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Self-interacting particle-antiparticle system of bosons
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The thermodynamic properties of a system of interacting boson particles and antiparticles at finite tempera-
tures are studied within the framework of the thermodynamically consistent Skyrme-like mean-field model. The
mean field contains both attractive and repulsive terms. Self-consistency relations between the mean field and
thermodynamic functions are derived. We assume a conservation of the isospin density for all temperatures. It
is shown that, independently of the strength of the attractive mean field, at the critical temperature Tc the system
undergoes the phase transition of second order to the Bose-Einstein condensate, which exists in the temperature
interval 0 � T � Tc. We obtained that the condensation represents a discontinuity of the derivative of the heat
capacity at T = Tc, and condensate occurs only for the component with a higher particle-number density in the
particle-antiparticle system.
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I. INTRODUCTION

Knowing the phase structure of the meson systems in the
regime of finite temperatures and isospin densities is crucial
for understanding a wide range of phenomena from nucleus-
nucleus collisions to neutron stars and cosmology. This field
is an essential part of investigations of hot and dense hadronic
matter, which is a subject of active research [1]. Meanwhile,
the meson systems’ investigations have their specifics due to
a possibility of the Bose-Einstein condensation of interacting
bosonic particles. The problem of the Bose-Einstein conden-
sation of π mesons has been studied previously, starting from
the pioneer works of Migdal and coworkers (see Ref. [2]
for references). Later this problem was investigated by many
authors using different models and methods. The formation
of classical pion fields in heavy-ion collisions was discussed
in Refs. [3–6] and the systems of pions and K mesons with a
finite isospin chemical potential have been considered in more
recent studies [7–12]. First-principles lattice calculations pro-
vide a solid basis for our knowledge of the finite-temperature
regime. Interesting new results concerning dense pion systems
have been obtained recently using lattice methods [13–15].

In the present paper we consider interacting particle-
antiparticle boson system at the conserved isospin density
nI and finite temperatures. We name the bosonic particles as
“pions” just conventionally. The preference is made because
the charged π mesons are the lightest hadrons that couple to
the isospin chemical potential. On the other hand, the pions
are the lightest nuclear boson particles, and, thus, an account
for “temperature creation” of particle-antiparticle pairs is a
relevant problem based on the quantum-statistical approach.

To account for the interaction between the bosons we in-
troduce a phenomenological Skyrme-like mean field U (n),
which depends only on the total meson density n. This mean

field rather reflects the presence of other strongly interacting
particles in the system, for instance, ρ mesons and nucleon-
antinucleon pairs at low temperatures or gluons and quark-
antiquark pairs at high temperatures, T > Tqgp ≈ 160 MeV.
Calculations for noninteracting hadron resonance gas show
that the particle densities may reach values (0.1–0.2) fm−3 at
temperatures 100–160 MeV, which are below the deconfine-
ment phase transition, see e.g., Refs. [16,17].

The present study is a development of the approach pro-
posed in Ref. [2], where the boson system was considered
within the framework of the grand canonical ensemble with
zero chemical potential. Meanwhile, here we investigate
the thermodynamic properties of the meson system in the
canonical ensemble, where the canonical variables are the
temperature T and the isospin density nI . We regard a stud-
ied self-interacting many-particle system as a toy model that
can help us understand Bose-Einstein condensation and phase
transitions over a wide range of temperatures and densities.

So, in this work, in the formulation of the canonical en-
semble, we calculate the thermodynamic characteristics of a
nonideal hot “pion” gas with a fixed isospin density nI =
n(−)

π − n(+)
π > 0, where n(+)

π and n(−)
π are the particle-number

densities of the π+ and π− mesons, respectively.
We hope that our approach, which is physically transpar-

ent and clear enough, will help understand more complex
pictures of the phase structure of mesonic systems arising
in quark-meson models, for example, in the Nambu-Yona-
Lasinio model and the lattice calculations.

In Sec. II we develop the formalism of the thermody-
namic mean-field model [18] to describe the boson system
of particles and antiparticles, which will be used in the
present calculations. In Sec. III, we introduce a Skyrme-
like parametrization of the mean field, and, after solving
the system of self-consistent equations, we calculate the
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thermodynamic functions. In Sec. IV we demonstrate the pos-
sibility of Bose condensation when the attractive interaction is
“weak.” Furthermore, we determine that this is a second-order
phase transition. Our conclusions are summarized in Sec. V.

II. THE MEAN-FIELD MODEL FOR THE SYSTEM OF
BOSON PARTICLES AND ANTIPARTICLES

Our consideration of thermodynamic properties of the
system of interacting bosonic particles and antiparticles at
finite temperatures is carried out within the framework of the
thermodynamic mean-field model, which was introduced in
Refs. [19,20] and further developed in Ref. [18]. This ap-
proach is based on the representation of the free energy of the
particle-antiparticle system as the sum of two parts: the first
part is the free energy of the two-component system of free
particles, and the second part is responsible for the interaction
between all particles. Therefore, it is assumed that in general
the free-energy density φ of the two-component system looks
like

φ(n1, n2, T ) = φ
(0)
1 (n1, T ) + φ

(0)
2 (n2, T ) + φint (n, T ), (1)

where φ
(0)
1 and φ

(0)
2 are the free-energy densities for the free

particles of the first and second components, respectively,
whereas the density of free energy φint takes into account the
interaction in the system, n1 and n2 is the particle-number
density of each component and n = n1 + n2. Next, the chemi-
cal potential is calculated as the derivative μi = (∂φ/∂ni )T ,
where i = 1, 2, which results in μ

(0)
i = μi − U (n), where

μ
(0)
i = ∂φ

(0)
i /∂n and U (n) ≡ ∂φint/∂n. Similarly, one can

write the pressure p = μ1n1 + μ2n2 − φ, dividing it into free
and interacting parts,

p(n1, n2, T ) = p(0)
1 + p(0)

2 + P(n, T ), (2)

where p(0)
i = μ

(0)
i ni − φ

(0)
i is the pressure of the ideal gas

created by the ith component of the system and P(n, T ) ≡
n(∂φint/∂n)T − φint is the excess pressure. It is seen that the
definitions of U (n) and P(n) lead to a differential correspon-
dence: n[∂U (n, T )/∂n]T = [∂P(n, T )/∂n]T .

We limit our consideration to the case when at a fixed
temperature the interacting boson particles and boson antipar-
ticles are in dynamic equilibrium with respect to the processes
of annihilation and pair creation. Due to the opposite sign of
the charge, the chemical potentials of the bosonic particles
μ1 and the bosonic antiparticles μ2 have opposite signs (for
details, see Ref. [18]):

μ1 = −μ2 ≡ μ. (3)

Therefore, the Euler relation includes only the isospin number
density nI = n(−) − n(+) in the following way:

ε + p = T s + μnI , (4)

where n(−) is the particle-number density of bosonic par-
ticles, and n(+) is the particle-number density of bosonic
antiparticles. In what follows we consider the boson particle-
antiparticle system with conserved isospin number density
nI , whereas in this study the total particle-number density

n = n(−) + n(+) is a thermodynamic quantity that depends on
T and nI .1

Roughly speaking, in such a problem the chemical poten-
tial controls the difference of particle and antiparticle numbers
μ → (N (−) − N (+) ) whereas the total number of particles is
controlled by the temperature T → (N = N (−) + N (+) ). In-
deed, if some amount of particle-antiparticle pairs M has
been created additionally to the existing particles N (−) and
N (+) in a closed system, then approximately the same value
μ is in correspondence μ → [(N (−) + M ) − (N (+) + M )] but
T ′ → (N (−) + M + N (+) + M ), where T ′ > T . This quali-
tative consideration indicates the existence of one-to-one
correspondence of independent pairs of variables (T, μ) ⇔
(N, NI ). It is an easy task to show that the latter statement
is valid in ideal quantum gas of particles and antiparticles.
Meanwhile, the rigorous proof of the independence of ther-
modynamic variables n and nI in a more general case where
the mean fields, which depend on these variables, are present
in the system (see Ref. [24]), is not so simple.

In general, the mean field U depends on both independent
variables n, nI , i.e., U (n, nI ). On the other hand, as proved in
Ref. [24], the mean field can be separated into n-dependent
and nI -dependent pieces where then it reads respectively for
particles and antiparticles as

U (−)(n, nI ) = U (n) − UI (nI ), (5)

U (+)(n, nI ) = U (n) + UI (nI ). (6)

The signs in Eqs. (5) and (6) are due to odd dependence on
the isospin number nI . At the first step of the investigation, we
neglect the part of the mean field which depends on isospin
density, i.e., we assume UI (nI ) = 0. Therefore, in this approx-
imation, the excess pressure also depends only on the total
particle-number density P(n). Note that, in this version of the
thermodynamic mean-field model, we do not take into account
the dependence of the mean field on temperature, as is the case
with the Hartree approximation.

In accordance with Eq. (2) and with taking into account
that μ

(0)
1 = μ − U (n) and μ

(0)
2 = −μ − U (n), one can write

the total pressure in the particle-antiparticle system as

p = −gT
∫

d3k

(2π )3 ln

[
1− exp

(
−

√
m2 + k2+U (n)−μ

T

)]

−gT
∫

d3k

(2π )3 ln

[
1− exp

(
−

√
m2 + k2 + U (n)+μ

T

)]
+ P(n), (7)

where P(n) is the excess pressure.2

The thermodynamic consistency of the mean-field model
can be obtained by putting in correspondence of two ex-
pressions that must coincide in the result. These expressions,

1The dynamical conservation of the total number of pions in a
pion-enriched system created on an intermediate stage of a heavy-ion
collision was considered in Refs. [21–23].

2Here and below we adopt the system of units h̄ = c = 1, kB = 1.
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which determine the isospin density, looks like

nI =
(

∂ p

∂μ

)
T

, (8)

where pressure is given by Eq. (7), and

nI = g
∫

d3k

(2π )3 [ f (E (k, n), μ) − f (E (k, n),−μ)]. (9)

Here E (k, n) = ωk + U (n) with ωk = (m2 + k2)1/2 and the
Bose-Einstein distribution function reads

f (E , μ) =
[
exp

(E − μ

T

)
− 1

]−1

. (10)

In order for the expressions (8) and (9) to coincide in the
result, the following relation between the mean field and the
excess pressure arises:

n
∂U (n)

∂n
= ∂P(n)

∂n
. (11)

It provides the thermodynamic consistency of the model. At
the same time, as we have shown in the beginning of the
current section, this differential correspondence results from
the definitions of the mean field U (n) and excess pressure
P(n).

When both components of π−-π+ system are in the ther-
mal (kinetic) phase, the pressure and energy density read

p = g

3

∫
d3k

(2π )3

k2

ωk
[ f (E (k, n), μ) + f (E (k, n),−μ)] + P(n),

(12)

ε = g
∫

d3k

(2π )3 E (k, n)[ f (E (k, n), μ) + f (E (k, n),−μ)] − P(n).

(13)

III. SKYRME-LIKE PARAMETRIZATION
OF THE MEAN FIELD

The thermodynamic mean-field model has been applied for
several physically interesting systems, including the hadron-
resonance gas [18] and the pionic gas [25]. This approach
was extended to the case of a bosonic system at μ = 0, which
can undergo Bose condensation [2,26]. In the present study,
a generalized formalism given in Sec. II is used to describe
the particle-antiparticle system of bosons when the isospin
density is kept constant. As was mentioned in the previous
section, the mean field in general case splits into two pieces
with dependence on the total particle density n and on the
isospin density nI , respectively, see Eqs. (5) and (6). At the
first stage of our investigation we assume that the interaction
between particles is described by the Skyrme-like mean field,
which depends only on the total particle-number density n.
Loosely speaking, we take into account just a strong interac-
tion. So, we assume that the mean field reads

U (n) = −An + Bn2, (14)

where A and B are the model parameters, which should be
specified. Some additional contribution to the attractive mean

field at high temperatures, (T ∝ 100–160 MeV), may be pro-
vided by other hadrons present in the system like ρ mesons
[27] or baryon-antibaryon pairs [28]. As was mentioned in the
introduction, an investigation of the properties of a dense and
hot pion gas is well inspired by the formation of the medium
with low baryon numbers at midrapidity what was proved in
the experiments at the Relativistic Heavy Ion Collider (RHIC)
and the Large Hadron Collider (LHC) [29,30].

For this reason, in our calculations, we consider a general
case of A > 0, to study a bosonic system with both attractive
and repulsive contributions to the mean field (14). For the
repulsive coefficient B we use a fixed value obtained from
an estimate based on the virial expansion [31], B = 10mv2

0
with v0 equal to four times the proper volume of a par-
ticle, i.e., v0 = 16πr3

0/3. In our numerical calculations we
take v0 = 0.45 fm3, which corresponds to a “particle radius”
r0 ≈ 0.3 fm. The numerical calculations will be done for
bosons with mass m = 139 MeV, which we call convention-
ally “pions.” In this case, the repulsive coefficient is B/m =
2.025 fm6, and it is kept constant through all present calcu-
lations. (For instance, in Ref. [32], the authors use the value
B/m = 21.6 fm6.) At the same time, the coefficient A, which
determines the intensity of attraction of the mean field (14),
will be varied. It is advisable to parametrize the coefficient
A. We are going to do this by making use of solutions of
the equation U (n) + m = 0, similar to the parametrization
adopted in Refs. [2,26]. For the given mean field (14) there are
two roots of this equation [n1,2 = [A ∓ (A2 − 4mB)1/2]/2B],

n1 =
√

m

B

(
κ −

√
κ2 − 1

)
, n2 =

√
m

B

(
κ +

√
κ2 − 1

)
,

(15)
where

κ ≡ A

2
√

mB
. (16)

Then, one can parametrize the attraction coefficient as A =
κAc with Ac = 2

√
mB. As we will show below, the dimension-

less parameter κ is the scale parameter of the model. When
we fix the isospin density, the parameter κ determines the
phase structure of the system. As it is seen from Eq. (15) for
the values of parameter κ < 1 there are no real roots. The
critical value Ac is obtained when both roots coincide, i.e.
when κ = κc = 1, then A = Ac = 2

√
mB.

In general, there are two intervals of the parameter κ . (1)
The first interval corresponds to κ � 1, there are no real roots
of equation U (n) + m = 0. We associate these values of κ

with a weak attractive interaction, and in the present study, we
consider variations in the attraction coefficient A for values of
κ only from this interval. (2) The second interval corresponds
to κ > 1, there are two real roots of equation U (n) + m = 0.
We associate this interval with a “strong” attractive interac-
tion. This case will be considered elsewhere.

If one assumes a possibility of the Bose-Einstein conden-
sation in the two-component system, then it is instructive
to classify a phase structure of the system by two basic
combinations which determine for the weak attraction the
different thermodynamic states: (i) Both components, or the
boson particles and boson antiparticles, i.e., π− and π+, are
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in the thermal (kinetic) phase; (ii) Particles (π−) are in the
condensate phase, and antiparticles (π+) are in the thermal
(kinetic) phase—this combination can be named the “cross”
state.

Note that the expression “particles are in the condensate
phase” is, of course, a conventional one because, in essence,
it is a mixture phase, where at a fixed temperature, a fraction
of π− mesons is in thermal states with momentum |k| > 0
and another fraction of this π− component belongs to the
Bose-Einstein condensate, where all π− mesons have zero
momentum, k = 0.

We are going now to consider these basic thermodynamic
states of the system using the mean field (14).

IV. THERMODYNAMIC PROPERTIES OF THE BOSON
PARTICLE-ANTIPARTICLE SYSTEM UNDER WEAK

ATTRACTION

In the mean-field approach, the behavior of the particle-
antiparticle bosonic system in the thermal (kinetic) phase is
determined by the set of two transcendental equations (we
keep nI = const.)

n =
∫

d3k

(2π )3 [ f (E (k, n), μ) + f (E (k, n),−μ)], (17)

nI =
∫

d3k

(2π )3 [ f (E (k, n), μ) − f (E (k, n),−μ)], (18)

where the Bose-Einstein distribution function f (E , μ) is de-
fined in (10) and E (k, n) = ωk + U (n). Equations (17)–(18)
should be solved self-consistently with respect to n and μ

for a given temperature T with account for nI = const. In
the present, we consider the boson system in the canonical
ensemble, where the independent canonical variables are T
and nI and the particle spin equals zero. In this approach,
the chemical potential μ is a thermodynamic quantity that
depends on the canonical variables, i.e., μ(T, nI ).

In case of the cross state, when the particles, i.e., π−
mesons, are in the condensate phase and antiparticles are
still in the thermal (kinetic) phase, Eqs. (17), (18) should be
generalized to include condensate component n(−)

cond. Besides
this, we should take into account that the particles (π− or
high-density component) can be in the condensed state just
under the necessary condition:

U (n) − μ = −m. (19)

As the temperature decreases from high values, when both
π− and π+ are in the thermal phase, the density of the π−
component, namely, n(−)(T, μ), crosses the critical curve at
the temperature T (−)

c , where the condition (19) is satisfied.
The latter means that the curve n(id)

lim (T ), which is defined as

n(id)
lim (T ) =

∫
d3k

(2π )3 f (ωk, μ)
∣∣∣
μ=m

, (20)

is the critical curve for π− mesons or the high-density compo-
nent. Here f (ωk, μ) is the Bose-Einstein distribution function
defined in (10). As we see function (20) represents the max-
imal density of thermal (kinetic) boson particles of the ideal

gas at temperature T when μ = m. Hence, we obtain that the
critical curve in the mean-field approach under consideration
for the boson particles coincides with the critical curve for the
ideal gas.

With account for Eqs. (19) and (20) we write the general-
ization of the set of Eqs. (17) and (18)

n = n(−)
cond(T ) + n(id)

lim (T ) +
∫

d3k

(2π )3 f (E (k, n),−μ),

(21)

nI = n(−)
cond(T ) + n(id)

lim (T ) −
∫

d3k

(2π )3 f (E (k, n),−μ).

(22)

Meanwhile, using relation (19) between the mean field and the
chemical potential, this set of equations can be reduced to just
one equation for n(+):

n(+) =
∫

d3k

(2π )3 f (E (k, n),−μ)
∣∣∣
μ=U (n)+m

, (23)

where U (n) = U(2n(+) + nI ) and E (k, n) = ωk + U(2n(+) +
nI ). Solution of Eq. (23) for temperatures T from the interval
T < T (−)

c provides the density n(+)(T ) of π+ mesons.
One can see from Eqs. (21) and (22) that the particle-

number density n(+) is provided only by thermal π+ mesons.
Whereas, the density n(−) is provided by two fractions: the
condensed particles (π− mesons at k = 0) with the particle-
number density n(−)

cond(T ), and thermal π− mesons at |k| > 0
with the particle-number density n(id)

lim (T ). The particle-density
sum rule for these phase of π− mesons in the interval T <

T (−)
c reads

n(−) = n(−)
cond(T ) + n(id)

lim (T ). (24)

Numerical results

At high temperatures, i.e., T � T (−)
c , both components of

the bosonic particle-antiparticle system are in the thermal
phase and thermodynamic properties of the system are deter-
mined by the set of Eqs. (17) and (18). Solving this set for
given values T and nI we obtain the functions μ(T, nI ) and
n(T, nI ) and then other thermodynamic quantities.

When we decrease temperature, after crossing the value
T = T (−)

c the particles which belong to the high-density
component (or π− mesons) start to “drop down” into the
condensate state, which is characterized by the value of mo-
mentum k = 0. In the limit, when T = 0, all particles of the
high-density component, i.e., π− mesons, are in condensed
state and n(−) = nI . At the same time, the particles of the low-
density component or π+ mesons being in the thermal phase
lose the density n(+) with a decrease of temperature, and it
becomes rigorously zero at T = 0. For the temperature inter-
val T < T (−)

c equations (17), (18) should be generalized and
now thermodynamic properties of the system are determined
by Eq. (23), where we take into account that μ = −U (n) + m
for all temperatures of this interval unless the high-density
component n(−) is in the condensed state. Otherwise it is
necessary to solve the set of equations (17) and (18) for the
region where n(−) appears again in the thermal (kinetic) phase.
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n(+)

n(-)

n(+)

c
n

c
n(+)

c
n(-)

c
T

n(-)

FIG. 1. (left panel) The particle-number densities n(+), n(−), and ntot = n(+) + n(−) versus temperature for the interacting π+-π− pion gas in
the mean-field model. The total isospin density is kept constant, nI = 0.1 fm−3, and the attraction parameter is κ = 0.5. The maximum density
n(id)

lim of the ideal gas of thermal pions at μ = mπ is shown by the red dashed line. The shaded area shows the possible states of condensed
particles. The Bose-Einstein condensation of π− mesons occurs at the temperature Tc = T (−)

c . (right panel) The same as on the left panel,
but with the parameter κ = κc = 1. Here n1 = n2 ≡ nκc [see Eq. (15)], n(−)

κc
= (ntot + nI )/2, n(+)

κc
= (ntot − nI )/2 and Tκc is the temperature at

which the curve n(+)(T ) touches the critical curve n(id)
lim .

For parameters nI = 0.1 fm−3, κ = 0.5, and κ = 1.0 we
solve the set of equations (17) and (18) for the thermal phase
and Eq. (23) for the “cross” thermodynamic state. The behav-
ior of the density n(+) of π+ mesons and the density n(−) of π−
mesons are depicted in Fig. 1. In this figure, we also depicted
the behavior of the total density of mesons n = n(+) + n(−) de-
pending on temperature (in the field of the figure, this density
is denoted as ntot).

Analyzing the behavior of the condensate creation (see
Fig. 1), it is necessary to note that just the high-density com-
ponent of the particle-antiparticle gas undergoes the phase
transition to the Bose-Einstein condensate. If we apply our
consideration to pion gas with nI = n(−)

π − n(+)
π > 0 this

means that the π− component undergoes the phase transition
to the Bose-Einstein condensate and the low-density com-
ponent or π+ mesons exist only in the thermal phase for
the whole range of temperatures. Hence, it makes sense to
look at Tc = T (−)

c for the Bose-Einstein condensate of π−
mesons only in the lattice calculations and in an experiment,
for instance, in heavy-ion collisions.

At the same time, the temperature behavior of the particle-
number density n(+) (see Fig. 1) is very similar to the behavior
of the pion density n(T ) for κ � 1 obtained in Ref. [2], where
the pion system at μ = 0 was investigated. Note that we
consider the system of pions only for weak attraction in the
present study, i.e., at κ � 1. As was shown in Ref. [2] the
behavior of the pion system at κ > 1 is drastically different.
In this case, with an increase in temperature at T = Tcd < Tc,
the system undergoes the first-order phase transition.

1. The critical temperature

Equation (21) can be used to determine the critical temper-
ature T (−)

c . Indeed, let us take into account that, at the crossing

point with the critical curve, the density of condensate is zero
so far, n(−)

cond(T (−)
c ) = 0, and the density of thermal π− parti-

cles becomes equal to n(−)(T (−)
c ) = n(id)

lim (T (−)
c ). Then, at this

temperature T = T (−)
c on the left-hand side (l.h.s.) of Eq. (21)

we have n = 2n(id)
lim (T (−)

c ) − nI , and now at this temperature
point on the critical curve Eq. (21) with respect to T reads

n(id)
lim (T ) − nI =

∫
d3k

(2π )3 f (E (k, n),−μ)
∣∣∣
μ=U (n)+m

with E (k, n) = ωk + U
(
2n(id)

lim − nI
)
. (25)

Solving Eq. (25) at nI = 0.1 fm−3, for κ = 0.5 and κ = κc =
1 we obtained T (−)

c = 129 MeV and T (−)
c1 = 251 MeV, respec-

tively. These results are depicted in Fig. 1 in the left and right
panels, respectively.

It turns out that T (−)
c is the critical temperature, which de-

termines the phase transition with the formation of a BEC for
the entire pion system since antiparticles or π+ mesons, which
represent the low-density component n(+)(T ), are entirely in a
thermal state for all temperatures. Thus, condensate is created
only by particles or by π− mesons, i.e., ncond = n(−)

cond, and this
particle-number density plays the role of the order parameter.

The condensate densities as functions of temperature ob-
tained in the framework of our model for three values of the
attraction parameter, κ = 0.0, 0.5, 1.0, and for three values
of the isospin density, nI = 0.04, 0.07, 0.1 fm−3, are depicted
in Fig. 2, left panel. We record a minimal difference in the
critical temperature T (−)

c when the attraction parameter κ

changes, the difference does not exceed 4 MeV when nI =
0.1 fm−3. This difference is much less, as we can see in
Fig. 2 for smaller isospin densities. Then it would be helpful
to define only one average value of T (−)

c as

Tc = 〈T (−)
c 〉. (26)
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FIG. 2. (left panel) The density of condensate versus temperature in the particle-antiparticle self-interacting system for three values of
the isospin density, nI = 0.04, 0.07, 0.1 fm−3.(right panel) The chemical potential versus temperature at values of the attraction parameter
κ = 0.0, 0.1, 0.5, 1.0 and the isospin density nI = 0.1 fm−3. The marked points on the curves correspond to the critical temperature T (−)

c . In
both panels we set Tc = 〈T (−)

c 〉.

For example for nI = 0.1 fm−3 the averaging gives Tc ≈
129 MeV. The temperature Tc “signals” the creation of con-
densate when temperature decreases and crosses this value.
Note that the critical temperature Tc is practically independent
of the attraction parameter A of the mean field (14). In other
words, the average attraction between particles in the system
has little effect on the critical temperature.

The dependence of the chemical potential on temperature
is depicted in Fig. 2 in the right panel for three values of
the attraction parameter, κ = 0.0, 0.1, 0.5, 1.0. First of all,
we notice that the chemical potential is almost independent
of temperature when condensate exists in the system, i.e.,
in the interval 0 < T � Tc. The value of μ changes from
1.02mπ at the absence of attraction, κ = 0.0, to μ = 0.74mπ

for the critical attraction parameter κ = 1.0. Hence, for 0 �
κ � 1 the chemical potential is in the range 103 � μ �
142 MeV. It is intriguing to remind that already first attempts
to fit the pT spectra of π− mesons in O + Au collisions at
200 AGeV/nucleon (at midrapidity) by the ideal-gas Bose-
Einstein distribution results in the values μ ≈ 126 MeV, T ≈
167 MeV and in S + S collisions at 200 AGeV/nucleon it
results in the values μ ≈ 118 MeV, T ≈ 164 MeV [33]. So,
the fit of data required the pion chemical potential in the range
μ ≈ 115–130 MeV, which we can formally compare with the
values of the chemical potential obtained in our model.

2. The heat capacity

The derivative of the chemical potential on temperature
has a jump in points marked on the curves as small black
circles, see Fig. 2, right panel. These points on the curves
μ(T ) correspond to T (−)

c , which values differ from one an-
other not more than 	T = 4 MeV. As we concluded before,
this is the temperature of phase transition, see Eq. (26), which
practically does not depend on the intensity of attraction. To
prove that this is indeed a phase transition of the second order,

we first calculate the heat capacity cv as3

cv = −T
∂2φ

∂T 2
, (27)

where φ(T, nI ) = −p(T, nI ) + nIμ(T, nI ) is the density of
free energy. We are going to calculate φ(T, nI ) for two ther-
modynamic scenarios, when T � Tc and when T < Tc.

Having solved Eqs. (17) and (18) then, using Eq. (12)
one can calculate pressure for the case when particles and
antiparticles are both in the thermal phase, i.e., T � Tc. In this
case, the density of free energy looks like

φ = nIμ(T, nI ) − 1

3

∫
d3k

(2π )3

k2

ωk
[ f (E (k, n), μ)

+ f (E (k, n),−μ)] − P(n), (28)

where functions n(T, nI ) and μ(T, nI ) are known. The ex-
cess pressure P(n) is obtained by integrating Eq. (11) for the
Skyrme-like parametrization of the mean field (14):

P(n) = −A

2
n2 + 2B

3
n3, (29)

where P(n = 0) = 0 is taken into account.
For temperatures less than Tc, when the high-density com-

ponent of the pion gas (π− mesons) is in the condensate phase,
and the low-density component (π+ mesons) is in the thermal

3As a matter of fact, here we calculate the volumetric heat capacity,
which is the heat capacity CV of a system divided by the volume V ,
i.e., cv = CV/V .
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FIG. 3. (left panel) Heat capacity normalized to T 3 as a function of temperature in a self-interacting π−-π+ meson system. The isospin
density is kept constant, nI = 0.1 fm−3. The curves are marked with the attraction parameter κ . (right panel) Energy density versus temperature
for the same meson system and the same conditions as in the left panel. The entropy density versus temperature in the vicinity of Tc is shown
in a small window for attraction parameters κ = 0, 0.5, 1.0. We set Tc = 〈T (−)

c 〉.

phase, the density of the free energy reads

φ = nI [U (n) + m] − 1

3

∫
d3k

(2π )3

k2

ωk
f (ωk, μ)

∣∣∣
μ=m

− 1

3

∫
d3k

(2π )3

k2

ωk
f (E (k, n),−μ)

∣∣∣
μ=U (n)+m

− P(n).

(30)

Here the total pion density is n = 2n(+) + nI , μ = U (n) + m
as in Eq. (23), E (k, n) = ωk + U (n) and n(+)(T, nI ) is the
solution of Eq. (23).

Using the density of free energy (28) to the right of Tc

and Eq. (30) to the left of Tc, respectively, we calculate the
heat capacity normalized to T 3, as function of temperature
at nI = 0.1 fm−3 for three values of the attraction parameter
κ = 0, 0.5, 1.0. These dependencies are depicted in Fig. 3
in the left panel. The temperature dependence of the heat
capacity is a continuous function. However, the derivative
of this function has a finite discontinuity, which indicates a
second-order phase transition, where the condensate density
is an order parameter (strictly speaking, this is a third-order
phase transition). To make sure that this is indeed a second-
order phase transition without the release of latent heat at
the temperature Tc, we calculate the energy density ε for the
same set of parameters κ , and the functions ε(T ) are shown in
Fig. 3 in the right panel. To be sure that the first derivative
of the free energy is a smooth function, we calculate the
entropy density s = −∂φ(T, nI )/∂T , and its dependence on
temperature in the vicinity of Tc is shown in a small window
in Fig. 3 in the right panel for three values of the attrac-
tion parameter κ = 0, 0.5, 1.0. Indeed, one can see that the
temperature dependencies of the energy density and entropy
density are continuous and smooth at T = Tc, which proves
that the system undergoes a second-order phase transition at
this temperature. It is also interesting to note that the energy
density in the temperature interval 0 < T � Tc is practically

independent of the weak attraction (0 � κ � 1) between the
particles.

We will now fix some similarities between the pic-
ture obtained above for the interacting two-component
particle-antiparticle system when nI = const. and the single-
component ideal gas, where we keep constant the particle-
number density n. First, the behavior of the high-density
component in the “condensate” temperature interval T � Tc

in the system with interaction is similar to the behavior of the
single-component ideal gas (m = mπ ) when nI = n = const.
Indeed, that is seen when one compares the dependance
n = n(−)(T ) in Fig. 1 and dependence n = const. in Fig. 4
in the left panel. Next, we compare the heat capacities in
these two-boson systems, a question of particular interest is
the behavior of the heat capacity at the critical temperature.
For the ideal gas, it is natural to treat the problem in the
canonical ensemble, where the canonical variables are T and
n. The critical temperature Tc is the starting point for the onset
of condensation when the temperature is decreasing. For a
given density n the critical temperature can be determined as
solution of the transcendental equation n = n(id)

lim (Tc), where
n(id)

lim (T ) is defined in (20).
The energy density in the condensate phase consists of two

contributions: for the ideal gas it reads

ε = mncond(T ) +
∫

d3k

(2π )3 ωk f (ωk, μ)
∣∣∣
μ=m

, (31)

where ncond(T ) = n − n(id)
lim (T ). We calculate the heat capac-

ity cv = ∂ε(T, n)/∂T , which is attributed to the condensate
phase, and obtain

c(cond)
v = 1

4T 2

∫
d3k

(2π )3

[
Ekin

sinh (Ekin/T )

]2

, (32)

where Ekin = ωk − m is the single-particle kinetic energy. It is
seen that the dependence of the heat capacity c(cond)

v (T ) in the
condensate phase is of a universal character. In this phase, the
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FIG. 4. (left panel) Particle-number density versus temperature in the ideal single-component gas. The horizontal lines represent two
constant particle density samples, n = 0.1, 0.2 fm−3, which correspond to critical temperatures T (0.1)

c , T (0.2)
c , respectively. (middle panel) Heat

capacity normalized to T 3 as a function of temperature in the ideal single-component gas where the particle-number density is kept constant.
(right panel) Energy density versus temperature for the same system and conditions as in the left panel. The red dashed line marked as ε

(id)
lim

represents the energy density of the states that belong to the critical curve n(id)
lim depicted in the left panel.

heat capacity of an ideal gas does not depend on the particle
density n. For each specific value n, the curve c(cond)

v (T ),
defined in (32), is bounded at the right end by the value of Tc,
which in turn, depends on the given particle-number density
n. This feature is seen in Fig. 4 in the middle panel, where
we consider two samples of the density n = 0.1, 0.2 fm−3.
It is evidently seen that the derivative of the heat capacity
has a finite discontinuity, which can indicate a third-order
phase transition. To be sure about that, we calculate the energy
density for the same samples of the particle-number densities,
the functions ε(T ) are shown in Fig. 4 in the right panel. We
see that these functions are continuous and smooth at T = Tc

and this proves an absence of latent-heat release at the critical
temperature.

Let us briefly summarize the results obtained for an inter-
acting particle-antiparticle boson system, where the isospin
(charge) density nI is conserved, and for a single-component
ideal gas, where the particle-number density n remains con-
stant. First of all, we claim that they both have the same
critical curve n(id)

lim (T ). Furthermore, when n(−)(T ), obtained
for an interacting system, and n(T ), obtained for an ideal gas,
intersects the critical curve n(id)

lim (T ), respectively, both systems
undergo a phase transition of the second-order or following
the Ehrenfest classification of the third order.

It has long been known, see Ref. [34], that the Bose-
Einstein condensation is indeed a third-order phase transition
according to the first classification of general types of transi-
tions between phases of matter, introduced by Paul Ehrenfest
in 1933 [35,36]. Therefore, the obtained temperature Tc is
really the temperature of the phase transition of the second
order (according to modern terminology) and the density of
condensate ncond = n(−)

cond provided by π− mesons is the order
parameter.

V. CONCLUDING REMARKS

In this paper, we have presented a thermodynamically
consistent method to describe at finite temperatures a dense
bosonic system that consists of interacting particles and an-
tiparticles at a fixed isospin density nI . We considered the
system of meson particles with m = mπ and zero spin, which

we named conventionally as “pions” because the charged
π -mesons are the lightest nuclear particle and the lightest
hadrons that couple to the isospin chemical potential.

It turns out that the introduced dimensionless quantity
κ = A/2

√
mB, which is itself a combination of the mean-

field parameters A, B and the value of a particle mass, is the
scale parameter of the model. Furthermore, it determines the
different possible phase scenarios which occur in the particle-
antiparticle boson system. The attraction coefficient A = κAc,
where Ac ≡ 2

√
mB, was parametrized by κ with κ = 1 as the

critical value that separates the regime of a weak attraction
(κ � 1) from the regime of a strong attraction (κ > 1). In this
paper, we only looked at the weak-attraction case.

It was shown that in the particle-antiparticle meson system,
where the isospin density nI is conserved, there is a Bose-
Einstein condensate in the system in the temperature interval
0 � T � Tc, which is the result of a second-order phase tran-
sition that occurs at a temperature Tc and condensate density
is an order parameter.4 This statement is in contrast with the
conclusion given in Refs. [2,26,32,37], where the system with
zero chemical potential, μ = 0, was investigated. Indeed, in
these works it was shown that in the case of a sufficiently
strong attractive mean field (κ > 1), the multibosonic system
undergoes a first-order phase transition and, as a result, devel-
ops a Bose condensate, starting from a finite temperature.

So, we obtained that, independently of parameters of the
mean field, the multiboson system develops the Bose conden-
sate for particles of the high-density component only. This
means that, in the pion gas where nI = n(−)

π − n(+)
π > 0, the

π− mesons only undergo the phase transition to the Bose-
Einstein condensate. At the same time, the π+ mesons exist
only in the thermal phase for the whole range of temperatures.
Then, for the experimental efforts, it makes sense to look for
the Bose condensate, which is created just by π− mesons.

For the description of the system’s thermodynamic prop-
erties, we use the canonical ensemble formulation, where

4Note that the chiral perturbation theory predicts that the transition
between the vacuum and the BEC state is of the second order with
universality class O(2) [7].
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the chemical potential μ is a thermodynamic quantity that
depends on the canonical variables (T, nI ). We calculated
dependence of the chemical potential on temperature for dif-
ferent attraction parameters κ which show that μ ≈ const. in
the “condensate” interval of temperatures 0 � T � Tc, where
these constant values depend on the intensity of attraction.
Meanwhile, the temperature T (−)

c of the phase transition to
the Bose-Einstein condensate of π− mesons (high-density
component) exhibits a weak dependence on κ , as one can see
in Fig. 2 in the left panel. For all values 0 � κ � 1 that we
have considered, these critical temperatures differ from one
another by not more than 4 MeV, which inspires an introduc-
tion of the mean value Tc = 〈T (−)

c 〉 of the phase transition to
the Bose-Einstein condensate.

The results obtained are in correspondence with known
peculiar property of the ideal Bose gas: the Bose-Einstein
condensation represents the third-order phase transition or a
discontinuity of the derivative of the specific heat [34]. In the
framework of the presented model, we obtained that, in the
same way, the derivative of the specific heat undergoes a break
at the temperature Tc, as one can see in the left panel of Fig. 3.
The smooth dependencies of the energy density and entropy

density on temperature and the absence of latent-heat release
at Tc can be seen in the right panel of Fig. 3, which proves that
the system actually undergoes a second-order phase transition
at this temperature.

The role of neutral pions is beyond the scope of the present
paper. The present analysis can be improved by addressing
these issues in more detail and generalizing the calculation to
nonzero contribution to the mean field that depends on nI . The
authors plan to consider these problems elsewhere.
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