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The formation of deuterons in heavy-ion collisions at relativistic energies is investigated by employing
two recently advanced models—the minimum spanning tree (MST) method and the coalescence model—by
embedding them in the parton-hadron quantum molecular dynamics (PHQMD) and the ultrarelativistic quantum
molecular dynamics (UrQMD) transport approaches. While the coalescence mechanism combines nucleons into
deuterons at the kinetic freeze-out hypersurface, the MST identifies the clusters during the different stages of
time evolution. We find that both clustering procedures give very similar results for the deuteron observables in
the UrQMD as well as in the PHQMD environment. Moreover, the results agree well with the experimental
data on deuteron production in Pb+Pb collisions at

√
sNN = 8.8 GeV (selected for the comparison of the

methods and models in this study). A detailed investigation shows that the coordinate space distribution of the
produced deuterons differs from that of the free nucleons and other hadrons. Thus, deuterons are not destroyed
by additional rescattering.

DOI: 10.1103/PhysRevC.105.044909

I. INTRODUCTION

The observation of light baryonic clusters in the central
rapidity region in ultrarelativistic heavy-ion collisions is a
topic of current interest with substantial research activity,
both on the theoretical side and on the experimental side.
A central physical question that emerged in recent years is
how such weakly bound objects could be produced in and
survive the hot and dense environment created in the central
collision region. A central methodological question is how to
identify/calculate such clusters in (dynamical) simulations of
heavy-ion reactions.

The experimental investigation of light nuclei production
in nuclear collisions started 60 years ago with proton induced
reactions [1]. Later on, light nuclei were also detected in
the more energetic collisions at high energy ion colliders.
Prime examples are the observation of clusters by the STAR
Collaboration at RHIC (Relativistic Heavy-Ion Collider) in
Brookhaven [2,3], as well as by the ALICE Collaboration
at the LHC (Large Hadron Collider) [4,5] and by the NA49
Collaboration at the SPS (Super Proton Synchrotron) [6,7] at
CERN, Geneva.

On the theoretical side, the first analysis of deuteron
formation proposed a coalescence mechanism (at that time
called p-n pairing) and derived that the deuteron number in

a given momentum interval [8] should be proportional to the
squared proton number at half the deuteron momentum [8].
A first comprehensive discussion of various ways to calcu-
late light cluster production was presented in [9]. There, the
coalescence approach [8], emission from a thermal source
[10], calculations using the “sudden approximation” [11],
time dependent perturbation theory estimates [9], and rate
equations [12] are discussed. Shortly after, the connection to
cascade models was introduced in [13,14] by assuming that
deuterons can be produced and destroyed during the whole
time evolution of the heavy ion reaction. Their rate of produc-
tion and disintegration is obtained by projecting the n-body
nuclear density matrix, which describes the time evolution of
the baryons, on the two-body density matrix of the deuteron
vacuum state. The time integrated rate gives the final deuteron
multiplicity.

Nowadays, mainly three approaches1 are used for the cal-
culations of light clusters: (I) Coalescence of protons and

1Recently, also an implementation of the explicit scattering pro-
cesses n + p ↔ d + x in a hadronic transport model was done, which
allows one to explore how deuterons form and be destroyed in a
dynamical setting [15,16].
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neutrons to light clusters (varying in the detailed imple-
mentation), (II) cluster finding algorithms like the minimum
spanning tree (MST) [17] or the simulated annealing cluster
algorithm (SACA) [18,19], and (III) thermodynamic models
(also with differences in the assumptions and details), where
the light clusters themselves are often treated as elementary
(long lived) degrees of freedom. For recent results using the
coalescence approaches we refer the reader to [20–28], for
the cluster finding algorithms to [29], and for those from ther-
modynamic approaches to [30–36]. One should note that all
models, despite their varying physical assumptions and details
of the implementation, provide very similar (and compatible
with data) deuteron yields over a broad range of collision
energies.

However, a tension seems to arise when considering at
which space-time point (or at which local conditions of tem-
perature and density) the light clusters are formed: In the
coalescence, MST, and SACA approaches, the consensus is
that nuclear clusters are formed through nuclear interactions
in the late (but still baryon rich) stage of the collision when
the temperatures are low and elastic and inelastic scattering
processes have ceased. This has to be contrasted by the for-
mation in the thermal model. Thermal model fits, based on
the multiplicity of a multitude of hadrons, yield a chemi-
cal fireball freeze-out temperature of the clusters of about
T = 160 MeV and a system which is dominated by mesons
[33]. In such an environment, clusters, which have a binding
energy of a couple of MeV per nucleon, would not be stable
(a prime example is the deuterium bottleneck in the big bang
nucleosynthesis [37], which indicates that deuterons are only
formed at temperatures below the deuteron binding energy).
This apparent tension between small binding energies and
high emission temperatures has been dubbed the “snowball
in hell” puzzle of the thermal model and is not present in the
coalescence approaches where the “snowball” is formed after
the reaction is over.

The goal of this study is to investigate deuteron production
by comparing the results of the two different procedures,
which are widely employed to identify clusters in dy-
namical simulations, coalescence and MST, applied to the
microscopic PHQMD (parton-hadron quantum molecular dy-
namics) and UrQMD (ultrarelativistic quantum molecular
dynamics) transport approaches. For this we compare the
deuteron multiplicity as well as differential observables (as the
rapidity distributions and the pT spectra) obtained in UrQMD
and PHQMD when applying the same cluster finding algo-
rithm to both approaches. In practice we extended UrQMD
and PHQMD simulation codes in a way that the MST method
(previously used in PHQMD) and the coalescence method
(previously used in UrQMD) are realized in a model indepen-
dent cluster recognition psMST library [38] which can then be
applied on equal footing to both transport approaches.

In Ref. [29] it was found within the PHQMD that in trans-
verse direction the nucleons associated with clusters are closer
to the center of the reaction at midrapidity than free nucleons
having also a higher average pT . Clusters survive the expan-
sion phase because the entrained nucleons move behind the
main stream of free nucleons and hadrons where collisions,
which destroy the weakly bound clusters, are less frequent. It

is important to see whether this observation is specific for the
MST algorithm, which is employed there to identify clusters,
or generic and hence also valid for the coalescence approach.

For the present comparative study we focus on Pb+Pb
collisions at

√
sNN = 8.8 GeV, where experimental data, mea-

sured by the NA49 Collaboration [7], are available.
The paper is organized as follows: In Sec. II we briefly

evoke the basic ideas of the cluster recognition procedures—
coalescence and MST—implemented in the PHQMD and
UrQMD models. In Sec. III we present the results for deuteron
production in heavy-ion collisions. In Sec. IV we study the
time evolution of deuteron production. Finally, in Sec. V we
summarize our findings.

II. CLUSTER PRODUCTION IN DYNAMICAL MODELS OF
HEAVY-ION COLLISIONS

In general, one might assume that the calculation of nuclear
clusters in relativistic nuclear collisions is rather straightfor-
ward. Based on the full n-body (time dependent) quantum
Wigner distribution of the nucleons, the Hamiltonian of the
system should allow for the binding of nucleons into nuclear
clusters using the (spin and iso-spin) dependent potential in-
teractions. These clusters should be stable asymptotic states
that can be identified at t → ∞. Such approaches are pos-
sible at very low collision energies and are realized, e.g.,
in fermionic/anti-symmetrized molecular dynamics models
[39,40], but are out of reach for beam energies well above
1A GeV, due to the relativistic kinematics.

At relativistic energies, one usually employs for the
deuteron production a phase space approximation to the quan-
tum Wigner density of the deuteron. Such approaches (like
the PHQMD and the UrQMD) simulate the n-body phase
space average over spin states and include only two-body
(density dependent) interactions. The QMD based models can
provide a satisfactory description of the underlying n-body
phase space distributions of nucleons to be used as a basis for
cluster production. While one expects that all simulation mod-
els provide the same results for the nucleon distribution, due to
differences in detail, like the parametrization of unmeasured
cross sections, and due to the complexity of the dynamics
involved, the results differ in detail, but they tend to give
qualitatively similar though quantitatively differing results.
In order to take into account and estimate such uncertainties
we employ two different models in two different setups for
the cluster production, namely the PHQMD model and the
UrQMD model, either in so-called cascade mode or including
the interactions of nucleons via hadronic potentials (potential
mode).

A. The parton-padron quantum molecular dynamics (PHQMD)

The PHQMD approach [29,41] as well as the ultrarelativis-
tic quantum molecular dynamics (UrQMD) [42,43] describe
ultrarelativistic heavy-ion collision using quantum molecular
dynamics. In these approaches the nucleons are presented as
Wigner densities of the wave functions. The n-body Wigner
density is the direct product of the one body Wigner densi-
ties (at the energy discussed here antisymmetrization can be
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neglected). The time evolution of the n-body Wigner density is
given by a variational principle. Because the nucleons interact
by mutual density dependent two-body interactions, energy
and momentum are strictly conserved. The n-body QMD ap-
proaches [17,44] allow then studying the correlations (e.g., a
deuteron as a two-body correlation).

This distinguishes the QMD from the Boltzmann-Uehling-
Uhlenbeck (BUU) type approaches like SMASH, AMPT, or
GiBUU, which propagate only the one-body phase space den-
sity f1(�r, �p) in a mean field by using the test particle method.
There, the two-body phase space density is factorized into
the product of two one-body densities neglecting the corre-
lation term: f2(�r1, �p1, �r2, �p2, ) = f1(�r1, �p1) · f1(�r2, �p2). This
factorization is a major shortcoming, because it rules out the
calculation of genuine two-body correlations, like deuterons.

A similar problem is present for the parton-hadron-string
dynamics (PHSD) approach for strongly interaction systems
[45–47] based on the Kadanoff-Baym equations [48] in first-
order gradient expansion [47]. It propagates density matrices
(in phase-space representation) which contain information not
only on the occupation probability (in terms of the phase-
space distribution functions as in BUU), but also on the
properties of hadronic and partonic degrees of freedom via
their spectral functions (cf. Ref. [49]). However, the nucleon-
nucleon potential in the PHSD approach is realized also on
the mean-field level and therefore prevents the direct study of
deuteron production.

To overcome this limitation, the PHQMD approach was
developed to include full n-body dynamics for the expansion
stage of the reaction. PHQMD is based on the PHSD approach
(in version 4.0 which includes the description of the partonic
phase [45,46,50,51]). The QGP phase in PHQMD is described
in terms of strongly interacting quasiparticles based on the
DQPM (dynamical quasiparticle model). As introduced in
Ref. [41], the cluster identification can then be realized in
PHQMD by the minimum spanning tree (MST) procedure
[17] (also used in this study) or by the simulated annealing
clusterization algorithm (SACA) (see [18,19]), as was previ-
ously done in QMD [18,52,53] calculations.

B. The ultrarelativistic quantum molecular dynamics (UrQMD)

UrQMD [42,43] includes as degrees of freedom the full
set of established hadrons and their resonances, summing up
to more than 50 baryon species and 40 meson species. The
parametrization of the cross sections among these hadrons are
similar to but differs in details from that in PHQMD. UrQMD
allows one to include, similarly to PHQMD, soft and hard
(density dependent) two-body interactions, which are mostly
relevant at low beam energies, while at higher energies the
model is usually used in the so-called cascade mode, which
means that between collisions or after decays hadrons are
propagated on straight line trajectories.

For the present study we use the UrQMD and PHQMD
models in two modes: the cascade mode without potential
and the potential mode including nucleon-nucleon potentials
(cf. Ref. [54] for UrQMD). In both models the potential is a
density dependent Skyrme-like potential with a hard equation-
of-state.

However, there is a difference in the practical realization of
the potential in both approaches. This difference is related to
the fact that a covariant formulation of the relativistic QMD
equations requires the reduction from an eight-dimensional
space [covariant xμ = (t, �r) and pμ = (E , �p)] to 6+1 dimen-
sions [i.e., (�r, �p, t)] by employing energy and time constraints
[55]. At the moment the full numerical realization of this
method for realistic heavy-ion calculations is not feasible.
Therefore, in order to extend the QMD approach to relativistic
energies, in the PHQMD a modified single-particle Wigner
density of the nucleons has been introduced (cf. [41]) to ac-
count for the Lorentz contraction of the nucleus in the beam
z direction in coordinate and momentum space by the inclu-
sion of γcm = 1/

√
1 − v2

cm, where vcm is the velocity of the
bombarding nucleon in the initial NN center-of-mass system.
Accordingly, the interaction density is modified, what leads to
the modification of the two-body forces between nucleons.

In the UrQMD realization, there is no additional γcm mod-
ification included, i.e., single-particle densities are treated as
spherical in coordinate space. This leads to different strengths
of the potentials and the results depend on this different imple-
mentation. We stress that, if we use the same single-particle
densities in PHQMD and UrQMD, the results of the two
involved models are very similar.

As a side remark, also a QGP phase can be included
into the UrQMD dynamics by switching to a hydrodynam-
ical hybrid description [56,57] for the most dense stages of
the reaction. For this study, however, we will use only the
hadron-string dynamics of the UrQMD, discarding the QGP
formation, i.e., without a transition to the hydro mode.

In the past the coalescence procedure has been applied
to study deuteron production in the UrQMD approach for
various energies; see, e.g., [26,58–61].

III. CLUSTER FORMATION IN THE PHQMD AND URQMD

In this section we briefly recall the basic ideas of the min-
imal spanning tree (MST) and coalescence procedures for the
cluster recognition as (previously) employed in the PHQMD
and UrQMD microscopic transport approaches.

A. Cluster recognition by the minimum spanning tree (MST)

In the QMD approach (here specifically the PHQMD re-
alization) nucleons interact by potentials and by collisions.
The potential between nucleons is attractive around nuclear
ground state densities and therefore at the end of the heavy-ion
reaction nucleons tend to stay together and to form clusters.
The binding energies are defined according to the Weizsäcker
mass formula for large nuclei, while for small nuclei, where
shell effects become important, we obtain binding energies of
around 1 MeV/N [41].

To identify clusters, a minimum spanning tree (MST) pro-
cedure is applied, which will be described in the following: In
the implementation of the MST algorithm used in this study,
only the coordinate space information is used to identify clus-
ters. A nucleon is considered as part of a cluster if its spatial
distance to any other nucleon is less than r0 = 4 fm in the
local rest frame of the cluster. The distance is calculated by
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a Lorentz transformation from the computational frame to the
local rest frame and the cutoff distance is chosen according to
the range of the potential in PHQMD. Nucleons that are more
distant than the cutoff distance are assumed to be unbound by
the attractive nuclear interaction of this specific cluster. The
main advantage of MST is to allow one to identify clusters
at any time during the evolution of the system. The clusters,
created by the potential interaction during the time evolution,
are therefore formed dynamically.

We have checked that additional cuts in momentum space
change the result only marginally (cf. [38]) because clusters
with a relative momentum larger than the corresponding bind-
ing energy do not stay together but separate in the expanding
system. Being a semiclassical simulation of the bound cluster
states, the clusters are not fully stable as a function of time and
the cluster multiplicity has to be determined at a given time.
It has been checked that a determination of the cluster states
at different (earlier or later) times change only the multiplicity
of the clusters but neither the form of the rapidity distribution
nor that of the transverse momentum distribution.

From a previous analysis of the cluster production in
PHQMD, the conclusion has been advanced that clusters are
closer to the center of the reaction as compared to free nucle-
ons and hadrons [29]. The fact that nucleons in a cluster and
free hadrons are not at the same place in coordinate space may
therefore explain why collisions between clusters and hadrons
are not frequent and therefore do not destroy the produced
clusters during the further evolution of the system.

B. Phase space coalescence approach

The phase space coalescence approach is a statistical
description of cluster production, based on proximity in mo-
mentum and coordinate space. In line with the coalescence
idea suggested by [13], the coalescence into a cluster is per-
formed at kinetic freeze-out; this means after all elastic and
inelastic collisions have ceased. The main advantage of the
coalescence approach is that it can be employed even if the
underlying hadronic model does not include a proper descrip-
tion of nuclear interaction potential, which would be needed
for a dynamic transition of the nucleons into bound states.

This is a main reason for the popularity of the coales-
cence model in the simulation of high energy nucleus-nucleus
collisions, because such models do often not include a nu-
clear potential. A coalescence procedure has been recently
applied in Refs. [23,26] to the UrQMD approach and in
Refs. [22,24,27,62–64] to the AMPT model (a multiphase
transport model).

In the present coalescence implementation for deuteron
production, the relative positions and momenta for all proton-
neutron pairs in their center-of-mass (CM) frame is calculated
after the individual last scattering of the two nucleons. The
following procedure is employed to generate deuterons: (I)
The time of last scattering of each of the both nucleons in the
p-n pair is calculated from the simulation. The last scattering
of the pair is defined by the nucleon of the pair which scatters
at the later time. (II) The p-n center-of-mass frame is deter-
mined and the nucleon, which had its last collision earlier is
propagated to the freeze-out time of the other nucleon. (III)

The relative momentum �P and distance �R between the
proton and the neutron in its CM frame is calculated. If �P <

0.285 GeV and �R < 3.575 fm, a deuteron may be formed.
(IV) If the above condition is met, then the probability that a
deuteron is formed is given by the spin-isospin combinatorial
factor Pd = 3/8. (V) If a deuteron is formed its momentum
is given by the sum of the p-n momenta in the CM frame,
boosted back into the computational frame.

Note, that in this approach the two coalescence factors �P
and �R are considered as free parameters and are fixed once
and then used to make predictions at other systems and beam
energies. The numerical values of �P and �R are taken from
[26], and were adjusted to describe the p+Be (E802-exp.),
p+Au (E802-exp.), and Si+Pb (E814-exp.) rapidity distribu-
tion data on deuterons at 14.6A GeV beam energy [65]. Other
coalescence approaches try to constrain the free parameters
by assuming the width of the deuteron wave function in phase
space [22,24,62]. A comparison between both coalescence
approaches showed that they yield within 30% similar results
as long as the product �P�R is fixed [21], which is within the
systematic error obtained from the variation of the deuteron
wave function (Hulthen wave function vs harmonic oscillator
wave function) in the Wigner function approach.

For further details on the procedure to identify clusters—
MST and coalescence—we refer the reader to the original
publications of the PHQMD [41] and UrQMD [23,25,26]
groups. Furthermore, the detailed description of differences
between the PHQMD (and PHSD) and the UrQMD transport
approaches can be found in a recent review [66].

IV. BULK OBSERVABLES FOR DEUTERON PRODUCTION

In this section, we present the results of the study for the
“bulk” observables, such as rapidity distributions and trans-
verse momentum spectra. In order to explore the influence of
the nucleon-nucleon potential on the deuteron production we
apply two modes of the PHQMD and the UrQMD transport
approaches: in the first mode we switch off the nucleon-
nucleon potential (cascade mode), while in the second mode
the standard nucleon-nucleon potential is active (potential
mode).

As mentioned in Sec. II, in the PHQMD approach in the
regions of high local energy density (above a critical energy
density of εC � 0.5 GeV/fm3) a transition from hadronic
to partonic degrees-of-freedom occurs, i.e., the system is in
the QGP phase. Here, the nucleon-nucleon potential acts on
baryons only during the hadronic phase, i.e., during the pri-
mary NN collisions, after the hadronization and on baryons
from the hadronic “corona” in the peripheral reaction re-
gion, which are not part of the QGP. We use UrQMD in the
hadron-string mode (i.e., without a QGP phase realized via
hydrodynamics). Therefore, in UrQMD the nucleon-nucleon
potential is also active when the system is strongly com-
pressed and dense.

We mention that nucleons, which do not scatter at all, are
not included in the analysis of the deuterons. They are only
relevant for the fragmentation region, where the dissociation
of the spectator should be better treated with a multifrag-
mentation approach and not via coalescence or MST. For the
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FIG. 1. Rapidity distribution of protons at the “freeze-out” time
before the coalescence. The solid red line corresponds to the UrQMD
with potential, the magenta dashed line represents UrQMD results
in the cascade mode, the blue solid line shows PHQMD predictions
with potential, while the dashed cyan line is for PHQMD in cascade
mode. The experimental data (black circles) are from NA49 Collab-
oration [6].

results at midrapidity, studied in this paper at
√

sNN = 8.8
GeV, the fragmentation region can be well separated and is
not relevant for this investigation.

A. Proton rapidity and pT distributions

Since the dynamics of the nucleons is essential for the
deuteron production, we start with the investigation of the
proton rapidity distributions. As discussed above, different
realizations of the PHQMD and UrQMD models are possible,
i.e., including a partonic or fluid phase, changing the medium
properties like the equation of state and the treatment of the
QMD potentials. Here, we focus on the most relevant and
different realizations of the two models, the UrQMD and
PHQMD models in cascade and potential mode which provide
the most significant differences in the proton distributions.
It was shown before [57,67] that the shape of the rapidity
distributions of hadrons is only be weakly influenced by an
intermediate fluid-dynamics stage and its equation of state and
is sensitive mainly on the initial string dynamics. Similarly,
for the transverse momentum spectra, the effect of including
the QMD potentials in UrQMD is much stronger than includ-
ing a fluid dynamical phase with different equations of state
[57,67]. Thus, we restrict our comparison to the following.
In Fig. 1 we compare the rapidity distributions of all protons
which had at least one collision with the data from the NA49
Collaboration [6] for central Pb+Pb collisions (b � 3 fm) at√

sNN = 8.8 GeV calculated at the “freeze-out” time before
the coalescence is applied.

The solid red line corresponds to the UrQMD with poten-
tial, the magenta dashed line represents UrQMD results in the
cascade mode, the blue solid line shows PHQMD predictions
with potential, while the dashed cyan line is for PHQMD in
cascade mode. The experimental data (black circles) are from
the NA49 Collaboration [6].

The baryon number is strictly conserved in both ap-
proaches but there is a differences in the final baryon
chemistry: UrQMD has about 8% more protons at midrapid-
ity (and about 3.5% more integrated over all rapidity) than
PHQMD. This is compensated by a slightly larger number of
strange baryons in PHQMD at

√
sNN = 8.8 GeV (cf. Fig. 15

in Ref. [41] for the � yield in the PHQMD, which is in line
with the NA49 data). For PHQMD the difference between cas-
cade mode and potential mode is negligible whereas UrQMD
in cascade mode leads to a higher central rapidity density. The
inclusion of the nuclear potentials, during the dense phase,
leads to a broadening of the rapidity distribution due to the
enhanced radial as well as longitudinal flow created through
the strong repulsion at high densities.

Next we turn to the transverse momentum distribution of
the nucleons (protons+neutrons) at freeze-out, but before co-
alescence as shown in Fig. 2. From top to bottom we show
the transverse momentum distributions for different rapidity
windows defined by the deuteron measurements of the NA49
Collaboration discussed below (top: −0.4 < y < 0; middle:
−0.8 < y < −0.4; bottom: −1.2 < y < −0.8) for the two
different models (UrQMD in red color, PHQMD in blue
color) each in cascade mode (dotted lines) and potential mode
(full lines). We observe here as well that PHQMD in the
cascade mode yields the same spectrum as in the potential
mode. The UrQMD spectra are generally stiffer as compared
to the PHQMD spectrum. In the UrQMD in the potential mode
the spectrum is stiffer than in the cascade mode due to the
release of the nucleon-nucleon potential energy which is built
up during the high density phase of the heavy-ion reaction.

It is clear from the discussion above that both models, in
different modes, provide visibly different phase space distri-
butions already for the protons and neutrons. Quantitatively,
the differences for the bulk of the matter, i.e., at central ra-
pidities and transverse momenta below 1.5 GeV, are on the
order of 15-30%. We see this as a systematic uncertainty of
the underlying distributions which consecutively will form
deuterons. It is therefore expected that, even if the formation
mechanism (coalescence or MST) is identical in the models,
the final deuteron spectra for the different models may also
deviate.

B. Deuteron rapidity and pT distributions

The rapidity distribution of deuterons, normalized to the
product of the neutron and proton rapidity distributions, is
shown in Fig. 3 for PHQMD (blue) and UrQMD (red) and
for the two different options for the potential. For this com-
parison both models use the coalescence approach to obtain
the clusters. We see that UrQMD produces less deuterons, per
proton-neutron pair, at midrapidity than PHQMD. This hints
toward different freeze-out conditions in the two models, i.e.,
differences in the relative spatial and momentum coordinates
of protons and neutrons at their last scattering. More precisely,
UrQMD seems to have a lower phase space density of protons
and neutrons at kinetic freeze-out which then translates into a
lower coalescence probability. In both approaches the shape of
the distribution is similar for the cascade and for the potential
setup.
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FIG. 2. Transverse momentum distribution of nucleons (p + n)
at the “freeze-out” time before the coalescence in the rapidity in-
tervals of −0.4 < y < 0.0 (top), −0.8 < y < −0.4 (middle), and
−1.2 < y < −0.8 (bottom). UrQMD results are shown in red color,
PHQMD in blue color. The cascade mode calculations are denoted
by dotted lines and potential mode simulations by full lines.

The final deuteron rapidity distributions for central Pb+Pb
collisions at

√
sNN = 8.8 GeV are displayed in Fig. 4 and

compared with the experimental data from the NA49 Collabo-
ration [7]. UrQMD results are shown in red color, PHQMD in
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FIG. 3. The deuteron to proton-times-neutron ratio
(dNd/dy)/[(dNn/dy)(dN p/dy)] as a function of rapidity. UrQMD
results are shown in red color, PHQMD in blue color. The cascade
mode calculation are denoted by dotted lines and potential mode
simulations by full lines. Here, all calculations use the coalescence
approach for deuteron production.

blue color. The cascade mode calculations are denoted by dot-
ted lines and potential mode simulations by full lines, and the
experimental data are mirrored and shown as circles. On the
left-hand side we show the rapidity distribution of deuterons
obtained by applying the coalescence procedure, and on the
right-hand side the deuterons are calculated by applying the
MST procedure at fixed eigentime t0. Following the procedure
of Ref. [29] for the MST we extract the yield at the physical
time t with t = t0 cosh(y), where t0 is the time measured in
the computational frame, the nucleus-nucleus center-of-mass
frame. t0 is different for the different modes [t0 = 100 fm/c
for UrQMD potential mode t0 = 60 fm/c for UrQMD cas-
cade mode, and t0 = 50 fm/c for PHQMD (both modes)].
The difference is due to the slightly different dynamics of
both programs. We observe that both methods, coalescence
and MST, to identify deuterons give very similar results,
for the multiplicity as well as for the form of the rapidity
distribution.

To illustrate the dependence of the deuteron distribution
on the nucleon-nucleon potential Figure 5 shows the result
of the MST analysis for two fixed times: tclust = 40 fm/c
(left figure) and tclust = 150 fm/c (right figure). The left fig-
ure demonstrates that the 2-particle correlations even at such
rather late times are similar in the calculations with and with-
out potential interaction, because the yields and the shape of
the deuteron distribution are nearly identical between all four
simulations. However, when going to later times, one observes
that only simulations including the nucleon-nucleon potential
are able to keep the clusters bound (which means they keep
the two-particle nucleon-nucleon correlation), while for the
simulations without potential the deuteron yield decreases at
central rapidities. This can be understood straightforwardly,
because without the attractive nucleon-nucleon potential in-
teraction the proton and neutron increase their spatial distance
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FIG. 4. Rapidity distribution of deuterons in central Pb+Pb reaction at
√

sNN = 8.8 GeV. UrQMD results are shown in red color, PHQMD
in blue color. The cascade mode calculation are denoted by dotted lines and potential mode simulations by full lines. Left: Distribution of
deuterons found by the coalescence algorithm at the freeze-out time. Right: Distribution of deuterons found by the MST algorithm for the time
t = t0 cosh(y). The experimental data (black circles) are from the NA49 Collaboration [7].

with time and can no longer form (or be identified as)
deuterons any longer.

In Fig. 6 we address the transverse momentum distribution
of deuterons in central Pb+Pb reaction at

√
sNN = 8.8 GeV.

UrQMD results are shown in red color, PHQMD in blue color.
The calculations in cascade mode are denoted by dotted lines
and those in potential mode by full lines. The experimental
data (black circles) are from the NA49 Collaboration [7]. The
left columns shows the calculations using coalescence, the
middle column the MST results, and the right column shows
the coalescence factor B2,

B2 =
E d3Nd

dP3
d(

E d3Nneutrons
d p3

n

)(
E d3Nprotons

d p3
p

) , (1)

versus transverse mass mT − m0 in the rapidity interval
−0.3 < y < 0.1 (as provided by the experiment) using coa-
lescence. The green dash-dotted lines show for comparison
the PHQMD results with potential interaction for the MST
scenario calculated at freeze-out time at the same clusteriza-
tion time as on the right panel of Fig. 4. From top to bottom

we show the rapidity bins −0.4 < y < 0.0 (top row), −0.8 <

y < −0.4 (middle row), and −1.2 < y < −0.8 (bottom row).
For the MST scenario B2, as a function of mT − m0, increases
whereas for the coalescence scenario we observe for large
mT a constant value or even a slight decrease. Whether this
difference allows to distinguish between the two scenarios by
comparing them with experimental data remains to be seen.
For this the beam energy dependence of B2 in the different sce-
narios has to be studied. For the MST approach a comparison
of B2 for different beam energies can be found in Ref. [29],
but for different centralities and different rapidity ranges.

For all rapidity bins we see a quite good agreement
between the theoretical results and the experimental data,
independent of the method to identify deuterons. Only for
UrQMD with potential are the spectra stiffer due to the repul-
sion of the nucleon-nucleon potential at high density, which
is related to the nonrelativistic Gaussian form of interaction
density as mentioned in Sec. II.

We can conclude from this section that the deuteron mul-
tiplicity as well as their rapidity and transverse momentum
distribution is rather independent of the way in which the
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FIG. 5. Rapidity distributions for deuterons (clusters with the mass number A = 2) identified within the MST procedure in central Pb+Pb
reaction at

√
sNN = 8.8 GeV for tclust = 40 fm/c (a) and tclust = 150 fm/c (b). UrQMD results are shown in red color, PHQMD in blue color.

The cascade mode calculations are denoted by dotted lines and potential mode simulations by full lines.
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FIG. 6. Transverse momentum distribution of deuterons in central Pb+Pb reaction at
√

sNN = 8.8 GeV. UrQMD results are shown in
red color, PHQMD in blue color. The cascade mode calculations are denoted by dotted lines and potential mode simulations by full lines.
The experimental data (black circles) are from the NA49 Collaboration [7]. The left column shows the calculations using coalescence, the
middle column the MST results, and the right column shows the coalescence factor B2 vs transverse mass mT − m0 in the rapidity interval
−0.3 < y < 0.1 using coalescence and an additional line (green dashed dotted) showing the PHQMD with potential calculation using the
MST. From top to bottom we show the rapidity bins: −0.4 < y < 0.0 (top row), −0.8 < y < −0.4 (middle row), and −1.2 < y < −0.8
(bottom row).

deuteron yield is obtained from the underlying nucleon distri-
bution. The coalescence and MST procedures give essentially
not only the same result but the predictions agree also well
with the experimental data. In view of the very different under-
lying methodology of the two procedures, this is a remarkable
result.

V. SPACE AND TIME DISTRIBUTION OF DEUTERON
PRODUCTION

As presented in Sec. III, the deuterons, identified either by
the coalescence model or by MST, are in good agreement with
the experimental data. Therefore it is useful to take advantage
of the transport approaches and to study in details the pro-
duction process. To be close to the experimental situation, we
concentrate here on the midrapidity region |y| < 1.

To get an overview of the space-time evolution of the
heavy-ion reaction we start out with the distribution of the
freeze-out time and transverse distance of nucleons and
deuterons (using the coalescence model) as displayed in
Fig. 7. The solid red line shows the deuterons from UrQMD

(potential mode), the solid orange line shows the free p + n
from UrQMD (potential mode), the dashed magenta line
represents the deuterons from UrQMD (cascade mode), the
dashed purple line the free p + n from the UrQMD (cascade
mode), the blue solid line shows the deuterons from PHQMD
(potential mode), and the cyan solid line the free p + n from
the PHQMD (potential mode). We define the freeze-out time
of each individual nucleon as the time at which this nucleon
had its last (elastic or inelastic) collision. The freeze-out (pro-
duction) time of deuterons in the coalescence model is defined
by the freeze-out time of the coalescing nucleons and taken
to be the later time of the two nucleons. The distribution of
the freeze-out times (Fig. 7, left) is generally peaked around
10–20 fm/c; however, we observe a systematic shift by ap-
proximately 5 fm between the freeze-out time of free nucleons
and that of nucleons which are bound in deuterons, which
freeze out later. At 40 fm/c the freeze-out probability has
decreased to 10% of its peak value and practically all colli-
sions have ceased. The curves are very similar for PHQMD
and UrQMD in cascade mode. A peculiarity observed in the
potential mode of UrQMD is that the bound nucleons continue
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FIG. 7. Freeze-out time distribution (a) and transverse distance distribution (b) at freeze-out of free (i.e., unbound) nucleons (p + n) and
deuterons (using coalescence). The solid red line shows the deuterons from UrQMD (potential mode), the solid orange line the free p + n from
UrQMD (potential mode), the dashed magenta line represents deuterons from UrQMD (cascade mode), the dashed purple line the free p + n
from UrQMD (cascade mode), the blue solid line shows the deuterons from PHQMD (potential mode), and the cyan solid line the free p + n
from PHQMD (potential mode).

to have very soft collisions, apparently extending the freeze-
out time. These collisions among nucleons bound in clusters
are suppressed in PHQMD by a minimal energy threshold.
When turning to the transverse distribution of the nucleons
and deuterons at freeze out, we observe that the majority
(defined again by 10% of the peak probability) of nucleons
and deuterons freeze out within 15 fm from the center of the
reaction. Here we also observe the long tail for the UrQMD
potential calculations which is due to the soft scattering dis-
cussed above.

Let us now explore the transverse spatial distribution of
nucleons and deuterons in more detail. In Fig. 8 we show on
the left-hand side the normalized distribution at a fixed center-
of-mass time of 30 fm/c and on the right-hand side at a fixed
center-of-mass time of 70 fm/c. One should note, that this
time cut is different from the one used in Fig. 7 (right) where
the location of the nucleons and deuterons at the freeze-out
time was shown. The color and line style coding is the same
as in the previous Fig. 7. Again, the deuterons are identified by
the coalescence procedure. We show additionally for PHQMD
the results for the MST procedure which gives nearly identical

results as the coalescence and do not show the MST results for
the other models to avoid to overcrowd the figure.

One clearly observes that the nucleon and deuteron po-
sitions follow the expansion flow with the maxima of the
distributions shifting by approximately 20 fm/c over the dura-
tion from 30 to 70 fm/c. An interesting observation is however
that the deuterons remain at smaller radial distances than the
nucleons (also the average rT of deuterons is in all transport
approaches smaller than that of the free nucleons). We quan-
tify this difference between nucleons and deuterons using the
location of the peak value Pmax and summarize the results in
Tables I and II for fixed times of 30 and 70 fm/c. One should
remember that the B2 distribution, Fig. 6, is almost flat. The
deuterons have therefore a velocity similar to the nucleons,
but their distance to the reaction center, Fig. 8, is smaller
than that of the free nucleons. Consequently, the deuterons
are produced at a smaller distance to the reaction center than
the free protons or probably at a later time. This is a hint of
a production at the end of the hadronization of the QGP or
from nucleons which are closer to the center of the reaction
than the average. We do not have sufficient information to
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FIG. 8. Transverse distance of unbound nucleons (p + n) and deuterons at 30 fm/c (a) and at 70 fm/c (b). The color scheme is the same
as on the Fig. 7. Additionally, the dark green dot-dashed line shows PHQMD deuterons found by the MST algorithm and the light green
dot-dot-dashed line represents free p + n from PHQMD with MST algorithm.
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TABLE I. Transverse distance rT of nucleons and deuterons at
Pmax at 30 fm/c. The table corresponds to the lines in Fig. 8, left.

rT (fm) at Pmax

Model mode d p

UrQMD potential 17 19
UrQMD cascade 11 15
PHQMD potential 11 15
PHQMD potential (MST) 13 17

investigate whether also in that rT region, where the bulk of
hadrons is localized, clusters are formed. The high hadron
density there will not allow them to survive and therefore they
do not contribute to the experimental observables.

VI. CONCLUSION

We have presented and compared the coalescence and min-
imum spanning tree (MST) procedures to calculate deuteron
production in the PHQMD and UrQMD models, both with
and without nuclear potential interactions. The coalescence
procedure assumes that deuterons are created when the last
collision of the nucleons of the pair takes place and if at this
time the relative distance of the two nucleons in coordinate
and momentum space is lower than the coalescence param-
eters. In the MST procedure one follows the nucleons and
determines at a much later (ideally asymptotically large) time
whether the spacial distance between the proton-neutron pair
is smaller than r0 = 4 fm. If this is the case and no other
baryon is closer than 4 fm to one of the nucleons of the
cluster this pair is considered as a deuteron. Based on this
setup, we have calculated the multiplicities, rapidity spectra
and transverse momentum spectra of nucleons and deuterons
in central Pb+Pb at

√
sNN = 8.8 GeV for all model/clustering

combinations.
Our main findings are the following:

(i) When applied to one of the transport codes the coales-
cence and the MST procedures provide very similar
multiplicities and very similar rapidity and pT distri-
butions.

(ii) The deuteron rapidity distributions and pT spectra
obtained from the PHQMD code are very similar to
those obtain from the UrQMD code, i.e., the results
are model independent.

TABLE II. Transverse distance rT of nucleons and deuterons at
Pmax at 70 fm/c. The table corresponds to the lines in Fig. 8, right.

rT (fm) at Pmax

Model mode d p

UrQMD potential 35 41
UrQMD cascade 29 35
PHQMD potential 27 35
PHQMD potential (MST) 29 35

(iii) The deuteron rapidity distribution and pT spectra
from central Pb+Pb at

√
sNN = 8.8 GeV agree quite

well with the experimental data of the NA49 Collab-
oration.

(iv) The coalescence as well as the MST procedure show
that the deuterons remain in transverse direction
closer to the center of the heavy-ion collision than
free nucleons. The results of the transport approaches
are therefore different from the statistical model as-
sumptions that assume a homogeneous distribution of
nucleons and deuterons.

(v) In this geometry, the deuterons do not pass the ex-
panding baryonic fireball, but are spatially separated,
which might explain why they are not destroyed by
collisions with the hot fireball hadrons.
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