation of $\delta_{17_{O}}$ has been performed by solving a system of rate equations for the CNO cycle using a nucleosynthesis code [2]. This code relies on a thermal reaction network, so the nonthermal reaction α (fast) + ${}^{14}N \rightarrow p + {}^{17}O$ which can increase the ${}^{17}O$ abundance has been incorporated in the network. As in Ref. [1], the code was run at constant temperature and density corresponding to several selected radii R/R_{\odot} . The improved values of $\delta_{17_{O}}$ together with the previous ones are given in Table I.

	R/R_{\odot}	δ170		
		Present	Previous	
	0.1	2	2	
	0.2	4	24	
	0.25	22	155	

2

TABLE I. The δ_{17} values for different distances R/R_{\odot} from the center of the Sun. Both present and previous results are shown.

It is seen that the previously found ¹⁷O abundance enhancement of 2–155 is reduced to 2–22, and in the outer core δ_{17O} decreases by a factor of 6 to 7. These results are in good agreement with those in Ref. [1] obtained for an α -particle slowing down model based on the Fokker-Planck scattering theory. It is worth noting here that this model gives the energy-loss rate dE_{α}/dt of fast α particles close to the rate dE_{α}/dt provided by a standard binary-collision model with a Debye cutoff employed in the original paper. A comparison of these rates is presented in Ref. [1].

The other results of the original paper remain unchanged.

0.3

=

^[1] V. T. Voronchev, Y. Nakao, and Y. Watanabe, J. Phys. G: Nucl. Part. Phys. 44, 045202 (2017).

^[2] The code is available at http://cococubed.asu.edu/code_pages/burn_hydrogen.shtml.