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Impact of realistic nuclear interactions and free hyperons
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The number spectrum of nonequilibrium neutrinos resulting from neutron star matter deviation from beta
equilibrium is calculated. For this purpose, the chemical potential gap (δμ) in a typical density change and
in the high degeneracy regime (kBT � 0.1 MeV) is estimated. This is done under the application of realistic
descriptions of nuclear matter and the assumption of the presence of free hyperons (�−, �0) in the neutron star
core. Realistic nuclear interactions are taken into account by a microscopic many-body approach—the lowest
order constrained variational (LOCV) method—for asymmetric nuclear matter. We find that addition of a three-
body force interaction leads to a dramatic change in the trend of the symmetry energy at high densities and
consequently the change in the sign of δμ. This, as a result, changes the dominant flavor of the nonequilibrium
neutrinos. By accounting for the hyperons’ presence, we see that apart from the sign change of δμ its value
can change noticeably. In hypernuclear matter, the effect of particle fractions is also very important. We have
also investigated the effect of deviation from beta equilibrium on the dynamic part of the number spectra of
nonequilibrium neutrinos produced in the neutron branch of the modified Urca process. It is shown that this
part of the number spectra is not affected significantly by the nonequilibrium process and can be replaced by its
equilibrium value.
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I. INTRODUCTION

Physics of neutron stars (NSs) is a suitable substrate for the
interplay between the equation of state (EoS) of dense matter
and the properties of these densest objects in the observable
universe. Among these properties is the cooling rate of NSs
and neutrino emission from their interiors is the dominating
cooling mechanism before the internal temperature falls to
108 K [1]. The emissivity of neutrinos is calculated by as-
suming equilibrium with respect to weak interactions. In fact,
since equilibrium with respect to other interactions, i.e., strong
and electromagnetic ones, is achieved very fast, weak inter-
actions are the only interactions that determine the final full
thermodynamic beta equilibrium state of the star. However, in
the NS case, the term full deserves a comment: NS medium
in temperatures less than 109 K is highly degenerate and as a
result, transparent to neutrinos [2]. So, under this condition,
neutrinos freely escape from the interior of a NS and there
is no concentration of them in the star. This makes neutrino
emission processes irreversible and attaining full thermody-
namic equilibrium impossible. But fortunately, due to the high
degeneracy of the core constituents of a NS, the available
phase space (that, in the condition of final equilibrium, is
determined by the finite value of the temperature) is small.
Therefore the energy carried away by neutrinos compared
to the Fermi energy of other species is small, too. Hence,
application of the term full is almost justified.

In a simple model of a NS core made up of a large number
of neutrons (n), with an admixture of protons (p) and electrons
(e), for fulfilling electrical neutrality and obtaining the beta

equilibrium, the composition of matter is characterized by the
proton fraction among the total number of baryons (nucleons
in npe matter), Yp = np

nb
(where np is the number density of

protons and nb is the number density of baryons). Yp depends
on the local density. It is determined by the minimization of
the total energy of the system, including the rest masses un-
der the constraint of baryon number conservation and charge
neutrality, while adopting a specific many-body method and a
strong interaction model. This, as a whole, is equivalent to the
charge current weak interactions n → p + e− + νe and p +
e− → n + νe (traditionally called by the exotic name Urca
in the context of stellar evolution [3]) running with the same
rates. In view of working in a high degeneracy regime, such
a condition means μn = μp + μe, where μi is the chemical
potential of the ith specie. Hereafter, we refer to this latter
equality as the chemical potential balance relation. This also
implies the equality of νe and νe emissivities.

Muons can be present in the medium. Their presence is
allowed when the electrons’ Fermi energy (EF (e)) (or, in a high
degeneracy condition, their chemical potential) exceeds the
rest energy of the muons, i.e., EF (e) = c(m2

ec2 + p2
F (e) )

1/2 �
pF (e)c > mμc2 = 105.56 MeV, where pF (e) is the electron
Fermi momentum. Since under high degeneracy condition
and neglecting thermal corrections Fermi momenta are pFi =
(3π2ni )

1/3
h̄, the muons’ number density is obtained by their

chemical potential balance with electrons (μe = μμ). This
is a result of a local equilibrium with respect to relevant
weak interactions e− → μ + νe + νμ, μ → e− + νe + νμ.
This condition along with the Urca process then establishes
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the full thermodynamic beta equilibrium in npeμ matter.
Clearly, the beta equilibrium among n, p, and μ is the same
as that among n, p, and e. We put our focus on the one with
electrons.

When the density in the NS medium increases it is eco-
nomical, from the energy point of view, that massive baryons
(more probably hyperons) appear in the system instead of
an increase in the number density of the lighter baryons [4].
Each hyperon is produced in a reaction that satisfies energy
and momentum conservation simultaneously and its number
density is obtained through chemical potential balance in that
reaction. This chemical potential balance relation along with
the one related to the muon production and finally that related
to the nucleon Urca process form the full thermodynamic beta
equilibrium in npeμY matter (Y refers to hyperons). Notice
that hyperons, when they appear, undergo their own Urca pro-
cess, e.g., �− → �0 + e− + ν−

e and �0 + e− → �− + νe.
These interactions can possibly compete with the nucleon
Urca process in neutrino production and even dominate over
it. However, focusing on the nucleon Urca process is adequate
for the purpose of our study.

Depending on the proton concentration at each instant to-
ward final equilibrium (Yp), two types of Urca process, direct
(dUrca) and modified (mUrca), can occur and lead to neutrino
production: dUrca is the Urca process allowed by simul-
taneous energy and momentum conservation laws. MUrca,
on the other hand, occurs when the mentioned conservation
condition is not satisfied and Urca has to proceed with the
contribution of an additional particle that provides the energy
and momentum mismatch (sSee Ref. [3] for a detailed de-
scription). Clearly, the additional particle does not participate
in the chemical potential balance relation.

It is possible to consider various external or macroscopic
phenomena that change the density of the NS matter. If
this change of the density of the matter elements occurs
on a timescale (τρ) much longer than the beta equilibration
timescale (τβ), the assumption of beta equilibrium remains
valid (adiabatic density change). However, since the matter
is strongly degenerate in the NS core the available phase
space for beta reactions, responsible for constructing the new
equilibrium state, is limited due to the Pauli exclusion prin-
ciple. Hence, τβ is expected to be much longer than τρ (see
Appendix A that checks validity of this expectation in our
work). In view of this condition, there can be relevant as-
tronomical scenarios that lead to a departure from the beta
equilibrium state which have their own observational foot-
prints. Radial pulsations of the NSs lead to local compression
and rarefaction of matter with ≈ millisecond periods, which
are much shorter than the β reaction timescale at kBT �
0.1 MeV (kB is the Boltzman constant). So, they induce de-
viation from chemical potential balance. Neutrino emission
from the nonequilibrium mUrca process was studied in several
contexts as the damping mechanism for the small amplitude
radial pulsations of the NS, slowing down its cooling [5–8].
NS vibrations can be a source of a large amount of energy
by changing the thermodynamic equilibrium state. The en-
ergy stored in the vibrations can be released through various
phenomena. In a paper by Langer and Cameron, the electro-
magnetic observability of vibrating NSs was explored [9]. It

was indicated that reaction rates for hyperon weak interactions
can damp the vibrations rapidly enough to make the elec-
tromagnetic observability of these stars probable. NSs with
their mass near the maximum allowable value, determined by
general relativity and an assumed nuclear EoS, can possibly
have a fate of collapsing into a black hole if their mass in-
creases through an accretion process. The rapid monotonic
compression of NS matter (on the timescale of a fraction of
millisecond [10]) in the precollapse stage leads to the depar-
ture from beta equilibrium, and a short burst of neutrinos is
expected to accompany the collapse. The upper bounds for
this neutrino burst was estimated in a paper by Gourgoulhon
and Haensel [10] using the parametrized EoS of asymmetric
nuclear matter of Prakash et al. [11]. The contraction of the NS
matter due to its spin-down leads to the change of chemical
potential state. Reisenegger investigated the reduction of the
net cooling rate due to the conversion of some amounts of
the stored chemical energy into thermal energy and even the
possibility of a net heating, and the effect of this heating
mechanism on the thermal evolution of NSs [12].

In all of the above phenomena, the departure from chemi-
cal equilibrium, measured and characterized by the chemical
potential gap value and sign, δμ = μn − μp − μe, is the de-
termining factor. As was already mentioned, particle fractions
are determined by beta equilibrium reactions (Urca) along
with those weak interactions responsible for the appearance
of other species (μ,�−,�0 in our work). As a result, the
Urca process (direct or modified) is characteristic of the final
equilibrium state. When a rapid change of the local density
occurs, the concentration of the matter constituents, due to
the slowness of the weak interaction rates, is no longer in
an equilibrium state. Depending on the assumed EoS for de-
scribing the NS core and the corresponding symmetry energy
behavior, the system becomes protonized or neutronized com-
pared with the new equilibrium state in each specified baryon
density. Therefore, a nonequilibrium state characterized by the
chemical potential gap δμ arises. This breaking of chemical
equilibrium (δμ �= 0) opens an additional volume in the phase
space through which the Urca process can proceed with dif-
ferent rates (depending on δμ sign, one more intensively than
the other) and bring the matter to a new beta equilibrium state
(Le Châtelier’s principle). The other species’ (μ,�−,�0)
equilibration reactions guarantee their appearance and deter-
mine their concentrations at each instant (characterized by
proton fraction) towards the new full thermodynamic beta
equilibrium state. As a consequence, in the rapid change of
the density (compared with beta reaction rates) of NS matter,
from any origin, δμ and its sign are the key ingredients. They
are directly related to the assumed density-dependant features
of matter above nuclear saturation density and so can offer
another opportunity for diagnosing superdense matter proper-
ties. The purpose of this paper is to investigate the importance
of applying realistic descriptions of the NS medium and the
presence of new degrees of freedom (free hyperons) on the
value of δμ (chemical potential gap) and its sign and applying
the results in determining the number spectra of nonequi-
librium neutrinos. δμ is a function of time but we restrict
our exploration to the initial moment [δμ(nb,Yp, t = 0)] of
a small compression (such that δμ � μi, which guarantees
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the strong degeneracy related to the opened nonthermal phase
space). As a typical example, we consider the change in
the density happening for nb = 0.9 fm−3 and increasing it
to 1.0 fm−3. For those instances in which dUrca is inactive
and so mUrca is responsible for the new beta equilibrium
state, we explore the effect of such a sudden compression
on the dynamic part of the mUrca process too. We pursue
our goal by applying a microscopic many-body method with
realistic two-body interactions as the input. We also study
the effect of the three-body force and the presence of free
hyperons (�−,�0) on our results. The microscopic many-
body method employed in our work is a modified extended
version of the lowest order constrained variational (LOCV)
method: a fully self-consistent variational method that has
been successful in describing various properties of baryonic
systems in the last three decades [13–16]. The applied realis-
tic two-body interactions are Argonne V18 (AV18) [17] and
Reid 68 [18] potentials. The three-body interaction employed
is a phenomenological Urbana type potential (UIX). Notice
that accounting for the hyperon-nucleon and hyperon-hyperon
interactions can influence δμ through changing nucleon and
electron chemical potentials, but we limit our calculations
to the case of free hyperons. It is a reasonable assumption
because it is good enough for attaining some insight into the
δμ value sensitivity to the appearance of new species and for
presenting a schematic view of the importance of this effect
while avoiding the complexity arising from accounting for the
hyperon interactions. Furthermore, in the LOCV method, ��

and �-nucleon interactions are the only interactions currently
accounted for [19]. So, assuming the hyperons to be free in
the adopted many-body scheme and in our npeμ�−�0 model
of the NS core again seems to give more general outcomes.

The paper proceeds as follows. The number spectrum
of nonequilibrium electron neutrinos in dUrca and mUrca
processes is calculated briefly in Sec. II. In Sec. III, the de-
pendence of δμ on nuclear symmetry energy in the absence
and presence of free hyperons is explained. Section IV is de-
voted to the obtained results. Our discussions and conclusions
are presented in Sec. V. To justify that within our realistic
descriptions of the NS core the beta equilibration timescale
is actually long enough compared with the density changing
timescale, we present an estimation of the beta relaxation
time in Appendix A. A brief review of the modified extended
version of the LOCV approach is also outlined in Appendix B.

II. NUMBER SPECTRA OF
NONEQUILIBRIUM NEUTRINOS

Consider the simplest model of a NS core made up of n,
p, e, and probably μ. Assume that n and p form a “normal”
Fermi liquid (i.e., T > Tc, where Tc is the temperature below
which superfluidity for neutrons and superconductivity for
protons is expected). The electrons and muons are consid-
ered as a normal noninteracting Fermi gas. Each of these
constituents is separately in thermodynamic equilibrium, with
chemical potentials μi (i = n, p, e, μ), and strongly degener-
ate (μi � kBT ). The effects of the presence of other particles
(free hyperons) are discussed later. Weak interactions (Urca

process), neutron beta decay (n → p)

n → p + e− + νe (1)

and electron capture (p → n)

p + e− → n + νe, (2)

proceeding with the same rates guarantee the beta equilibrium
state. This means 
n→p = 
p→n, where 
 is the neutrino
number emissivity, i.e., the number of neutrinos emitted from
1 cm3 during one second. As mentioned before, if the si-
multaneous energy and momentum conservation is satisfied,
neutrinos are produced via dUrca; otherwise, an active specta-
tor is needed to provide the energy and momentum difference
and the neutrino production proceeds through mUrca. From
a practical viewpoint, this means that there is a threshold
density below which only mUrca reactions can occur while
for densities above that value only the dUrca process plays
the key role. Furthermore, the presence of the active specta-
tor in mUrca affects the rate of neutrino production through
occupying some domains of the available phase space of (1)
and (2), and it complicates the calculation of the production
rate by direct presence in the interaction Hamiltonian density
operator (see Ref. [20] and the references therein).

Let us suppose that the assumed NS undergoes an astro-
nomical process that results in a rapid change of the local
density. The number spectrum of non-equilibrium neutrinos,
which is dominantly nonthermal, is given by d


dy where y =
Eν

kBT and Eν is the neutrino energy. Several studies have been
dedicated to the nonequilibrium beta processes in the NS core
[12,21]. In this section, by focusing on the nonequilibrium
neutrinos’ number spectra, we give a brief summary of the
previously obtained results. We shall start with the simpler
neutrino production mechanism, that is dUrca.

A. Direct Urca process

The dUrca reaction requires the condition pFn < pFp + pFe

to be satisfied. In an npe model of the NS core, this corre-
sponds to pFn < 2pFp or Yp

(dUrca-npe) > 1/9 (obviously, muon
presence shifts this threshold to higher values). Reaching this
threshold depends on the EoS and mainly on the behavior of
the symmetry energy. It is typically satisfied at several times
the nuclear saturation density, n0 = 0.16 fm−3. Let us suppose
that the required condition is obtained.

In a nonequilibrium condition, the number of antineutrinos
with their momentum near �pν (or their energy between Eν and
Eν + dEν), produced in a unit volume and in one second, is
different from that of neutrinos with the same energy, and is
given by

d
n→p = d3 pν

(2π h̄)3 Wn→p(Eν ) (3)

where, for reaction (1),

W (d )
n→p(Eν ) =

∫
d3 pn

(2π h̄)3

d3 pp

(2π h̄)3

d3 pe

(2π h̄)3 fn(En)[1 − fp(Ep)]

× [1 − fe(Ee)](2π )4δ(En − Ep − Ee − Eν )

× δ3( �pn − �pp − �pe − �pν )
〈∣∣M(d )

n→p

∣∣2〉
. (4)
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Here, 〈|M(d )
n→p|2〉 is the squared transition amplitude in

dUrca (hence the index d) averaged over initial spin
states and summed over the final spins, and fi(Ei ) =
{1 + exp[(Ei − μi )/kBT ]}−1 is the Fermi-Dirac distribution
function for the fermion specie with the energy Ei. For re-
action (2), fn[1 − fp][1 − fe] in (4) is replaced with [1 −
fn] fp fe. δ functions enclose the required condition for the
total energy and momentum conservation. Owing to the strong
degeneracy condition (kBT � 0.1 MeV and δμ � μi), the
method of the theory of Fermi liquids is applicable [22]. This
consists of setting p = pF in all smooth energy and momen-
tum functions under the integral, leading to the decoupling
of the integration over particle momenta from those over the
energies. This is the so-called phase space decomposition that
greatly simplifies the above integrations [23]. For n, p, and e,
d3 pi

∼= pFi m
∗
i dEid�i, where m∗

i is the effective mass of the
ith specie and d�i is the solid angle in the direction of �pi.
For neutrinos, d3 pν

∼= E2
ν /c3dEνd�ν . Angular integrations

are then performed analytically. We shall not go through the
details of the whole calculation; it can be found in Ref. [23].

Using the previously introduced variable y = Eν

kBT and

defining the dimensionless variables xi = Ei−μi

kBT , where i =
n, p, e and ξ = δμ

kBT , the integration over particle energies in
(4) becomes

I (d )
n→p(y − ξ ) = (kBT )2

∫ +∞

−∞
dxndxpdxe

× δ(xn − xp − xe − (y − ξ ))

× f (xn)[1 − f (xp)][1 − f (xe)]. (5)

Doing the above integration is straightforward by applying the
symmetry property 1 − f (x) = f (−x). We finally arrive at

d
(d )
n→p(y − ξ )

dy
= G2

(
1 + 3c2

A

)
m∗

nm∗
pm∗

e

8π5h̄10c3
(kBT )2

× y2Fd (y − ξ ) (6)

where the function Fd is defined by

Fd (y) ≡ y2 + π2

ey + 1
. (7)

G and cA are the Fermi weak coupling constant and the axial
vector renormalization, respectively. Replacing the effective
mass of the ultrarelativistic electrons with m∗

e
∼= pFe/c and

substituting the numerical values of the constants, we obtain
the following formulas for the number spectra of the nonequi-
librium antineutrinos produced in (1):

d
(d )
n→p

dy
= 8.75 × 1031

(nb

n0

)1/3
Ye

1/3
m∗

nm∗
p

m2
n

T 5
9

× y2Fd (y − ξ ) [cm−3s−1], (8)

where mn is the neutron bare mass and T9 = T/109 K. The
number spectrum of the neutrinos produced in (2) follows a
similar relation except that the argument of Fd is replaced
with y + ξ .

B. Modified Urca process

If the dUrca threshold is not satisfied, active participation
of an additional particle (a nucleon in npeμ matter) in (1) and
(2) can lead to the required energy and momentum balance
in strongly degenerate NS matter. In this case, we have to deal
with the mUrca process, modified neutron beta decay (n → p)

n + N → N + p + e− + νe (9)

and modified electron capture (p → n)

p + N + e− → N + n + νe, (10)

where N = n or p. Because of the low abundance of protons
in the medium, the proton branch (p branch) of mUrca has a
threshold, too. We limit our calculations to the neutron branch
(n branch) which is more efficient [3].

The calculation of the nonequilibrium neutrino produc-
tion rate in mUrca is similar to that of dUrca, except that
the participation of the extra particle in mUrca complicates
the calculation of the transition amplitude. In fact, be-
cause of the lack of knowledge of the strong interaction
between nucleons in high density matter, the treatment of
the nucleon-nucleon (N-N) interaction in initial and final
states of (9) and (10) is only approximately possible. In
a previous work [20], we applied an independent-pair ap-
proximation for nucleon quasiparticles [24,25] and used
realistic N-N correlation functions for calculating mUrca
transition amplitude and neutrino emissivity in beta equi-
librium condition. In the present work, we apply the same
expression for the transition amplitude of the n branch of
mUrca as in Ref. [20]. Starting from relation (3) and follow-
ing the same path as in dUrca, we arrive at the following
statement for the number spectra of antineutrinos produced
in (9):

d
(m)
n→p

dy
= 5 × 1021

Y
1/3
p Y

2/3
e

Y 2
n

n0

nb

(
m∗

n

mn

)3(m∗
p

mp

)

×R(kFn ) T 7
9 y2Fm(y − ξ ) [cm−3s−1], (11)

where the dimensionless factor R(kFn ) (referred to as the
correlation factor), with kFn = pFn/h̄, is fully introduced in
Ref. [20]. It contains the N-N many-body correlation proper-
ties through nuclear central and tensor correlation functions.
Also,

Fm(y) ≡ 9π4 + 10π2y2 + y4

1 + ey
. (12)

The number spectrum of neutrinos from (10) obeys the same
formulas as (11) except that the argument of Fm is replaced
with y + ξ .

Due to the deviation from beta equilibrium, as was ex-
plained before, Yp in relation (11) refers to the nonequilibrium
asymmetry in the new density and all the other particle frac-
tions, the correlation factor and the nucleon effective masses
should, in principle, be calculated in the new density in the
asymmetry characterized by this Yp.
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III. CHEMICAL POTENTIAL GAP VALUE

A. npeμ model

In an npeμ model of a NS core as asymmetric nuclear
matter, the nuclear binding energy per nucleon ( ENN

AN
) can be

expanded in the isospin asymmetry parameter X = 1 − 2Yp.
Many-body calculations show that the dependence of ENN

on X is, to a very good approximation, quadratic (see, e.g.,
Refs. [26,27]):

ENN

AN
(nN , X ) � E0

AN
(nN ) + Esym(nN )X 2, (13)

where E0
AN

= ENN
AN

(nN , X = 0) is the binding energy per nu-
cleon in symmetric nuclear matter, nN = nn + np is the
nucleon number density, and Esym ≡ ENN (nN , X = 1) −
ENN (nN , X = 0) is the nuclear symmetry energy. The sim-
ple form of (13) enables us to construct an explicit relation
between the chemical potential gap value and the density
dependence of the symmetry energy in npeμ matter. Starting
from relations μn = ∂εNN

∂nn
and μp = ∂εNN

∂np
, where εNN is the

energy density of bound nucleons, and using the conservation
of nucleon number density, we arrive at

μn − μp = −∂ (ENN/AN )

∂Yp

∣∣∣∣
nb

= 4(1 − 2Yp)Esym. (14)

So, in a nonequilibrium condition, for electron neutrino and
antineutrino producing processes, we get

δμ(nN ,Yp) = 4(1 − 2Yp)Esym(nN ) − c
(
m2

ec2 + p2
Fe

)1/2
,

(15)

where the second term in (15) is the electron chemical po-
tential in the free Fermi gas model. The electron fraction, as
referred to in the Introduction, is obtained by using the charge
neutrality relation (np = ne + nμ) and its chemical potential
balance relation with muons (μe = μμ).

B. Presence of free hyperons

While an npeμ model is adequate for describing NS matter
in densities less than 2n0, in densities higher than this value
the appearance of other degrees of freedom, more probably
from the strange baryon family, i.e., hyperons, is expected [4].
The notable point is that these dense layers of a NS can also
be created due to rapid change of density. So, a layer with
density in which some specific species (e.g., n, p, e, and μ)
can be present only becomes so dense that new particles are
allowed to appear. This, as presented in the Results section,
can impose a great effect on the value of δμ. The stiffness of
the EoS plays an important role here: the more stiff an EoS,
the more probable is the appearance of new species in lower
densities, and so their noticeable effects appear in a wider
range of baryon density.

Hyperons, more specifically �− and �0, appear in NS
medium when their presence is energetically unavoidable.
They can be created in various strangeness violating weak in-
teractions and strangeness conserving strong interactions. For
a review of these interactions and how to select the appropriate
ones in NS conditions, the reader can refer to Ref. [9]. In the

strongly degenerate NS core, the following weak interactions
can satisfy the simultaneous energy and momentum conserva-
tion and are slow enough to play a role in the nonequilibrium
condition:

n + n → p + �−, (16)

n + n → n + �0. (17)

In the independent particle model, �−, despite its larger rest
mass, appears before �0 because of its negative charge. In
fact, it contributes in both baryon number (nucleon plus hy-
peron numbers) conservation and charge neutrality relations
and so its creation is more efficient from the ground state
energy point of view. However, in the npeμ�−�0 model
in our work, when the change of the density happens, it is
seen that �− abundance exceeds that of the protons in the
out-of-equilibrium proton fraction in the new density. We have
overcome this problem by allowing �0 to appear first.

Due to (16) and (17), �− and �0 thresholds and abun-
dances in NSs are determined by the following chemical
potential balance relations in each baryon density and fixed
Yp and of course by respecting the charge neutrality objective:

μ�− = 2μn − μp, (18)

μ� = μn, (19)

where in the free hyperon model μ�− and μ� are calculated
within the free Fermi gas model.

Here, we need to obtain the explicit relations of nucleons’
chemical potentials in order to apply them in the chemical
potential balance relations (18) and (19). These relations are
also applied for direct calculation of δμ value. Notice that
relation (15) is still valid in the case of the presence of free
hyperons, but its application is not justified. That is due to
the fact that for its application the constituents’ abundances
in the nucleonic subsystem are needed, and these data are
themselves determined by finding hyperon fractions through
using explicit relations of nucleons’ chemical potentials.

The starting point for obtaining the nucleons’ chemical
potentials is again the relation μi = ∂εBB

∂ni
for i = n, p in which

εBB is the total energy density of bound baryons and is related
to the total binding energy per baryon as

EBB

AB
= εBB

nN + nY
, (20)

where nY = n�− + n�0 . Since we have assumed the hyperons
to be forming a noninteracting free Fermi gas, the contribution
from the hyperon-nucleon and hyperon-hyperon interactions
is neglected in the above relation. So, for the nucleonic sub-
system with binding energy ENN and number density obeying
nN = nb − n�− − n�0 we can write for each Yp

μi = ∂εNN

∂ni
= ∂

∂ni

(
nN

ENN (nN ,Y ′
p)

AN

)
, (21)

exactly the same as a system without hyperons. Again i =
n, p and Y ′

p = np

nN
is the proton fraction within the nucleonic

subsystem. By performing a chain derivative in (21) we fi-
nally obtain the following relations for the nucleons’ chemical
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potentials:

μn(nN ,Y ′
p) =

(
1 + nN

∂

∂nN
− Y ′

p

∂

∂Y ′
p

)
ENN

AN
, (22)

μp(nN ,Y ′
p) =

(
1 + nN

∂

∂nN
+ (1 − Y ′

p)
∂

∂Y ′
p

)
ENN

AN
. (23)

The above relations obviously state that the effect of the pres-
ence of free hyperons on the nucleons’ chemical potentials
is only expressed through their contribution in the baryon
number.

IV. RESULTS

The main input in relations (8) and (11), which arises
from the deviation from beta equilibrium, is the so-called
chemical potential gap. Other possibly effective parameters
are particle fractions and the correlation factor in the case of
the mUrca process. The nucleon effective masses also include
the nuclear description properties and can have their own
effect on the final result. To investigate the effect of realistic
nuclear interactions in the superdense medium of a NS core
on the number spectra and flavor of nonequilibrium neutrinos
resulting from a typical density change, we have adopted
a microscopic many-body framework with realistic two and
three-body forces (hereafter 2BFs and 3BFs respectively) as
input for strong interactions. The applied many-body ap-
proach is the so-called LOCV (a brief description presented in
Appendix B) and the realistic 2BF inputs are AV18 and Reid
68. It is well known that the saturation properties of nuclear
matter cannot be reproduced by 2BFs only, and adding 3BFs
is required to retain consistency with the expected results, es-
pecially the existence of 2M� pulsars. So, we have employed
the Urbana IX (UIX) model for 3BFs in a modified extended
version of the LOCV method [16] in the case of the AV18
potential to examine the effect of 3BFs on δμ and compare
the results with those obtained using 2BFs only. Hereafter, by
UIX we mean applying the UIX 3BF model in the manner
worked out in Ref. [16].

A. Chemical potential gap

1. npeμ matter

If the baryonic components of the NS matter are supposed
to be only n and p, relation (15) is used for estimating δμ. The
important input in (15), manifesting the specific features of the
applied many-body procedure and the nuclear interactions, is
Esym. In Fig. 1 we have presented Esym as a function of baryon
density, resulting from our realistic descriptions of NS matter
in a density range from 0.05 to 1.0 fm−3. The dotted curve
shows the symmetry energy when only AV18 2BF is used.
As seen, it shows a purely ascending behavior and predicts
Esym(n0) = 24.7 MeV. By adding UIX 3BF effects through
applying the modified extended version of LOCV, the trend
of the symmetry energy, as depicted in solid curve, changes
dramatically. In densities less than ≈4n0 it grows with density
and its value is higher than that of the 2BF case, then after
passing a maximum at nb ≈ 0.7 fm−3 it starts decreasing and
its value becomes less than that of the 2BF prediction. Its

FIG. 1. Comparing nuclear symmetry energies predicted by the
LOCV many-body method using different nuclear interactions.

value at saturation density is 31 MeV, which is in good agree-
ment with experimental results and other theoretical methods.
The qualitative behavior of the symmetry energy predicted by
Reid 68 2BF (dash-dotted curve) is the same as that of the
AV18 + UIX prediction (first ascending and then descending)
though with smaller values. It gives Esym(n0) ≈ 26 MeV.

By determining the symmetry energy as a function of
density, in Fig. 2 we present δμ as a function of proton
fraction in npeμ matter. This result is due to a small compres-
sion that increases nb = 0.9 fm−3 (dashed lines) to 1.0 fm−3

(solid lines). What seems interesting at first glance is the
sign of the predicted δμ’s. The arrows show the direction
of the deviation from beta equilibrium (horizontal line) and
so the sign of δμ. AV18 + UIX and Reid 68, unlike AV18

FIG. 2. Comparing δμ values, in an npeμ model of a NS, aris-
ing due to a small density change from 0.9 fm−3 (dashed lines) to
1.0 fm−3 (solid lines), predicted by the LOCV method supplemented
by realistic interactions.
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2BF, predict negative values for δμ in the considered density
change. This, as was explained before, leads to the neutrino
and antineutrino symmetry breaking in favor of neutrinos.
These outcomes however, were expected from the behavior
of the symmetry energies. In the case of purely ascending
symmetry energies (like the prediction of AV18), as density
grows, the beta equilibrium point shifts toward higher proton
fractions (smaller isospin asymmetries) so the change in the
density toward higher values makes the medium neutronized
(hence δμ with a plus sign). The reverse process happens
in the case of symmetry energies that have regions with de-
scending behavior with respect to density (like the predictions
of AV18 + UIX and Reid 68). In these regions, the density
change toward higher values makes the medium protonized
(hence δμ with a minus sign). Another important result de-
picted in Fig. 2 is the different prediction of absolute value
of δμ. It is around 9 MeV in the case of applying Reid 68,
around 22 MeV (more than twice that of the Reid 68 predic-
tion) in the case of using AV18, and 13 MeV when applying
AV18 + UIX. These values, as seen in the next subsection,
become much greater when hyperons are allowed to appear.
Notice that these realistic values determine the nonthermal
phase space for constructing the new beta equilibrium state.
By comparing these values, even in the case of a small density
change as we have adopted, with the order of magnitude of
the thermal phase space (� 0.1 MeV), we find out that they
are quite large. A point worth noticing that can influence the
results is the precision of the calculations: since electrons are
highly relativistic, a small change in their fraction can lead to
dramatic changes in the δμ value. This is more obviously seen
in the case of allowing hyperons to appear. We have adopted
the calculation precision such that achieve the lower bound for
the value of δμ.

2. Presence of free hyperons

The presence of hyperons seems inevitable when the
baryon density exceeds two times that of nuclear saturation [4]
in many realistic EoSs. We have considered the influence of
the presence of free �− and �0 on δμ to obtain a general view
of this effect. In Fig. 3, we show δμ in the assumed typical
density change (from nb = 0.9 fm−3 to nb = 1.0 fm−3) and
as a function of Yp in the case of 2BFs only. The 3BF added
case will be discussed separately. We find that the equilibrium
Yp in nb = 0.9 fm−3, while considered in the new density for
calculating hyperons’ and leptons’ abundances, leads to �−
fraction greater than Yp if we respect the common order of
hyperon production, i.e., first �− and then �0. This is the
case for most of the points with Yp < Yp

eq (where Yp
eq refers

to the final equilibrium asymmetry in the new density) and is
clearly not consistent with the charge neutrality requirement.
As was mentioned before, by allowing �0 to appear first we
are able to keep Y�− in the physical region. By applying this
criteria for calculating δμ, the first noticeable result seen in
Fig. 3 is the increase in the value of δμ in both 2BF scenarios:
≈80 MeV in the case of the AV18 potential (around four times
greater than that of one predicted by considering npeμ matter
only) and ≈60 MeV in the case of the Reid 68 2BF interaction
(more that six times larger). These dramatic changes in δμ

FIG. 3. The same as Fig. 2 but in the presence of free �− and �0

hyperons (npeμY model of a NS) and using only 2BF interactions.

value are due to the decrease of the relativistic electrons’
fractions in favor of �− production, which of course exceeds
the decrease of nonrelativistic neutrons in favor of �0’s (see
the diagrams of the composition of beta equilibrium matter in
a neutron star with noninteracting hyperons using the LOCV
method in Ref. [19]). As we noted in the previous section,
these results are obtained in order to give the lower bound of
δμ. The more precise results are even larger. Another remark-
able point is the change in the sign of δμ in the case of Reid
68 2BF, which is again a result of the significant decrease in
the electron fraction.

By including 3BF effects in the case of the AV18 2BF
interaction, δμ, in the assumed density change, becomes ≈
−60 MeV. Here, the change in δμ value due to the presence
of free hyperons is different from what occurred in the case
of 2BFs only: it has become more negative. This is a con-
sequence of more decrease in the neutron fraction than the
electron fraction (� fraction exceeds that of � in the range of
the typical density change [19] which is a direct result of more
stiffness of the EoS due to the addition of the 3BF interaction).
Here, in contrast with the case of 2BFs, more precise results
are less negative (the absolute value becomes smaller). So, in
our numerical procedure we have adopted the most accurate
calculation possible for obtaining particle fractions and δμ in
the case of AV18 + UIX.

B. Correlation factor

If the dUrca occurrence threshold is satisfied, the number
spectra of neutrinos would dominantly be determined by neu-
trinos produced through this process. Otherwise, the neutron
branch of mUrca is the more efficient process [3]. The previ-
ously mentioned threshold, Yp

(dUrca), in npeμ matter is slightly
higher than that in npe matter. In Fig. 4, we show the beta
equilibrium proton fractions in an npeμ model of the NS core
predicted by the LOCV method implemented using AV18,
AV18 + UIX and Reid 68 potentials in a baryon density range
from 0.05 to 1.0 fm−3. Yp

(dUrca-npeμ) is also presented. As
is clearly seen, none of the strong interaction scenarios in
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FIG. 4. Comparing beta equilibrium Yp’s in an npeμ model of
a NS predicted by the LOCV method with realistic two- and three-
body force interactions as input. The dUrca limit is also shown.

the adopted density range could satisfy the dUrca threshold
except AV18 2BF (dotted curve). DUrca can be opened in
this latter case in densities larger than ≈5.5n0. However, in
this case too, mUrca would determine the number spectra
of nonequilibrium neutrinos right after our typical density
change happens (from 0.9 to 1.0 fm−3). This is due to the
fact that the equilibrium Yp at nb = 0.9 fm−3 (0.14) does not
satisfy the required condition of dUrca at nb = 1.0 fm−3. So,
in what follows, we confidently concentrate on the number
spectra of nonequilibrium electron neutrinos from the neutron
branch of the mUrca process. This is also true for the case
of considering hyperons. The presence of hyperons shifts the
dUrca limit curve to even higher values by decreasing the elec-
tron fraction more than that of the neutron, especially in the
case of the application of 2BFs. In the case of AV18 + UIX,
in which, as was explained in the previous section, decreasing
of the neutron fraction exceeds that of the electron, the dUrca
limit may slightly shift to lower values at high densities. So,
for this case, we have checked the dUrca condition at the
assumed densities using the obtained particle fractions. It is
not satisfied.

An important determining factor of the number spectra of
nonequilibrium neutrinos produced in the n branch mUrca
process, in relation (11), besides others, is the nuclear cor-
relation factor R. This parameter, completely calculated in
Ref. [20], encapsulates the effect of nucleon correlations in the
dense medium of the NS core through correlation functions
extracted, in our work, directly from the LOCV many-body
method. When the rapid change of the density occurs, the
new correlation factor must be calculated in the final density
with the proton fraction of the initial one, which refers to
more or less asymmetric nuclear matter compared with the
equilibrium asymmetry. In Fig. 5, we present the correlation
factor calculated using LOCV density-dependent correlation
functions in an npeμ model of the NS core. In this cal-
culation we have applied three scenarios of composition of
nuclear matter: beta-stable matter (BSM) with solid lines,

FIG. 5. Comparison of nuclear correlation factors [20] calculated
with LOCV density-dependent correlation functions in three scenar-
ios of the nuclear matter composition: pure neutron matter (PNM)
with dotted curves, beta stable matter (BSM) with solid curves, and
symmetric nuclear matter (SNM) with long dash curves, calculated
using AV18 and AV18 + UIX interactions.

symmetric nuclear matter (SNM) with dash-dotted curves,
and pure neutron matter (PNM) with dotted lines. AV18 2BF
and AV18 + UIX have been employed as strong interaction
models. (We should emphasize that this figure is different
from Fig. 5 in Ref. [20] in 3BF related curves. The 3BF-
affected correlation functions applied there were obtained
from a version of 3BF inclusion in LOCV that had errors.
We overcame this deficiency in Ref. [28], using correct data
from the modified extended version of LOCV [16], but R was
reported for the BSM scenario only. In Fig. 5, we present R
in all three scenarios with the correct data.) As seen, in AV18
case, in which the change of the density leads to a shift toward
neutronization (PNM), this scenario and the equilibrium sce-
nario predict almost the same values for the correlation factor
in the whole density range considered. So, the correlation
factor calculated in the non-equilibrium asymmetry can be
replaced by the one calculated in the equilibrium state. In the
case of AV18 + UIX, where at densities higher than ≈4n0

(Fig. 4) the change in the density leads to a shift toward
protonization (SNM) (dash-dotted curve), the values of the
equilibrium correlation factors and those out of equilibrium
can be different. But, since the equilibrium proton fractions
do not significantly differ, the difference in the correlation
factors does not become remarkable either (e.g., less than 100
units deviation in a typical density change from nb = 0.5 to
1.0 fm−3 in the case of AV18 + UIX). All these conclusions
are also valid for the nucleonic sector of hypernuclear matter.

Before going to the next section, in which the overall
impact of the relevant parameters on the number spectra of
nonequilibrium neutrinos is displayed and discussed, we need
to mention a point regarding the nucleon effective masses. In
the framework of the LOCV method, the effective mass of
nucleons has been calculated using single-particle potential
energy at zero temperature only for symmetric nuclear matter
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[29]. Fortunately, it has been shown in Ref. [30] that at zero
temperature the defect functions arising from LOCV and BHF
approaches are in good agreement, and the two methods, in
similar conditions, give similar pair correlation functions for
asymmetric nuclear matter. As a result, at T = 0 and for the
same realistic nuclear interactions as in our LOCV calcula-
tion, we are allowed to employ BHF nucleon effective masses.
These data are available for AV18 2BF and AV18 + UIX in
Ref. [31] but not for the Reid 68 two-body interaction. In this
latter case, we replace the nucleon effective masses with the
bare ones. This is justified because, as shown in the next sec-
tion, this nuclear matter description predicts very small values
for the number spectra of nonequilibrium neutrinos compared
with the other two descriptions, and employing the exact
effective masses cannot significantly change the outcome. For
the other two descriptions of the nuclear matter, i.e., AV18 and
AV18 + UIX, by looking at Fig. 1 in Ref. [31] we see that
at high densities the effective mass of neutrons for different
proton fractions is almost the same. So we are allowed to use
the equilibrium effective masses instead of those related to the
exact nonequilibrium isospin asymmetry parameter. The same
trend is also predicted for the effective mass of protons in the
case of the AV18 scenario. In the case of the AV18 + UIX
scenario however, a completely different behavior is seen:
the values of the protons’ effective mass for various proton
fractions diverge as the baryon density increases. So for this
case we would adopt the proton effective mass related to
the exact nonequilibrium proton fraction. In the presence of
hyperons, we employ the nucleon effective masses for the
predicted nucleon density of the nucleonic subsystem and its
related proton fraction (Y ′

p).

C. Number spectra of nonequilibrium neutrinos

In Fig. 6 we have plotted the number spectra of nonequi-
librium electron neutrinos or antineutrinos (the dominant one)
in an npeμ model of a NS. The curves were obtained by
assuming T9 = 1 and using δμ’s, R factors, particle frac-
tions, and nucleon effective masses calculated in the proposed
density change and within the previously explained nuclear
descriptions. All values of the predicted number spectra were
divided by the peak value of d


dy that belongs to the case of

AV18 with the order of magnitude 1034 cm−3 s−1. The order
of magnitude of the particle fractions and correlation factors
predicted by all three descriptions in the assumed condition is
the same. Hence, the curves clearly show the important effect
of the size of the nonthermal phase space suggested by each
of them.

Figure 7 presents the same data as Fig. 6 but in the case
of allowing the presence of free hyperons. As in the npeμ
model, all values have been divided by the maximum value,
that here has been obtained in the case of the AV18 + UIX
description and is of the order 1037 cm−3 s−1. Here, again,
nuclear correlation factors have the same order of magnitude
but the particle fractions do not. So in this model of a NS,
the nonthermal phase space and the particle fractions are
the competing factors in determining the number spectra of
nonequilibrium neutrinos. We see that the nuclear description
with larger δμ in our assumed density change (i.e., AV18 with

FIG. 6. Comparison of the number spectra of nonequilibrium
neutrinos or antineutrinos (only the dominant flavors are presented)
plotted with respect to the dimensionless parameter y = Eν

kBT in the

density change from 0.9 to 1.0 fm−3 with kBT = 0.1 MeV in the
npeμ model of a NS predicted by the LOCV many-body method
supplemented by different nuclear interactions. All values are nor-
malized to the maximum value of d


dy that belongs to the case of AV18

and is of the order 1034 cm−3 s−1.

δμ ≈ 80 MeV) predicts dramatically smaller values for the
number of neutrinos than the description with smaller δμ (i.e.,
AV18 + UIX with δμ ≈ 60 MeV). This is due to the smaller
electron fraction in the case of AV18, O(10−4), compared with
the corresponding value in the AV18 + UIX case, O(10−3).
Note that these electron abundances are calculated in the new
density using the nonequilibrium proton fraction.

V. DISCUSSION AND CONCLUSION

We calculated the number spectra of nonequilibrium elec-
tron neutrinos (or antineutrinos) produced in a cold NS core
(kBT � 0.1 MeV) undergoing a beta-equilibrium-disturbing

FIG. 7. The same as Fig. 6 but for the npeμY model of the NS
core. Here the maximum value that all data are normalized to is of
the order 1037 cm−3 s−1 and belongs to the case of AV18 + UIX.
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astronomical process such as gravitational collapse into a
black hole, radial pulsations, or spin-down that allows only
δμ � μi. We investigated the effect of applying a realistic
description of the strong interaction in the superdense matter
of NSs on this quantity. For this purpose, we focused on
a small compression and a typical density change from 0.9
to 1.0 fm−3 at the initial instance of the occurrence of the
relevant process. We calculated the main input of this quantity,
i.e., the nonthermal phase space opened by beta equilibrium
breaking (δμ), in an npeμ and a hypernuclear (including free
�−’s and �0’s) model of the NS core described by a varia-
tional many-body method (LOCV) and realistic 2BFs (AV18
and Reid 68). We also considered the effect of 3BF inclusion
through a UIX model in the case of the AV18 interaction using
the modified extended version of LOCV (AV18 + UIX). As
explained in detail in the Results section, all these nuclear
descriptions based on their different predictions of the density
dependence of the symmetry energy suggest different values
and signs for δμ. By examining the impact of the presence
of free hyperons on δμ, we realized that it has a noticeable
influence on the size of the nonthermal phase space and
its overall effect is to predict larger values for the number
spectra of nonequilibrium neutrinos. In the absence of the
dUrca process, when the n branch of mUrca is the dominant
mechanism of neutrino production, we studied the effect of
the nonequilibrium processes on the nuclear correlation factor
as another input parameter. It was shown that this parameter
can be replaced by its corresponding value calculated in the
equilibrium asymmetry of the final density. Nonequilibrium
particle fractions were also seen to have a determining influ-
ence on the final result.

To provide a comparison with other investigations, we
calculated δμ predicted by the EoSs suggested in a work
by Prakash et al. [11] and applied by Ref. [10] to obtain
an upper bound for the neutrino burst accompanying the NS
gravitational collapse to a black hole. Using three EoSs in
Ref. [11] with different choices of the potential contribution
to the symmetry energy [F1(u) = u, F2(u) = 2u

1+u2 , F3(u) =√
u, where u = nb

n0
] and with their parameters adjusted to

the saturation incompressibility of SNM (i.e., at nb = n0),
K0 = 180 MeV(referring to them as PAL1, PAL2, and PAL3
respectively as in Ref. [10]), we saw that in the case of npeμ
matter the predicted δμ values in the density change from 0.9
to 1.0 fm−3 were almost the same as what we obtained with
our realistic descriptions: δμ(PAL1) ≈ 20 MeV, δμ(PAL2) ≈
24 MeV, δμ(PAL3) ≈ 7 MeV. However, since the trend of the
density dependence of the symmetry energy predicted by
these EoSs is purely ascending with respect to baryon density,
they all give positive δμ. Also, they all satisfy the dUrca con-
dition. So, their prediction for the neutrino burst, especially in
the case of PAL2, is in fact the upper bound. As we showed,
considering the presence of hyperons in the NS medium has a
great bearing on the nonthermal phase space, but this was not
accounted for in Ref. [10]. We calculated δμ in the presence
of free �− and �0 for these three EoSs and found that it did
not change sensitively. This is because these EoSs correspond
to K0 = 180 MeV and they are not stiff enough to allow
for � production below nb = 1.0 fm−3. Also, �− production
happens just before or at nb = 0.9 fm−3. So here, for the

density change considered, hyperon appearance does not af-
fect the δμ value noticeably compared with the npeμ case.
However, due to the dUrca process, the predicted number
spectrum of nonequilibrium neutrinos is much greater than
those obtained by our realistic results in the cases of PAL1
and PAL2 EoSs. We think that if the presence of hyperons in
stiffer versions of the mentioned nuclear EoSs is considered,
the estimated neutrino burst in Ref. [10] might shift to higher
values that are detectable from Earth. Such a detection with a
dominant flavour can potentially provide a diagnostic for the
properties of the available EoSs at high densities. In general,
we conclude that considering the effect of other degrees of
freedom in studying nonequilibrium phenomena leads to very
different results and so seems essential.
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APPENDIX A: VALIDITY OF NON-ADIABATIC
DENSITY CHANGE

It is obvious that all our investigations and achievements
in the present study depend on whether or not our realistic
descriptions of the NS medium result in a timescale for beta
relaxation that is large enough compared with the typical
timescale of the density change in related phenomena. Here,
by presenting an estimation of the relaxation time we show
that our applied realistic descriptions of the NS matter do
really satisfy the required condition. Recall that we work in
the high degeneracy regime (kBT � 0.1 and δμ � μi), i.e.,
where the thermal and nonthermal phase spaces needed for
weak reactions to proceed and construct the new equilibrium
are very limited. Calculation of the relaxation time (τrelax,
referred to as τβ in the context of our paper) is presented in
[3] (hereafter referred to as paper I). In paper I, the relax-
ation time is estimated when the dimensionless measure of
the departure from beta equilibrium is very small (ξ � δμ

kBT ).
The results when nucleon direct (d) and modified (m) Urca
processes are responsible for establishing the new equilibrium
state are τ

(d )
relax ≈ 20T −4

9 s and τ
(m)
relax ≈ T −6

9 months, respec-
tively, where as before T9 = T/109 K. So, in a not too hot
NS where the high degeneracy condition is satisfied and the
departure from beta equilibrium is not too large, the relaxation
toward equilibrium is very slow. In the condition of ξ � 1,
however, which is the prediction of our realistic descriptions,
we deal with larger nonthermal phase space arising from beta
equilibrium violation. Qualitatively speaking, this increase in
the size of the nonthermal phase space naturally accelerates
the beta processes and this acceleration ceases the increase
of τrelax due to the larger deviation from equilibrium. The
increase of τrelax becomes very slow or even stops but the
slowness of weak interactions compared with the timescale
of density change in the relevant phenomena (≈ millisec-
onds or less) is still valid. In order to quantitatively show
the correctness of this general argument in the case of our
realistic descriptions of the NS medium, we estimate τrelax

for the condition described in our study: a sudden increase
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in the density that changes nb = 0.9 fm−3 to nb = 1.0 fm−3.
It was seen in Sec. IV that, within our nuclear descriptions
and the typical density change, the modified Urca process is
responsible for constructing the new beta equilibrium. So, we
present an estimation of τrelax for this process. As in paper
I, we start from δξ̇ = (∂δμ/∂Yp)Ẏp/(kBT ) = χ�
/(kBT ),
where χ = −(∂δμ/∂Yp)/nb and 
 = 
n→p − 
p→n = nbẎp.

Using our obtained d
(m)

dy in Eq. (11) and the δμ expression
in Eq. (15), and doing the integration that gives �
, we reach
the following relation for dξ

dt :

ξ̇ =
[

2.64 × 10−12 Esym

nb
+ 6.42 × 10−10(nbYp)−2/3 ∂Ye

∂Yp

]

× Y 2/3
e Y 1/3

p

Y 2
n

n0

nb

(
m∗

n

mn

)3(m∗
p

mp

)
RT 6

9 ξ H (ξ )

= κ T 6
9 ξ H (ξ ), (A1)

where H (ξ ) = 1 + 189ξ 2

367π2 + 21ξ 4

367π4 + 3ξ 6

1835π6 .

As is apparent from Figs. 1, 4, and 5, the following or-
ders of magnitude for the input parameters of relation (24)
are predicted within our realistic descriptions: Yi ≈ O(0.1),
0.5 � ∂Ye

∂Yp
� 1 in the npeμ model of the NS core, Esym ≈

O(102), R ≈ O(102–103), and m∗
m ≈ O(0.1–1). We assume

that T9 = 1 (kBT = 0.1 MeV). For ξ � 1, e.g., ξ = 0.1, we
have H ≈ 1 and the integration for obtaining τrelax can be
done analytically. The limits of the integration are set as
ξ = 0.1 to ξ = 0.1/e where e is Napier’s constant. Applying
the mentioned orders of magnitude of the parameters, we get
τrelax = 1

κ
T −6

9 ≈ 175 days. For ξ � 1, e.g., ξ = 10 however,
the integration for estimating τrelax must be done numerically.
We set the lower and upper bounds of the integration as
ξ = 10 and ξ = 0.1/e respectively. The upper bound is set
in correspondence with the upper bound of the case ξ � 1 to
make the comparison possible. This time, we obtain τrelax =
4.5 1

κ
T −6

9 ≈ 780 days. However, for ξ ≈ O(102), predicted in
our work for the npeμ model, we see that H (ξ ) and so τrelax

remain almost the same and no longer increase, but anyway
τrelax is very large compared with the timescale of the change
of the density. For ξ > O(102), that occurs in the case of the
appearance of free hyperons, H does not change sensitively
and other input parameters are almost in the same range as for
nuclear matter. So, allowing free hyperons to appear does not
change the obtained outcome either.

APPENDIX B: BRIEF DESCRIPTION OF LOCV METHOD

The LOCV method is a microscopic and self-consistent
many-body framework for calculating the bulk properties of
nuclear matter. The many-body energy E is calculated from
the expectation value of our Hamiltonian in the form

Ĥ =
∑

i

p̂2
i

2mi
+

∑
i< j

V̂i j +
∑

i< j<k

V̂i jk + · · · . (B1)

where V̂i j (V̂i jk) is the realistic two-body (three-body) po-
tential. The expectation value of energy is written in the

following form using cluster expansion:

E (A) = 1

A

〈�|Ĥ|�〉
〈�|�〉 = E1 + E2 + · · · , (B2)

where A is the total number of nucleons. The trial wave func-
tion � of the interacting system is considered as

�(12 . . . A) = F̂ (12 . . . A)�(12 . . . A), (B3)

where � is the uncorrelated Fermi system wave function and
F̂ is the many-body correlation function considered as an
operator. This correlation operator is taken as the symmetric
product of pair correlation operators [ f̂ (i j)] in Jastrow form
[32], i.e.,

F̂ (12 . . . A) = Ŝ
∏
i< j

f̂ (i j), (B4)

where Ŝ is the symmetrizing operator. The one-body energy
E1 in Eq. (25) is the familiar Fermi gas kinetic energy of the
A-body system. The two-body energy is defined as

E2 = 1

2A

∑
i

〈i j|Ŵ (12)|i j〉a, (B5)

where Ŵ (12) is an effective two-body potential defined by

Ŵ (12) = [ f (12), [T̂1 + T̂2, f̂ (12)]] + f̂ (12)V̂ f̂ (12), (B6)

in which T̂1 + T̂2 is the kinetic energy operator of a non-
interacting (1,2) pair and V̂ (1, 2) is the interparticle potential
operator. We can write the two-body energy as a functional of
correlation functions:

E2[ f ] =
∫

L( f ′, f , r)dr, (B7)

where L depends on correlation functions f and their radial
derivatives, and N-N potential parameters act as an input. The
expression of two-body energy can now be minimized with
respect to the channel correlation functions, but subject to the
normalization constraint which is considered in the LOCV
method by [15]

1

A
〈i j| f 2

pc(12) − f 2
k (12)|i j〉a = 1. (B8)

The function fpc is the modified Pauli correlation function
which for SNM at zero temperature has the form

fpc =
(

1 − 9

4

(
j1(r12)

r12

)2)−1/2

, (B9)

where j1(r12) is the spherical Bessel function of order 1. This
constraint introduces a Lagrange multiplier through which all
f ’s are coupled. So we end up with a set of Euler-Lagrange
equations for correlation functions subject to the normaliza-
tion constraint. It is noticeable that χ = 〈ψ12|ψ12〉 − 1 has the
role of a smallness parameter in the cluster expansion and by
choosing an appropriate correlation function we can truncate
the expression (28) up to two-body terms and keep the higher
terms as small as possible [33]. Finally, the correlation func-
tions are extracted by solving the arising coupled differential
equations. More details can be found in Ref. [34] and the
references therein.
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It is well known that two-body forces alone cannot repro-
duce the saturation properties of symmetric nuclear matter.
Also the three-body forces play an important role at supernor-
mal densities of nuclear systems [35]. The three-body forces
are successfully included in LOCV method which reproduces
the correct bulk properties of nuclear matter at the saturation

point. To avoid the full three-body problem, the three-body in-
teraction (semiphenomenological UIX interaction) is included
via an effective two-body potential derived after averaging out
the third particle, which is weighted by the LOCV two-body
correlation functions fk (i j) at a given number density nN . For
more details, refer to Ref. [16].
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