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Background: In our earlier work [Phys. Rev. C 104, 055804 (2021)], we studied the surface properties of a
neutron star, assuming it as a huge finite nucleus containing protons, neutrons, electrons, and muons. For the first
time, we reported these results of a neutron star for a few representative masses.
Purpose: The purpose of the present work is to calculate the domain of numerical values for the surface prop-
erties of neutron stars based on the theoretical analogy of finite nuclei. In the present paper, we systematically
calculate incompressibility, symmetry energy, slope parameter, etc. for a certain range of neutron star’s mass to
draw some definite conclusions.
Method: To carry forward our earlier idea, the energy density functional of the momentum space of neutron
star matter is converted to the coordinate space in a local density approximation. This functional is again used to
derive the neutron star surface properties within the coherent density fluctuation model using the weight function
obtained from the density profile of the neutron star using the recently developed G3 and widely used NL3 and
IU-FSU parameter sets in the context of relativistic mean-field formalism.
Results: The systematic surface properties of the neutron star, such as incompressibility, symmetry energy, slope
parameter, and curvature coefficient is calculated. The volume and surface components of the total symmetry
energy are decomposed with the help of the κ factor obtained from the volume to surface ratio of the symmetry
energies in the liquid drop limit of Danielewicz. The magnitude of the computed surface quantities increases
with the neutron star’s mass.
Conclusion: The incompressibility K star , symmetry energy Sstar , slope parameter Lstar

sym, and curvature coefficient
K star

sym of the neutron stars with different mass are analyzed and found to be model dependent. NL3 is the stiffest
equation of state and endues us with the higher magnitude of surface quantities as compared to the G3 and
IU-FSU forces.

DOI: 10.1103/PhysRevC.105.045804

I. INTRODUCTION

Among all the known objects in the universe, the neutron
star (NS) is considered one of the densest. It is known that
the cores are 103 times or more dense than the density at the
neutron drip line [1]. To understand the properties of the NS, a
thorough knowledge of both nuclear physics and astrophysics
is demanded. In a broad concept, the NS can be treated as
a giant asymmetric nucleus comprised mostly degenerated
neutrons gas with a small fraction of protons and electrons to
maintain a charge-neutral body along with some exotic parti-
cles, such as hyperons [2]. The NS is bounded by the attractive
gravitational force balanced through the short-range strong
nuclear interaction generated by the baryons and mesons. In
addition to these two opposite forces, the electromagnetic
interactions are also vital for NS’s stability. In contrast, the
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normal nucleus is governed by strong nuclear and relatively
weaker electromagnetic interactions. As a consequence, in-
side a nucleus, the density is flat, and inside the NS, the
density increases. Because of this difference in the distribution
of corresponding densities, it is not straightforward that the
behavior of similarly defined properties is the same. One can
not generalize the specific nuclear properties to the NS and
needs a separate analysis to understand the NS properties.

In Ref. [3], the conventional Brückner energy density func-
tional (B-EDF) [4,5] is replaced by the effective field theory
motivated relativistic mean-field (E-RMF) density functional
in a local density approximation (LDA) to calculate the nu-
clear surface properties in the framework of the coherent
density fluctuation model (CDFM). They demonstrated that
the microscopic E-RMF energy functional is able to incor-
porate the structural effects of the nucleus and reproduce the
peak in the symmetry energy of the Pb isotopic chain at neu-
tron number N = 126, which is generally failed by the B-EDF
functional [6,7]. Recently, this formalism has been extended
successfully to study the surface properties of NS [8] and esti-
mated for the first time the incompressibility K star, symmetry
energy Sstar, slope parameter Lstar

sym, and curvature coefficient
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K star
sym for some specific masses of the star. These properties of

NS are pretty informative for experimental observations and
theoretical modeling. For example, assuming the NS as a giant
nucleus, with the mass number A ≈ 1057, it must possess most
of the properties of a standard finite nucleus [8]. It should have
the multipole moments and all possible collective oscillations
such as f mode and g mode, etc. [9].

The parameters obtained by expanding the symmetry
energy near the saturation density (slope and curvature pa-
rameter) control the cooling rate of NS, and the core-crust
transition density and transition pressure [10,11]. These pa-
rameters also play an important role to constraining the
nuclear equation of state (EoS), which is a key ingredient
for the study of NS properties as well as the properties of
supernovae explosion, binary NS merger, and the physics of
gravitational wave [12]. A prominent bridge between the finite
nuclei and the nuclear/neutron matter (interstellar bodies) is
the comprehensive knowledge of the nuclear EoS. The EoS is
the key component for the determination of the properties of
NS, and also it controls the dynamics of core-collapse super-
novae remnants, and the cooling of NS [11,13]. With the help
of observational gravitational wave (GW170817) [14], Ein-
stein Observatory (HEAO-2) [15] and x-ray radio telescopes
[16,17], a large number of constraints had been implemented
to get a proper EoS at high-density regime.

From the last few decades, the nonrelativistic (Skyrme
[18–22], Gogny forces [23]) and relativistic [24–31] theo-
retical approaches have been used as consistent formalism
to construct the EoS and calculate the properties of strongly
interacting dense matter systems. The relativistic class of
models is the alternative approach for low-energy quantum
chromodynamics with all the built-in nonperturbative prop-
erties [32,33]. In the present paper, we use the latest form
of E-RMF Lagrangian to evaluate the EoS with the recently
developed G3 [34] parameter set, and the results are compared
with the familiar NL3 [35] and IU-FSU [36] forces.

The paper is organized as follows. In Sec. II A, the
relativistic mean-field formalism is briefly described. The co-
herent density fluctuation model is detailed in Sec. II B and the
NS properties are calculated in Sec II C. The results and dis-
cussions are given in Sec. III. In this section, the mass, radius,
moment of inertia, density profile, and weight function of NS
obtained from the E-RMF equation of states are exemplified
and explicitly discussed. The parameters K star, Sstar, Lstar

sym, and
K star

sym of NS are illustrated in Sec. III C. The summary and
concluding remarks are drawn in Sec. IV.

II. THEORY

A. Effective field theory relativistic mean-field model

As mentioned earlier, we used NL3 [35], G3 [34], and
IU-FSU [36] parameter sets of the E-RMF Lagrangian. The
NL3 set is the stiffest, and the newly reported G3 parameter
set provides the softest EoS. The numerical values of nuclear
matter (NM) properties at saturation are listed in Table I.
The empirical/experimental data are also given for compari-
son. The nuclear matter incompressibility K , which controls
the stiffness/softness of the EoS, are 271.38, 243.96, and

TABLE I. The nuclear matter properties at saturation for the EoS
of NL3 [35], G3 [34], and IU-FSU [36] parameter sets. The NM
parameters are in MeV, except ρ0, which is in fm−3. The references
are [a], [b], [c], and [d] [37], [e] and [ f ] [38], [g] [39], [h] and [i]
[40], and [ j] [41].

Parameter NL3 G3 IU-FSU Empirical/Expt. Value

ρ0 0.148 0.148 0.154 0.148–0.185 [e]
E/A −16.29 −16.02 −16.39 −(15.00 − 17.00) [ f ]
K 271.38 243.96 231.31 220–260 [g]
J0 37.43 31.84 32.71 30.20–33.70 [h]
Lsym 120.65 49.31 49.26 35.00–70.00 [i]
Ksym 101.34 −106.07 23.28 −(174 − 31) [ j]
Qsym 177.90 915.47 536.46 –

231.31 MeV for NL3, G3, and IU-FSU, respectively. The
NM symmetry energies are 37.43, 31.84, and 32.71 MeV for
the corresponding parameter sets. These values are within the
range set by various experimental observations and theoretical
predictions (see Table I).

Motivated by the work of Brückner et al. [4,42], using the
LDA, the momentum space energy functional is converted to
the coordinate space through a generator coordinate x. The
detailed procedure can be found in Refs. [3,8]. It is worth
mentioning that the Brückner energy density functional [4,42]
fails to solve the Coester band problem [43,44]. Consequently,
the peak that appears in the symmetry energy at the magic
number for heavier nuclei (such as Pb isotopes) does not
match the appropriate neutron number [44,45]. The coordi-
nate space E-RMF energy density functional within the LDA
for NS matter is defined as [8]:

E = Ckn2/3 + Cen4/9 +
14∑

i=3

(bi + aiα
2)ni/3, (1)

where Ck = 0.3(h̄2/2M )(3π2)2/3[(1 + α)5/3 + (1 − α)5/3] is
the coefficient of the kinetic energy for protons and neutrons
and Ce = be(1 − α)5/9 is the kinetic energy coefficient for
electrons and muons, with be as a variable obtained from the
conversion of the E-RMF energy density from momentum
space to coordinate space [8]. The last term is the potential
interaction of the nucleons and the coefficients bi and ai

obtained from the fitting for different E-RMF models. It is
shown in Ref. [3] that the accuracy of the fitting increases
with increase in the number of coefficients ai and bi in the
series of the potential term of Eq. (1). The mean deviation
δ = ∑N

j=1[(E/A) j,Fitted − (E/A) j,RMF]/N , = 18%, 6%, and
0.5% for 8, 10, and 12 terms, respectively. Here N is the
total number of points. The obtained coefficients of the en-
ergy functional in Eq. (1), i.e., be, bi, and ai are tabulated in
Table II.

B. Coherent density fluctuation model

The CDFM is a well-established formalism to calculate
the properties of finite nuclei [46–48] by superimposing the
structure of infinite nuclear matter. This method is recently ex-
tended to calculate the properties of NS [8]. The CDFM utilize
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TABLE II. The fitted coefficients ai, bi, and be of the Eq. (1) for
NL3, G3, and IU-FSU forces. The values are scaled by 10−8 factor,
i.e., each should be multiplied by a factor of 108 to get the exact
magnitude of the coefficient.

NL3 G3 IU-FSU

be 0.00017 0.00011 0.00011
b3 −0.00054 −0.000085 −0.000088
b4 0.00898 0.00048 0.00043
b5 −0.08078 −0.00158 −0.00091
b6 0.04609 0.00346 0.00036
b7 −1.774 −0.00547 0.00241
b8 4.742 0.00648 −0.00592
b9 −8.896 −0.00579 0.00698
b10 11.65 0.00379 −0.00498
b11 −10.43 −0.00174 0.00227
b12 6.0713 0.00523 −0.00064
b13 −2.069 −0.000092 0.000105
b14 0.3132 0.000007 −0.000007
a3 −0.00088 −0.000198 −0.00019
a4 0.02289 0.002919 0.002475
a5 −0.02539 −0.01797 −0.013555
a6 1.639 0.06395 0.04266
a7 −6.864 −0.1472 −0.08664
a8 19.60 0.2303 0.1198
a9 −39.03 −0.2502 −0.1156
a10 54.27 0.1891 0.07793
a11 −51.73 −0.09.762 −0.03605
a12 32.25 0.03281 0.01092
a13 −11.84 −0.00647347 −0.00194919
a14 1.945 0.000569 0.000155

a generator coordinate ‘x’ to evaluate the one-body density
matrix n(r, r′) of a finite nucleus/NS as the superposition of
infinite number of one-body density matrices nx(r, r′), called
fluctons [7,49]. The density of a flucton is written as [46–48]:

nx(r) = n0(x) �(x − |r|). (2)

The saturation density of the flucton is n0(x) = 3A/4πx3, A
is the total number of protons and neutrons in the neutron star
matter (NSM). In the CDFM, the density of the spherical finite
NSM of radius r is [50,51],

n(r) =
∫ ∞

0
dx |F (x)|2 n0(x) �(x − |r|), (3)

where |F (x)|2 is the weight function in the generator coordi-
nate x with the local density n(r) written as [50]:

|F (x)|2 = − 1

n0(x)

dn(r)

dr

∣∣∣∣∣
r=x

. (4)

The incompressibility, symmetry energy, slope parameter, and
curvature coefficient of the NS are expressed by folding the
weight function with the respective NS matter as [7,8,51,52]:

K star =
∫ ∞

0
dx |F (x)|2 KNSM[n(x)], (5)

Sstar =
∫ ∞

0
dx |F (x)|2 SNSM[n(x)], (6)

Lstar
sym =

∫ ∞

0
dx |F (x)|2 LNSM

sym [n(x)], (7)

K star
sym =

∫ ∞

0
dx |F (x)|2 KNSM

sym [n(x)], (8)

where KNSM, SNSM, LNSM
sym , and KNSM

sym are the incompressibil-
ity, symmetry energy, slope parameter, and curvature of the
NSM.

The converted energy density functional of the NSM from
momentum space to the coordinate space x in a local density
approximation is Eq. (1). The expressions for KNSM, SNSM,
LNSM

sym , and KNSM
sym are obtained from this Eq. (1) with the

definitions [53–55], i.e., the NM parameters KNM, SNM, LNM
sym,

and KNM
sym are obtained from the following standard relations

[7,8,51,52]:

KNM = 9ρ2
0
∂2(E/ρ)

∂ρ2

∣∣∣∣
ρ=ρ0

, (9)

SNM = 1

2

∂2(E/ρ)

∂α2

∣∣∣∣
α=0

, (10)

LNM
sym = 3ρ0

∂S(ρ)

∂ρ

∣∣∣∣
ρ=ρ0

= 3P

ρ0
, (11)

KNM
sym = 9ρ2

0
∂2S(ρ)

∂ρ2

∣∣∣∣
ρ=ρ0

, (12)

which are given as follows using Eq. (1):

KNSM = −150.12 n2/3
0 (x) − 2.22 be n4/9

0 (x)

+
14∑

i=4

i (i − 3) bi ni/3
0 (x), (13)

SNSM = 41.7 n2/3
0 (x) − 0.12 be n4/9

0 (x)

+
14∑

i=3

ai ni/3
0 (x), (14)

LNSM
sym = 83.4 n2/3

0 (x) − 0.16 be n4/9
0 (x)

+
14∑

i=3

i ai ni/3
0 (x), (15)

KNSM
sym = −83.4 n2/3

0 (x) + 0.266 be n4/9
0 (x)

+
14∑

i=4

i (i − 3) ai ni/3
0 (x). (16)

The symmetry energy for finite nuclei, i.e., NS with nucleon
number A, can be further expressed as the components of
volume SV and surface SS contributions using Danielewicz’s
liquid drop prescription, which is written as [45,50,51,56–59]:

S = SV

1 + SS
SV

A−1/3
= SV

1 + A−1/3/κ
, (17)
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where the ratio κ ≡ SV
SS

is defined as [45,56–59]:

κ = 3

Rρ0

∫ ∞

0
dx|F (x)|2xρ0(x)

[(
ρ0

ρ(x)

)γ

− 1

]
. (18)

The value of γ = 0.3 is used in Eq. (18) following Ref. [50].
An alternative method has been reported by Gaidarov
et al. to obtain the volume, and surface symmetry energy
components [60].

C. Neutron star properties

The neutron star EoS is calculated using the E-RMF model
with the assumption that the NS is in β equilibrium and charge
neutrality conditions [61]. The EoS of the NS depends on the
model and also on the types of extra particles such as hyperons
[62–68], kaons [69,70], dark matter [71–75], etc. are present
in the systems. Here, we limit to the nucleons and leptons
only, which are in β equilibrium and also satisfy the charge
neutrality condition.

To calculate the NS macroscopic/structural properties such
as M and R, one has to solve the Tolman-Oppenheimer-
Volkoff (TOV) equations [76,77]

dP

dr
= − [E + P][m + 4πr3P]

r2
(

1 − 2m
r

) ,

dm

dr
= 4πr2E . (19)

The coupled equations are solved by using boundary con-
ditions as: r = 0, P = Pc and r = R, P = 0 at fixed central
density. The maximum mass and radius of the NS are calcu-
lated assuming the pressure vanishes at the surface of the star.

For slowly and uniformly rotating NS, the metric is given
by [78]

ds2 = −e2νdt2 + e2ψ (dφ − ωdt2) + e2α (r2dθ2 + dφ2).

(20)

The moment of inertia (I) of the NS is calculated with the slow
rotation approximation and is given as [78–84]:

I ≈ 8π

3

∫ R

0
dr (E + P) e−φ(r)

[
1 − 2m(r)

r

]−1
ω̄

�
r4, (21)

where ω̄ is the dragging angular velocity for a uniformly ro-
tating star. The ω̄ satisfies the following boundary conditions:

ω̄(r = R) = 1 − 2I

R3
,

dω̄

dr

∣∣∣∣
r=0

= 0. (22)

III. RESULTS AND DISCUSSIONS

In this section, we present the macroscopic properties of
the NS, such as mass (M), radius (R), and moment of inertia
(I) for NL3, G3, and IU-FSU parameter sets. After getting
a broad knowledge of the bulk properties, we extend our
calculations to the surface properties of NS with the above
three forces. For this, we estimate the symmetry energy Sstar,
incompressibility K star, slope parameter Lstar

sym, and curvature
coefficient K star

sym of NS with respect to their masses from

FIG. 1. Internal and the maximum mass-radius profiles of a NS
for NL3 (red), G3 (green), and IU-FSU (magenta) parameter sets.
The different masses 1.0 M�, 1.4 M�, and Mmax are shown with solid,
dashed, and dotted lines.

0.8 M� to Mmax. To calculate these properties, the NS den-
sities are extracted by feeding the EoSs in the TOV equations.
Considering the obtained density as the local density of the
star, with the help of CDFM, we construct the weight function
|F (x)|2, which is folded with SNSM, KNSM, LNSM

sym , and KNSM
sym ,

respectively, to evaluate the surface properties of the NS. The
detailed procedure of the evaluation scheme of the results is
available in Ref. [8]. Further, the results are discussed in the
following sections.

A. Mass, radius, and momentum of inertia of neutron star

The mass-radius profiles of the NS are calculated with
three different cases M = 1.0 M�, 1.4 M�, and Mmax by fixing
the central densities, which are depicted in Fig. 1 using NL3,
G3, and IU-FSU parameter sets. Being the stiffest EoS, NL3
predicts the maximum mass. Since we fix the central densities
corresponding to these three masses 1.0 M�, 1.40 M�, and
Mmax, the radii are also found to be different for each of the
parameter sets. This can be seen clearly from Fig. 1. The NL3
set predicts both larger mass and radius as compared to G3 and
IU-FSU forces. Similarly, we calculate the moment of inertia
I of the NS for these three sets, which are shown in Fig. 2. The
value of I increases with the mass of the NS due to their nearly

FIG. 2. Moment of inertia of NS for NL3 (red), G3 (green), and
IU-FSU (magenta) parameter sets. The different masses 1.0 M�,
1.4 M�, and Mmax are shown with solid, dashed, and dotted lines.
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FIG. 3. The NS densities (ρ) for NL3 (red), G3 (green), and
IU-FSU (magenta) parameter sets as a function of radius. The mass
number (A) of the maximum mass of the NS for NL3, G3, and
IU-FSU are 3.35 × 1054, 2.32 × 1054, and 2.23 × 1054, respectively.
The different masses 1.0 M�, 1.4 M�, and Mmax are shown with solid,
dashed, and dotted lines.

linear relationship. The NL3 predicts higher I as compared to
G3 and IU-FSU. This is because of the stiffer EoS of NL3
than G3 and IU-FSU sets.

B. Neutron star density and its weight function

The densities and their corresponding weight functions
|F (x)|2 versus radius of the NS with masses 1.0 M�, 1.4 M�,
and Mmax are depicted in Fig. 3. The densities are in the top
panel, and their weight functions are in the bottom panel. The
results are presented for NL3, G3, and IU-FSU parameter sets.
The chosen masses cover the lower, canonical, and maximum
mass of the NS. The maximum mass for NL3, G3, IU-FSU
are 2.85 M�, 2.004 M�, 1.940 M�, respectively. The Mmax for
NL3 is distinctly larger than the other two sets. This behavior
reflects not only in the I-M and M-R profiles but is also clearly
seen in the densities and weight functions. Unlike the normal
nucleus, which is bound by strong interaction, the NS is bal-
anced by the attractive gravitational and the repulsive force
due to the degenerated neutrons gas. It is worth mentioning
that the nuclear force is state dependent, i.e., (i) singlet-
singlet, (ii) triplet-triplet, and (iii) singlet-triplet. The former
two interactions are attractive, while the latter category is
repulsive interaction [49,73,85,86]. Because of the excessive
neutrons in the NS, the repulsive part is subject to instability,
which is counterbalanced by the huge gravitational attraction.
Thus, NS’s density distribution is quite different from the
normal nucleus. In addition, the density is influenced by the
presence of electrons and muons, and the density obtained
by the NL3 set has the minimum central density followed by
IU-FSU and G3 models. However, the Mmax of NL3 is more
as compared to the maximum mass of the star acquired by the
G3 and IU-FSU parameter sets.

FIG. 4. The NS incompressibility K star as a function of NS mass
for NL3 (red), G3 (green), and IU-FSU (magenta) parameter sets.

The corresponding weight functions for NL3, G3, and IU-
FSU sets are given below to their densities in Fig. 3. The shape
of the |F (x)|2 is like an exponential rise, and it is maximum
at the surface of the NS. The values of K star, Sstar, Lstar

sym, and
K star

sym are determined by folding the weight function with the
corresponding NSM quantities are KNSM, SNSM, LNSM

sym , and
KNSM

sym [see Eqs. (5)–(8)]. Thus, the maximum contribution
comes from the surface of the NS and is termed a surface phe-
nomenon. Precisely, the values of |F (x)|2 gather momentum
at ≈6 km, and it is maximum at the surface (≈ 10–12 km).

C. Surface properties of neutron star

In this section, we analyze the surface properties of our
results obtained from the CDFM calculations for NS as a
function of mass. Here, the incompressibility K star, symmetry
energy Sstar, slope parameter Lstar

sym, and curvature coefficient
K star

sym of the NS are discussed. The results are depicted in
Figs. 4–7 in the following sections.

1. Neutron star incompressibility

The incompressibility K of an object is a prominent char-
acteristic to know its nature. It defines how much the object
can be compressed or expanded. So, it has a direct connec-
tion with the collective motion of the system. As a matter
of fact, K is a significant quantity for the NS. The EoS,
governed by incompressibility, plays a crucial role in de-
termining the mass and radius of the NS. It is shown in
Ref. [8] that the incompressibility of NS K star is much less
than the nuclear matter incompressibility at saturation K∞.
For example, K∞ = 271.38 MeV for NL3 set as compared
to the K star = 44.956 MeV for the maximum mass of the NS
[8]. This can also be related to the asymmetric nature of the
medium α. The K∞ is obtained at the asymmetric limit α = 0,
and K star is evaluated at α ≈ 1, i.e., the incompressibility of
a system decreases with asymmetric of the system [8]. One
can see the trend of K star as a function of mass M ranging
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FIG. 5. The symmetry energy of the NS Sstar as a function of NS
mass for NL3 (red), G3 (green), and IU-FSU (magenta) parameter
sets.

from M = 0.8 M� − Mmax of the NS in Fig. 4 for the three
considered sets. The three forces predict almost similar in-
compressibilities up to mass M = 1.8 M�. More explicitly,
the G3 and IU-FSU give almost similar results, while NL3
predicts a comparatively larger value of K star as can be seen
from the inset of the figure. Beyond mass M = 1.8 M�, the
incompressibility increases suddenly. The similarity of K star

FIG. 6. The Lstar
sym coefficient of the NS Sstar obtained from Eq. (7)

as a function of NS mass for NL3 (red), G3 (green), and IU-FSU
(magenta) parameter sets.

FIG. 7. The curvature coefficient K star
sym of the NS obtained from

Eq. (8) as a function of NS mass for NL3 (red), G3 (green), and
IU-FSU (magenta) parameter sets.

between G3 and IU-FSU forces could be related to the K∞,
which are 243.96 and 231.31 MeV for G3 and IU-FSU, re-
spectively. On the other hand, the incompressibility of NL3 at
saturation is quite high as compared to G3 and IU-FSU. After
realizing that the EoS can be made softer by reducing the K ,
which in turn reduces considerably the maximum mass of the
NS and vice versa. This shows that the value of K star increases
marginally up to M = 1.8 M� and suddenly increases beyond,
indicating the mass dependence of the incompressibility.

2. Symmetry energy and its higher-order derivatives

The symmetry energy of the NS in its maximum mass is
predicted to be higher in comparison to the value of symmetric
nuclear matter at saturation. This observation is noticed in all
the three considered E-RMF models. The symmetry energy
at saturation J0 for NM with NL3, G3, and IU-FSU sets are
37.43, 31.84, and 32.71 MeV, respectively. These results are
146.002, 66.813, and 60.758 MeV for the NS at the limit of
maximum mass. These Sstar are small for smaller masses as
compared to the maximum mass of the star. The results of Sstar

are depicted in Fig. 5 as a function of mass for all the three-
parameter sets of NS. The symmetry energy for G3 and IU-
FSU are found to be almost similar, while the values with the
NL3 set are a bit higher. This can be seen clearly from the inset
of the figure, which depicts the structural dependence of the
symmetry energy. The symmetry energy is obtained from the
derivative of the energy density with respect to asymmetricity
α, which shows a significant variation in the Sstar as compared
to K star. The higher derivatives of the symmetry energy, i.e.,
the slope Lstar

sym and curvature parameter K star
sym are quite useful

quantities. These are shown in Figs. 6 and 7 as a function of
NS mass. The magnitude of Lstar

sym and K star
sym increases with the
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FIG. 8. The ratio of the volume to surface components of the
symmetry energy κ as a function of NS mass for NL3 (red), G3
(green), and IU-FSU (magenta) parameter sets. The κ values are
evaluated from Eq. (18).

mass of the star. The Lstar
sym values for all the models are found

to be positive, contrary to the negative nature of K star
sym as shown

in the figures.
The negative sign of K star

sym is correlated by the 1-σ con-
straint, and 90% confident limits on its saturation value of
normal nuclear matter as reported by Zimmerman et al. from
the experimental data of PSR J0030+0451 and GW170817
event [14,41,87]. It is noted that these bounds are not well
matched to explain the K star

sym of NS; however, it indicates
the possibility of a negative value of the curvature parame-
ter and predicts the range with ≈ 90% confidence limit of
the observational data. Sometimes it is beneficial to analyze
the terrestrial data related to the exotic nuclei and heavy-ion
collisions [88,89] by separating the contribution of isovector
incompressibility or curvature parameter.

Finally, the total symmetry energy of the NS can be divided
into its volume SV , and surface SS components, which are
derived from Eq. (17) through κ (the ratio of the volume to
surface symmetry energies) and κ is obtained from Eq. (18).
The value of κ as a function of the mass of the NS is shown in
Fig. 8. In our calculation, γ = 0.3 is used following Ref. [50].
The κ values are consistently larger for the NL3 set followed
by IU-FSU and least for the G3 force. These trends are in
accordance with the forces used in the calculations. It goes on
increasing with the mass of the NS to some value, as shown in
the figure. Beyond that, the κ decreases considerably. When
the mass number of the system approaches a large value,
i.e., in the limit of A→ ∞, the system deals mostly with the
volume. For example, for 1.4 M� of the G3 set, the total sym-
metry energy is 8.904 MeV, while the volume part contributes
as a whole and the surface component contributes nearly 9%
only of total Sstar. In such a case, the major contribution of

symmetry energy comes from the volume part of the NS as
referring Eq. (17). To take care of such a system properly, the
alternative method of Ref. [60] may be useful. The κ is defined
as κ = SV /SS , and even though the total symmetry energy is
contributed by the volume component, i.e., S → SV , it has a
surface component due to the finite value of κ .

IV. SUMMARY AND CONCLUSIONS

The structural properties of NS, along with the mass,
radius, and moment of inertia, are studied within the well-
known E-RMF formalism. Three established forces (NL3,
G3, and IU-FSU) are used in the calculations. Although NL3
is one of the oldest sets, it gives an understanding of the
properties of finite nuclei. Also, this set is used extensively
so that it may provide a piece of known information, and
a comparison of other sets with the results of NL3 may be
more familiar. The primary motivation of the present work
is the surface properties of NS in terms of incompressibility,
symmetry energy, and its higher coefficients, such as the slope
and curvature coefficients.

To our knowledge, there are no prior theoretical results
or empirical/experimental data available to support our cal-
culations of NS symmetry energy, incompressibility, slope,
and curvature parameters. In the recent work, we suggested
the formalism for the computation of these quantities [8] for
NS. In the present paper, we extended the model to study
the properties systematically. Thus, the results reported here
are the first of such kind. We know that the NS is a highly
isospin-asymmetric system. We expected that the NS surface
properties could be very different from the standard NM. The
more significant Lstar

sym for NL3 force is in agreement with
the stiff EoS [90] and moderate slope parameter predicted
for the softer G3 and IU-FSU sets. A proper understanding
of the range of Sstar, Lstar

sym, and K star generally helps to fix
the radius of the NS. A precise correlation is established via
Danielewicz’s liquid drop prescription with the factor κ , i.e.,
the volume ratio to the surface component of the symmetry
energy. This correlation can be extended to Lstar

sym in the liquid
drop mass formula with the help of surface Sstar

S , and the
volume Sstar

V symmetry energy [91]. From the analysis of the
surface properties, we noticed that almost all these parame-
ters, along with κ for all the three sets, coincide with each
other in the vicinity of mass range M ≈ 1.8M� indicating a
possible correlation with the mass of the NS. It is shown in
Refs. [91,92] that the static dipole and quadrupole polarizabil-
ity and the neutron-skin thickness are strongly related between
symmetry energy and slope parameter. Thus, we expect the
NS radius to be synchronized with its surface properties. The
magnitude of K star, Sstar, Lstar

sym, and K star
sym increases with mass

of the NS. For smaller NS, we find smaller values of all the
surface properties. The second derivative of symmetry energy
is the K star

sym, which is obviously more sensitive to the mass and
also most ambiguous.

The present systematic calculations may provide a better
theoretical bound on K star

sym and a better pathway to constrain
the experimental setup for the isoscalar giant resonances for
the properties of astrophysical objects. Despite the absence
of direct experimental data for these surface properties of
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NS (incompressibility, symmetry energy, slope, and curvature
parameters), the calculated results using the E-RMF densities
and CDFM approach seem reasonable. The present theoretical
calculations can be validated using different relativistic and
nonrelativistic energy density functionals and suitable force
parameters. The current method of accessibility to NS, con-
sidering the NS as a finite nucleus system, favors a bridge
between the two unequal size objects. The theoretical ap-
proach adopted here presents a new way for the nuclear and

astrophysicist to reveal the wealth of information on exotic
nuclei and dense astronomical objects.
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