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Quantum fluctuation in an inhomogeneous background and its
influence on the phase transition in a finite volume system
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We studied the grand potential and phase transitions of an inhomogeneous finite volume spherical quark
system. First the finite volume effects are considered by applying the multiple reflection expansion method
which is an approximation for the density of states of the momentum in the grand potential of the finite
size system. Then the density of states of momentum is further modified by the thermal fluctuations in the
thermal system with the inhomogeneous field background. The modification of the density of states is calculated
by the scattering phase shift from the Dirac equation of quarks in the inhomogeneous field background. By
the numerical calculation we show how the phase transition is changed by varying the configuration of the
inhomogeneous field background and find that the strong first order phase transition could be weakened or even
changed to a crossover as a result.
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I. INTRODUCTION

The physics of the phase transition in a small quan-
tum system is very intricate, especially in a tiny droplet of
quark/nuclear matter created by high energy heavy ion col-
lisions [1,2]. Quantum chromodynamics (QCD) itself and its
nonperturbative nature make it very hard to solve the problem
of the phase transition from first principles [3]. Based on the
lattice QCD (LQCD) simulations and effective model studies
it is known that at high temperatures and low baryon densities
the transition from nuclear matter to quark matter is a smooth
crossover rather than a first order phase transition. At rela-
tively high densities the phase diagram is still unclear or not
confirmed [4–6]. The fireball created in heavy ion collisions
is very small with an estimated radius of 2–10 fm. In a theo-
retical study one should consider the finite size effects [7–10],
and whether the system is inhomogeneous. There are many
discussions about inhomogeneous phases in chiral phase tran-
sitions or deconfinement phase transitions [11–17], such as
chiral density wave (CDW) phases and quarkyonic phases.
Additionally, the quantum effect is very hard to calculate in
inhomogeneous systems. As for the CDW phase, a plane wave
chiral condensate is assumed to simplify the complicated
problem of solving the quark Dirac equation in the inhomo-
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geneous background. The quantum effect of the quark Dirac
sea in an inhomogeneous background is important in studying
the quark-nuclear matter phase transition. In this work we
discuss the phase transition in an inhomogeneous spherical
quark system which has a finite volume. The finite volume
effect can be introduced in different ways. It could be added
through the Massachusetts Institute of Technology (MIT) bag
model boundary conditions or using the multiple reflection
expansion (MRE) method [18–21]. The original MRE method
was derived for massless particles [22]; however, it has been
further extended to calculate the thermodynamic quantities for
the quark system with nonzero mass [23,24]. It is suitable for
studying a spherical system with a finite volume; thus, in this
work the MRE scheme will be used as we discuss a finite
spherical system. By the scheme there will be a correction
to the density of states of the momentum in the momentum
integration in the grand potential. It should be emphasized
that previous studies of the grand potential of the thermal
system often used the mean field approximation (MFA) in
the homogeneous case to study the phase transition; how-
ever, in this study we argue that the quantum fluctuation over
the spatially inhomogeneous background will have nontrivial
influence on the phase transition. The inhomogeneous back-
ground means that in the MFA the expectation value of the
field has spatial variation. As for a thermal quark system in
the inhomogeneous background the usual density of states
of the momentum in the standard MFA grand potential will
receive a correction which can be derived by solving the quark
Dirac equation to evaluate the scattering phase shift in the
inhomogeneous field background. The method of evaluating
the quantum fluctuations observed in the inhomogeneous field
background through the scattering phase shift can be traced
back to the work of Schwinger in the study of the energy of
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the electron’s quantum fluctuations in certain nontrivial con-
figurations of electromagnetic fields [25]. In later years Jaffe
and his collaborators further completed the renormalization
program and extended the method to the calculations of the
quantum fluctuations in the inhomogeneous field backgrounds
in electroweak systems [26,27]. The scattering phase shift
method is practical for calculating quantum fluctuations in
quantum field systems with spherically inhomogeneous field
backgrounds.

In this paper we use the Friedberg-Lee (FL) model to ad-
dress these problems and to illustrate the calculation scheme
and its nontrivial influence on the phase transition. Previous
studies of the FL model in the MFA indicate a first order phase
transition at finite temperatures and densities [28,29]. The
first order phase transition is relevant to neutron star mergers
and cosmological electroweak phase transitions [30–32]. In
a recent study the bubble dynamics is studied in the strong
first order phase transition in the FL model [33]. In relativis-
tic heavy ion collisions the crossover is the main feature at
high temperatures and low densities. In our previous study
examining the tunneling amplitude of the two vacuums in
the FL model, qualitatively, we indicate that the first order
phase transition may be turned into a crossover by quantum
tunneling [34]. Several studies using chiral effective models
demonstrate that quantum fluctuations may weaken the first
order phase transition and strengthen the crossover feature
[35–37]. However, in these studies the quantum fluctuations
are treated in a homogeneous background. In this work we
will show how quantum fluctuations in an inhomogeneous
background influence the phase transition in a finite volume
using the FL model.

The organization of this paper is as follows: In Sec. II
the FL model is introduced and the grand potential is ob-
tained at the MFA level. In Sec. III it is illustrated how the
grand potential is modified in a finite size quark system under
an inhomogeneous background. The order parameter of the
phase transition is derived accordingly. In Sec. IV, we present
the numerical results and discuss how the phase transition is
changed by varying the spatial configuration of the inhomoge-
neous field background. The last section is the summary and
outlook.

II. THE MODEL AND GRAND POTENTIAL AT MFA

The FL model was originally introduced to describe the
properties of hadrons. It incorporates different bag models,
e.g., MIT and Stanford Linear Accelerator Center (SLAC)
models, into one effective model of quantum field theory
which is renormalizable [38,39]. We start with the Lagrangian
of the FL model as follows:

L = ψ̄ (iγμ∂μ − gσ )ψ + 1
2∂μσ∂μσ − U (σ ), (1)

with

U (σ ) = 1
2! aσ 2 + 1

3! bσ
3 + 1

4! cσ
4 + B, (2)

where ψ is the quark field and σ is the phenomenological
scalar field which can roughly describe the nonperturbative
long range effect of the gluon field. a, b, c, and g are model
parameters which are fixed by fitting the general properties

of nucleons. B is the bag constant. In the MFA the σ field
is treated as the classical mean field or σ (�r, t ) → σ̄ . The
classical potential U (σ̄ ) generally has two minima which
correspond to two vacuums. One is the perturbative vacuum
at σ̄ = 0 which is a local minimum. The other is the physical
vacuum at σ̄ = σv which is a global minimum. If there are
three valence quarks at the background of the physical vacuum
they will be localized and not propagate freely in space with
heavy masses. As long as the vacuum is kept in the physical
vacuum, the three valence quarks in the physical ground state
will be confined as a soliton which corresponds to a nucleon in
a physical interpretation. Phenomenologically one can regard
the nucleon as a confinement state of three valence quarks
through a bag. In this model in order to produce deconfine-
ment one has to change the vacuum. One possible way is
to heat the vacuum. In the FL model one can introduce a
thermal grand potential through the standard method of finite
temperature field theory. At finite temperature the partition
function of the system is

Z =
∫

[idψ†][dψ][dσ ] exp

[ ∫ 1/T

0
dτ

∫
d3rL

]
. (3)

In the MFA we can write the grand potential as

�(σ̄ , T ) = −T log Z

V
= �σ + �kin, (4)

where the σ field part of the grand potential has the form

�σ = 1

V

∫
d3r

[
1

2
(∇σ̄ )2 + U (σ̄ )

]
, (5)

and �kin is the kinetic part of the potential which can be
written as

�kin = −T

V
Tr log

[
1

T
(i∂0 + iγ 0 �γ · �∇ − γ 0gσ̄ )

]
. (6)

In the homogeneous background field of σ the grand potential
can be derived as

�MFA(σ̄ , T ) = U (σ̄ )−4Nf NcT
∫

dkρhom(k) log(1+e−Ek/T ),

(7)
where T is temperature, V is the volume, and Ek =√

k2 + g2σ̄ 2. ρhom is the density of states of momentum for
the homogeneous case, which is

ρhom(k) = 1

V

dN

dk
= k2

2π2
. (8)

It should be noted that at T = 0 the grand potential will be
�(σ̄ , T = 0) = U (σ̄ ). The FL model at finite temperatures
has been extensively studied in the literature. The general re-
sult is that when the temperature increases, the grand potential
will change its configuration. As a result, the physical vacuum
at σ̄ = σv rises and becomes the local minimum, while the
perturbative vacuum at σ̄ = 0 turns into a global minimum
which is the true vacuum. In the new thermal vacuum the
valence quarks will propagate freely in space instead of being
bounded, which means the system is deconfined. The decon-
finement phase transition in the FL model is a strong first order
phase transition.
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III. THE FINITE SIZE THERMAL QUARK SYSTEM
UNDER THE INHOMOGENEOUS BACKGROUND

In the above discussion the thermal quark system is in the
homogeneous case without boundaries. However, the thermal
quark/nuclear matter created in the real heavy ion collisions
is always a finite size system and rather inhomogeneous.
Theoretically one has to consider the corrections to the grand
potential of the MFA. There are different ways to work out
the corrections. In this section we will make use of the MRE
method to give finite size corrections to the grand potential,
while the corrections from the inhomogeneous background
will be obtained through the scattering phase shift method.

First we discuss the calculation of log Z in an inhomo-
geneous background. For a system in a spherical box with
a radius R the integration over the momentum in log Z will
be changed into a summation over the discrete momentum
modes. The general form of log Z by the summation over the
discretized momentum modes can be written as

log Z =
∑
nlm

f (knlm, T ), (9)

where n, l , and m are the quantum numbers of the radial,
orbital angular momentum and its projection, respectively.
Furthermore, we consider a spherically symmetric inhomo-
geneous background. The asymptotical eigenfunctions of the
Hamiltonian of the system will be given by trigonometric
functions with argument kr + δl (k). If we impose the condi-
tion that the eigenfunctions vanish at the boundary, it is found
that kR + δl (k) = nlπ where δl (k) is the phase shift for the lth
partial wave in the wave function at the boundary generated
by the scattering of the inhomogeneous background. When
the radius R of the system is large enough, the states become
infinitesimally close and we have [25,26]

dnl

dk
= R

π
+ 1

π

dδl (k)

dk
. (10)

The density of states in momentum space for the lth partial
wave is defined as dnl/dk divided by the volume V . The first
term on the right hand side of Eq. (10) is related to the density
of states of the homogeneous case by a summation over l with
a degeneracy factor (2l + 1). If the system is homogeneous,
the second term in Eq. (10) is zero. When the system volume
goes to infinity the remaining homogeneous part will be iden-
tical as the density of states ρhom(k) as in Eq. (8). Now if we
assume that the volume of the homogeneous system is suffi-
ciently large at a microscopic level but finite at a macroscopic
level, then by applying the MRE method the density of states
will have the following form [21,23]:

ρMRE(k) = ρhom(k) + �ρMRE(k), (11)

with

�ρMRE(k) = 3k

R
fS

(
k

m

)
+ 6

R2
fC

(
k

m

)
, (12)

where R is the radius of the sphere and m is the mass. On
the right hand side the first and second terms are the surface

and curvature contributions with the functions fS (k/m) and
fC (k/m) defined as the following forms, respectively:

fS

(
k

m

)
= − 1

8π

(
1 − 2

π
arctan

k

m

)
, (13)

fC

(
k

m

)
= 1

12π2

[
1 − 3k

2m

(
π

2
− arctan

k

m

)]
. (14)

For the homogeneous case the second term in the density of
states of Eq. (10) has been dropped. Therefore within the
framework of the MRE the grand potential of a finite size
spherical system in the FL model can be written as

�MRE(σ̄ , T ) = U (σ̄ ) − 4Nf NcT

×
∫

dkρMRE(k) log(1 + e−Ek/T ). (15)

Next we take into account the inhomogeneous field back-
ground. The second term in Eq. (10) should not be neglected.
If we consider a spatial spherically symmetric σ field σ̄ (�r) =
σ̄ (r), the density of states of momentum will receive a further
correction derived from the second term in Eq. (10), i.e.,

�ρinho(k) = 3

4π2R3

∑
l

(2l + 1)
dδl (k)

dk
, (16)

where l is the quantum number of the angular momen-
tum. In the FL model the density of states of momentum is
changed due to the thermal quark scatterings on the inhomo-
geneous background field. δl (k) is the scattering phase shift
of quarks in the inhomogeneous background field of σ̄ (r).
The scattering phase shift can be determined by the partial
wave scattering method from the following stationary Dirac
equation:

[−iγ0 �γ · �∇ + γ0gσ̄ (r)]ψ = Eψ. (17)

The background field σ̄ (r) can be decomposed into two parts,
the homogeneous vacuum part and the inhomogeneous spatial
part, as the following:

σ̄ (r) = σv0 + σ̃ (r). (18)

By this decomposition we need to ensure that when r → ∞,
the background field σ̄ (r) goes to its vacuum value σv0, and
σ̃ (r) → 0. In this work σ̃ (r) is set to be a spatial configuration
described using a Woods-Saxon form, which can be written as

σ̃ (r) = − α

1 + eβ(r−r0 )
, (19)

where α, β, and r0 are the adjustable parameters. The calcula-
tion of the scattering phase shift from Eq. (17) was discussed
in our previous work [40,41], where the scattering phase shift
was derived and regularized. The whole calculation of the
renormalization for the phase shift is highly nontrivial. How-
ever, in the MFA limit the zero-point energy will be neglected
and we only preserve the regularized phase shift in this work.
To make the calculation self-contained, a brief derivation of
the phase shift is presented in the Appendix. The final result
is the regularized phase shift δ̄l (k) which can be numerically
evaluated. By substituting the regularized scattering phase
shift into Eq. (16) one can further determine the correction of
the density of states due to the inhomogeneous background.
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Compared to that of the homogeneous system the density
of states for a finite volume inhomogeneous system will have
the correction term of �ρinho. The final result of the density of
states for the finite size inhomogeneous system is

ρ(k) = ρhom(k) + �ρMRE(k) + �ρinho(k)

= k2

2π2
+ 3k

R
fS

(
k

m

)
+ 6

R2
fC

(
k

m

)

+ 3

4π2R3

∑
l

(2l+1)
d δ̄l (k)

dk
. (20)

Then the kinetic part of the grand potential for an inhomoge-
neous sphere can be written as

�kin = −4Nf NcT
∫

dkρ(k) log(1 + e−Ek/T ), (21)

where Ek =
√

k2 + g2σ̄ 2. In contrast, the σ field part of the
grand potential for the inhomogeneous sphere has the follow-
ing form:

�σ = 4π

V

∫
drr2

[
1

2

(
d σ̄ (r)

dr

)2

+ U (σ̄ (r))

]
. (22)

According to the decomposition of the σ field the homoge-
neous part can be separated from the integration and the result
is

�σ = U (σ̄ ) + 4π

V

∫
drr2

[
1

2

(
d σ̃ (r)

dr

)2

+ Ũ (σ̃ (r))

]
, (23)

where the potential Ũ (σ̃ ) satisfies that Ũ (σ̃ ) → 0 when r →
∞ and σ̃ → 0 and its form is

Ũ (σ̃ (r)) = 1

2!

(
a + bσv0 + 1

2
cσ 2

v0

)
σ̃ (r)2

+ 1

3!
(b + cσv0)σ̃ (r)3 + 1

4!
cσ̃ (r)4, (24)

in which σv0 is fixed by the absolute minimum of the U (σ̄ ) as

σv0 = 3|b|
2c

[
1 +

(
1 − 8ac

3b2

)1/2]
. (25)

The bag constant B in U (σ̄ ) is thus fixed as

B = −
(

a

2!
σ 2

v0 + b

3!
σ 3

v0 + c

4!
σ 4

v0

)
. (26)

Finally we obtain the grand potential of the finite volume
spherical inhomogeneous system as

�inhom(σ̄ , σ̃ , T ) = U (σ̄ ) + 4π

V

∫
drr2

[
1

2

(
d σ̃ (r)

dr

)2

+ Ũ (σ̃ (r))

]
− 4Nf NcT

∫
dkρ(k)

× log(1 + e−Ek/T ). (27)

One should notice that the calculation of ρ(k) is nontrivial.
In principle ρ(k) should vary with the quark mass m = gσv

which is temperature dependent. However, by our numerical
study we find that the variation of the mass in ρ(k) at finite

temperatures for a given system size R only gives a small mod-
ification to the grand potential, which is specifically discussed
at the end of the next section. Therefore, as an assumption
in the following discussion the quark mass in ρ(k) could be
taken as a fixed value at m = gσv0 and this assumption is also
addressed at the end of the next section. As the ρ(k) is only de-
pendent on the spatial configuration of the σ background field
σ̃ (r) and the system size R, the homogeneous mean field σ̄ in
the grand potential could be treated as a variable. At a certain
temperature the σ̄ can be determined by the thermodynamic
equilibrium condition as

∂�inhom(σ̄ , σ̃ , T )

∂σ̄

∣∣∣∣
σ̄=σv

= 0. (28)

Thus, the σ mean field value σ̄ = σv at the global minimum
of the grand potential �(σ̄ , σ̃ , T ) is an order parameter of the
phase transition in the finite volume inhomogeneous system
at finite temperatures.

IV. NUMERICAL RESULTS AND DISCUSSIONS

Now we present the numerical results of the systems with
the MFA and the finite volume effect by MRE, and the system
with inhomogeneous background in a finite volume sphere,
respectively. The grand potential and the order parameter are
focused on in order to illustrate the phase transition. We give
the variation curves of the grand potential with respect to
σ̄ at different temperatures in different conditions, and the
corresponding curves of its global minimum, or the order
parameter σv with respect to T , is also illustrated. The model
parameters are set as a = 17.7 fm−2, b = −1457.4 fm−1,
c = 20 000, and g = 12.16, which are widely used in the
literature [29,42]. Thus the quark mass m = gσv0 and the bag
constant B are determined according to Eqs. (25) and (26).
The quark flavors and colors are set to be Nf = 2 and Nc = 3.
The following numerical results are based on the assumption
that the quark mass in ρ(k) is fixed. However, at the end of
this section we give some numerical evaluations on the cases
of the temperature-dependent quark mass in ρ(k) and discuss
its influence on our results.

As the deconfinement phase transition in the FL model at
MFA has been extensively studied in the literature, here we
just discuss the modification to the phase transition of the
MFA due to the effect of MRE for the given system size R.
From the result of the grand potential (15) with the density of
states ρMRE as shown in Eq. (11), the variation curves of the
grand potentials �MRE(σ̄ ) as functions of σ̄ at different tem-
peratures at R = 3 fm are shown in Fig. 1(a). To compare the
potential curves at different temperatures the curves have been
shifted to have the same fixed zero value of the grand potential
at σ̄ = 0. One can see there are two minima corresponding
to the two vacua. At relatively low temperatures the physical
vacuum is at the minimum with nonzero value of σ̄ . With the
temperature increasing, the physical vacuum rises. At a certain
temperature Tc = 136.5 MeV the two minima degenerate.
The temperature Tc is the critical temperature of the decon-
finement phase transition at the system size of R = 3 fm.
When the temperature is further increased the physical vac-
uum is changed to be at the minimum with zero value of σ̄
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FIG. 1. (a) The variation curves of the grand potentials as functions of σ̄ at R = 3 fm for different temperatures. (b) The variation curve of
the order parameter σv as a function of temperature T for R = 3, 4, and 5 fm and the MFA, respectively.

which becomes the global minimum of the grand potential.
The σ field value σv at the physical vacuum is the order
parameter, so Fig. 1(b) illustrates how the order parameter
varies with the temperature. The solid line corresponds to the
case of R = 3 fm. One can see that the order parameter has a
sudden jump at the critical temperature Tc which represents a
first order phase transition. If the system size R is increased
as R = 4 fm and R = 5 fm, one can see that the critical tem-
perature Tc becomes lower. If it approaches the limiting case
as R → ∞, the MFA result which has a critical temperature
Tc = 120.1 MeV will be recovered. Thus, one can see that the
description of the first order phase transition at the MFA is not
much changed by the finite volume effect via MRE except for
a higher critical temperature at a smaller system size.

Next, we examine the numerical results of cases with the
inhomogeneous background field σ̃ (r) for which the spatial
configuration is determined by the parameters α, β, and r0 as
shown in Eq. (19). As we know at a semiclassical level there
is a soliton solution in the FL model. The σ field in the soliton
solution has a spatial configuration of the Woods-Saxon type
in which the values of the parameters of α, β, and r0 can
be fitted approximately as α ≈ 0.26 fm−1, β ≈ 8 fm−1, and
r0 ≈ 1 fm. In this study we take the configuration of the σ

field in the soliton solution as an initial configuration. The
parameters α, β, and r0 can vary. Our purpose is to study how
the phase transition is influenced by varying the configuration
of the inhomogeneous background field of the σ . The param-
eter α describes the depth of the potential well of the σ field.
The parameters β and r0 determine the spatial varying rate
of the potential wall and the width of the potential well of
σ̃ (r). It should be emphasized that in our study σ̃ (r) is not
the meaning of the hadron but describes the spatially inhomo-
geneous fireball in the heavy ion collision. In the following
study the vacuum value of the σ field outside the fireball is
fixed at σv0. The parameter α is fixed at α ≈ 0.26 fm−1 which
corresponds to a fixed depth of the potential well in σ̃ (r),
while β and r0 vary by hand. The reason for this treatment is
that we assume in the heavy ion collisions that the difference
between the vacuum values of the σ field inside the fireball
and outside the fireball will change relatively slowly during

the phase transition while the size and shape of the fireball
will change more remarkably.

In the calculation of the grand potential one may notice
that there is a summation over angular momentum quantum
number l in the evaluation of the inhomogeneous part of the
density of states [Eq. (20)]. In principle the summation index
l goes to infinity. However, the contribution to the density of
states from the scattering of the partial wave will decrease
with the angular momentum quantum number l increasing. As
an approximation in the real numerical calculation we only do
the summation over l = 0, 1 which means only the s and p
partial waves are included in the summation.

Now we are in a position to study how the phase transition
in a finite volume is influenced by varying the spatial con-
figuration of the background field σ̃ (r) through changing the
parameters β and r0. In the following calculation the system
size is taken as R = 3 fm. First let β be fixed at β = 8 fm−1

and vary r0. From Fig. 2(a) one can see with r0 increasing
the width of the potential well becomes larger. By Eq. (17)
the scattering phase shift can be numerically calculated in the
potential background with different r0, and the order param-
eter σv can be determined at different temperatures through
Eq. (28) at certain r0. In Fig. 2(b) the temperature dependence
of the σv for different r0 has been plotted. When r0 is very
small (r0 � 0.3 fm), the spatial distribution of the inhomoge-
neous area is very small, and the quantum fluctuation over this
tiny inhomogeneous background is also very small. As a result
the phase transition is still a strong first order phase transition,
and the case is very similar to that of the MRE result. When
r0 gets larger it is clear that quantum corrections from the
inhomogeneous background become notable. In Fig. 3(a) at
r0 = 1.5 fm it is shown that besides the global minimum
of the physical vacuum a new local minimum emerges near
the zero value of the σ field in the grand potential at rela-
tively low temperatures before the phase transition. When the
temperature is greater than the critical temperature this local
minimum becomes the global minimum which corresponds to
the physical vacuum. The corresponding variation of the order
parameter σv with the temperature can be seen in Fig. 2(b). It
is clear that the first order phase transition has been weakened.
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(a) (b)

FIG. 2. (a) The spatial configurations of σ̃ (r) for the fixed β = 8 fm−1 and different r0. (b) The σv as functions of temperature for different
inhomogeneous backgrounds represented by different r0 with fixed β and R = 3 fm.

When r0 is further increased (r0 � 1.9 fm) it is found that the
first order phase transition has been changed into a crossover.
One can see the order parameter continuously decreasing
with temperature increasing in Fig. 2(b). From Fig. 3(b) at
r0 = 2.1 fm one can see that there is only one minimum in the
grand potential which is corresponding to a unique vacuum in
this system and with temperature increasing it continuously
moves towards a small value of the σ field which displays a
crossover.

In the above analysis one can see that with the spatial size
of the inhomogeneous background increasing the quantum
fluctuations become more and more remarkable, which gradu-
ally changes the first order phase transition into the crossover.
Further, it is found that the critical temperature of the phase
transition does not always increase with r0 increasing. There
is a subtle competition and balance between the contribution
from the s-wave scattering and p-wave scattering, as follows.
When r0 � 0.3 fm the quantum corrections from both s and
p waves are small. The critical temperature of the phase
transition almost stays unchanged with r0 increasing. When
r0 ≈ 0.4 fm there emerges an s-wave bound state energy level
in the energy spectrum of the Dirac Eq. (17) which makes a

relatively notable enhancement of the critical temperature of
the phase transition as shown in Fig. 2(b). At relatively small
r0 the quantum correction from the s wave is larger than that
of the p wave. When an s-wave bound orbital appears the first
order phase transition is modified remarkably which means
the critical temperature of the phase transition is increased and
the first order phase transition is weakened. However, when r0

is further increased from 0.4 to 0.9 fm one will find that the
critical temperature of the phase transition decreases and the
first order phase transition strengthens as shown in Fig. 4(b).
This abnormal varying trend in the above interval of varying
r0 is because the s-wave contribution is decreasing while the
p-wave contribution is increasing. The contribution from the
p wave counteracts that from the s wave as long as there is
no bound state energy level in the p-wave state. According
to the Levinson index theorem the number of bound states
nl with the angular momentum l in our case is given by
nlπ = δ̄l (k = 0) [43,44]. From Fig. 4(a) one can see that the
p-wave phase shift at zero momentum remains at zero when
r0 changes from 0.4 to 0.9 fm. As a result there is no bound
state level in the p-wave state and the p-wave contribution
plays the role of strengthening the first order phase transition

(a) (b)

FIG. 3. (a) The grand potentials as functions of σ̄ for β = 8 fm−1 and r0 = 1.5 fm at R = 3 fm for different temperatures. (b) The grand
potentials as functions of σ̄ for β = 8 fm−1 and r0 = 2.1 fm at R = 3 fm for different temperatures.
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(a) (b)

FIG. 4. The regulated p-wave phase shifts as functions of momentum k for fixed β and different r0. (b) The σv as functions of temperature
for different inhomogeneous backgrounds represented by different r0 with fixed β and R = 3 fm.

in the above varying interval of r0. However, the situation
will change until r0 � 1.0 fm when there emerges a bound
state energy level in the p-wave state which can be seen from
Fig. 4(a) that δ̄1(k = 0) = π . There is a sign flipping of the
p-wave contribution such that its influence becomes greater
than that of the s-wave. As a result the critical temperature
of the phase transition is suddenly increased dramatically and
the first order phase transition is remarkably weakened which
can be seen in Fig. 4(b). After that the p-wave contribution
increases with r0 increasing and plays the dominant role in
modifying the phase transition. Therefore, the first order phase
transition is further weakened with increasing r0 and gradually
turned into a crossover at r0 � 1.9 fm as shown in Fig. 2(b).

Second let us fix r0 = 1.5 fm and let β vary. In Fig. 5(a)
it is shown that with β decreased the variation of the σ field
over radial distance near the potential wall becomes milder.
The parameter β determines the steep level of the wall of
the potential well of the σ field. It is found that with β

decreased the first order phase transition is weakened and
the critical temperature of the phase transition is increased
as shown in Fig. 5(b). When β � 4 fm−1 there is one bound
state energy level in the s-wave state and one in the p-wave
state. The quantum correction from the p-wave scattering is

more remarkable than that of the s wave. With β decreased
the first order phase transition is weakened and the critical
temperature of the phase transition is increased. However,
it should be noted that there is a nontrivial variation of the
modification to the phase transition between β = 4 fm−1 and
β = 3 fm−1. At β ≈ 3 fm−1 there emerges a second bound
state level in the s-wave state which can be observed from the
s-wave phase shift. From our numerical calculation it is found
that the s-wave phase shift value at zero momentum jumps
from δ̄0(k = 0) = π to δ̄0(k = 0) = 2π . The correction from
the s-wave scattering is once again greater than that of the p
wave and becomes the dominant part in the contribution to the
density of states. As a result the first order phase transition is
turned into a crossover. After that the pseudocritical temper-
ature of the crossover will slowly increase with β decreasing
as long as there is no additional bound state level appearing in
the s-wave or p-wave state.

Here we want to make some comments on the bound state
energy level and how it influences the phase transition. In the
inhomogeneous background field of σ the bound state may
be formed in the thermal quark system. In principle these
discrete bound state energies may directly contribute addi-
tional isolated terms in the grand potential. However, as these

(a) (b)

FIG. 5. (a) The spatial configurations of σ̃ (r) for fixed r0 = 1.5 fm and different β. (b) The σv as functions of temperature for different
inhomogeneous backgrounds represented by different β with fixed r0 and R = 3 fm.

045203-7



XIAOGANG LI, SONG SHU, AND JIA-RONG LI PHYSICAL REVIEW C 105, 045203 (2022)

(a) (b)

FIG. 6. (a) The grand potentials as functions of σ̄ with σv0 vs with σvT at β = 8 fm−1 for r0 = 1.5 fm and r0 = 2.1 fm at the temperature
of 160 MeV and R = 3 fm. (b) The σv as functions of temperatures with σv0 vs with σvT at β = 8 fm−1 for r0 = 1.5 fm and r0 = 2.1 fm at
R = 3 fm.

energy terms are constant energies and averaged by the space
volume, they give a small constant background energy which
only shifts the whole grand potential upward or downward.
Therefore, these isolated terms are ignored in our calculation.
However, the discrete bound state can also influence the grand
potential by the density of states. Through the scattering mode
of the continuum over the inhomogeneous background, the
bound state indirectly modifies the phase transition. The phase
shift of the different scattering partial wave will be changed
dramatically when the bound state level emerges, so it will
give remarkable modification to the density of states. As a
result the grand potential will be substantially modified ac-
cordingly. Our study shows that the possible bound state in
the special partial wave state in the thermal quark system will
largely enhance the quantum scattering effect of the corre-
sponding partial wave which results in weakening the first
order phase transition or even turning the first order phase
transition into a crossover.

We will also discuss the volume dependence of the quan-
tum scattering effect in the inhomogeneous background. From
the expression of the density of states [Eq. (20)] one can see
that the size R of the system appears in the denominator;
specifically, the surface and curvature terms are an order of
1/R and 1/R2, respectively, and the inhomogeneous term is
order of 1/R3. Therefore, by a qualitative analysis it can be
deduced that when the system size is large enough the quan-
tum fluctuations of the inhomogeneous background can be
neglected and the MRE result will be recovered, and if the sys-
tem size goes to infinity the MFA result will be recovered. In
our case if the system size R is greater than about 10 fm, with
r0 increasing or β decreasing, the first order phase transition
may be weakened in some degree while the crossover will not
appear. Therefore, the MRE result is nearly recovered. When
the system size R is greater than about 20 fm the quantum
scattering effect over the inhomogeneous background could
be almost neglected and the MRE effect also becomes very
small. Hence the result is very close to the case of the MFA.

Finally we analyze the effects on our results of using
the temperature-dependent quark mass instead of the fixed
mass in ρ(k). One can let the quark mass m = gσv vary with

temperature which means the σv will not be fixed at σv0

but determined by the absolute minimum σvT of the grand
potential � at finite temperatures for the given system size
R. This requires that the σv in ρ(k) should be iterated when
solving Eq. (28) at a given temperature. The numerical it-
eration process can be described, as follows. First we use
σv0 as an initial value in ρ(k) to solve Eq. (28) at the given
temperature. One can obtain the solution σv1 which is the
absolute minimum of the potential �. Then σv1 will be sub-
stituted into ρ(k) for the next iteration, and so on. Once the
difference between σvi and σv,i+1 is very small we obtain the
real stable vacuum value σvT and the temperature-dependent
quark mass m = gσvT in ρ(k). For an illustration of the results,
we numerically evaluated two cases at the fixed β = 8 fm−1

for r0 = 1.5 fm and r0 = 2.1 fm, respectively, for the given
system size R = 3 fm. The numerical results are shown in
Fig. 6. In Fig. 6(a) the grand potentials are plotted at given
temperature T = 160 MeV with the fixed mass m = gσv0 and
with the iterated mass m = gσvT for comparisons. One can see
that the grand potentials are modified very slightly due to the
substitution of σv0 with σvT in ρ(k). The modified degree of
the grand potential will gradually increase with temperature
increasing, especially near the phase transition or crossover
region. In Fig. 6(b) it could be seen that the order parameter
determined by the absolute minimum of the grand potential
has been modified accordingly. The modifications of the order
parameter are more remarkable near the phase transition or
crossover region than those in the regions before and after the
transition or crossover. However, generally speaking the quan-
titative modifications at finite temperatures for the finite size
system are moderate and they will not qualitatively change the
physical conclusions which we have made above.

V. SUMMARY AND OUTLOOK

In summary we studied the grand potential and the phase
transition in the thermal quark system with a finite volume un-
der the spatially inhomogeneous background field. By varying
the spatial configuration of the inhomogeneous background
the scattering phase shift for the different partial wave was
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numerically calculated in the corresponding inhomogeneous
background at a certain small spatial volume of the system.
It is found that when the bound state is formed in the thermal
system the density of states of momentum will be substantially
modified by the scattering phase shift of the corresponding
partial wave. As a result the first order phase transition in the
system with the given volume has been weakened remarkably
and even turned into the crossover. However, with the system
volume increasing, the quantum corrections in the inhomoge-
neous background will decrease. At sufficiently large volume
of the system the quantum corrections from the inhomoge-
neous background can be neglected.

It should be noted that the result here may be model de-
pendent. The different model parameters or approximation
schemes may quantitatively modify the numerical results of
our discussion. However, the basic physical features and con-
clusions here will not be changed. Additionally the FL model
is only a simple phenomenological model and lacks chiral
symmetry. The chiral phase transition could not be studied
in this model. Some outstanding questions after this study
include how the scattering phase shift in the chiral models
can be calculated in a spherical system with an inhomoge-
neous background and how the chiral phase transition will be
modified by the inhomogeneous background with the possible
bound states emerged. Future studies will use chiral models
like the linear σ model or the Nambu-Jona-Lasinio model to
address these issues.

APPENDIX: DERIVATIONS OF THE PHASE SHIFT

For the spherical symmetrical system one can assume the
form of the quark field as

ψ (�r) = 1

r

(
F (r)

i�σ · �erG(r)

)
yl

jm, (A1)

where yl
jm is the two-component Pauli spinor harmonic and

�er is the spatial unit vector. F (r) and G(r) are the upper
and lower components of the Dirac spinor. From the Dirac
equation (17) one can further derive the first order coupled
differential equations of F (r) and G(r) as(

d

dr
− l + 1

r

)
F (r) + (gσ̄ (r) + E )G(r) = 0, (A2)

(
d

dr
+ l + 1

r

)
G(r) + (gσ̄ (r) − E )F (r) = 0. (A3)

Then the coupled equations (A2) and (A3) can be rewrit-
ten into the following decoupled second order differential
equations as

F ′′ − gσ̄ (r)′

E + gσ̄ (r)
F ′ +

[
l + 1

r

gσ̄ (r)′

E + gσ̄ (r)
− l (l + 1)

r2

+ (E2 − g2σ̄ (r)2)

]
F = 0, (A4)

G′′ + gσ̄ (r)′

E − gσ̄ (r)
G′ +

[
l + 1

r

gσ̄ (r)′

E − gσ̄ (r)
− (l + 1)(l + 2)

r2

+ (E2 − g2σ̄ (r)2)

]
G = 0, (A5)

where the prime denotes the differentiation with respect to r.
For the evaluation of the phase shift both equations will give
the identical result. In the following discussion Eq. (A4) is
used for the calculation of the phase shift. When r � R the
asymptotic form of Eq. (A4) is

F ′′ −
[

l (l + 1)

r2
− k2

]
F = 0, (A6)

where k2 = E2 − g2σ 2
v0. The solutions will be spheri-

cal Hankel functions. Meanwhile it should satisfy that
F (r) → 0 with r → 0. There are two linearly independent
solutions,

F (1)
l (r) = eiβl (k,r)rh(1)

l (kr), (A7)

F (2)
l (r) = e−iβ∗

l (k,r)rh(2)
l (kr), (A8)

where h(1)
l (kr) and h(2)

l (kr) are the Hankel functions of the
first and second kinds and h(2)

l (kr) = h(1)∗
l (kr). The function

βl (k, r) should satisfy βl (k, r) → 0 as r → ∞. Then the scat-
tering solution is

Fl (r) = F (2)
l (r) + ei2δl (k)F (1)

l (r) (A9)

and obeys Fl (0) = 0, which leads to the result of the scattering
phase shift,

δl (k) = −Reβl (k, 0), (A10)

where Re means the real part. It is obvious that the phase shift
could be evaluated from βl . By substituting F (1)

l into Eq. (A4)
one could obtain the equation of βl ,

iβ ′′
l rhl + 2iβ ′

l (hl + rh′
l ) − β ′2

l rhl − gσ̄ (r)′

E + gσ̄ (r)
(iβ ′

l rhl + hl + rh′
l ) +

[
l + 1

r

gσ̄ (r)′

E + gσ̄ (r)
− g2

(
σ̄ (r)2 − σ 2

v0

)]
rhl = 0. (A11)

In the fixed background field of σ̄ (r) this equation could be numerically solved to obtain the phase shift δl (k).
To regularize the phase shift one has to make a Born expansion which means βl should be expanded in powers of g as

βl = gβl1 + g2βl2 + · · · . (A12)

Substituting the expansion (A12) into Eq. (A11) and neglecting the higher order terms O(g3) one can obtain a set of coupled
differential equations about βl1 and βl2 as

iβ ′′
l1rhl +

(
2iβ ′

l1 − σ̄ (r)′

E

)
(hl + rh′

l ) + (l + 1)
σ̄ (r)′

E
hl = 0, (A13)
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iβ ′′
l2rhl − β ′2

l1rhl − iσ̄ (r)′

E
β ′

l1rhl +
(

2iβ ′
l2 + σ̄ (r)′σ̄ (r)

E2

)
(hl + rh′

l ) −
[

(l + 1)

r

σ̄ (r)′σ̄ (r)

E2
+ (

σ̄ (r)2 − σ 2
v0

)]
rhl = 0. (A14)

These equations could be numerically solved to obtain the first
and second Born approximations of the phase shifts, namely,
δ

(1)
l and δ

(2)
l , as

δ
(1)
l = −gReβl1(k, r = 0), δ

(2)
l = −g2Reβl2(k, r = 0).

(A15)

Finally the regularized phase shift can be defined as

δ̄l (k) ≡ δl (k) − δ
(1)
l (k) − δ

(2)
l (k), (A16)

which can be numerically calculated.
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