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Qualifying collective behavior in expanding ultracold gases as a function of particle number
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Collective phenomena in quantum many-body systems are often described in terms of hydrodynamics, an
appropriate framework when the involved particle numbers are effectively macroscopic. We propose to use
experiments on expanding clouds of few and many interacting cold atoms to investigate the emergence of
hydrodynamics as a function of particle number. We consider gases confined in two-dimensional elliptically
deformed traps, and we employ the manifestation of elliptic flow as an indicator of collective behavior. We
quantify the response of the gas to the deformation of the trapping potential, and show how such information can
be used to establish how many atoms are needed for the system to develop a degree of collectivity comparable to
that expected in the hydrodynamic limit. This method permits one, in particular, to exploit observations made in
expanding atomic gases to shed light on the apparent hydrodynamic behavior of mesoscopic systems of quarks
and gluons formed in the scattering of light ions in high-energy collider experiments.
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I. INTRODUCTION

Emergent hydrodynamic behavior is observed in many-
body quantum systems across a wide spectrum of energy
scales, ranging from ultracold gases [1,2] (T ≈ 10−6 K)
created in tabletop experiments, to the hot and dense
strong-interaction matter, the quark-gluon plasma [3,4] (T ≈
1012 K [5]), produced in nuclear collisions performed in
the world’s largest accelerator machines. Hydrodynamics is
an effective description of the long-time and long-distance
behavior of a system, based on conservation laws [6,7]. A
substance behaves hydrodynamically as soon as the relaxation
of its conserved charges occurs on a time scale that is large
compared to the microscopic time associated (typically) with
the collisions of its constituents.

Observing the collective response to a perturbation does
not alone imply a fluid description. The connection between
collective and hydrodynamic behavior has been strongly em-
phasized in the context of high-energy nuclear experiments
since the beginning of the heavy-ion collision program.
Observation of strong elliptic flow, v2, in off-central nucleus-
nucleus collisions [8] indicates that the quark-gluon plasma
responds collectively to an elliptical deformation of its geome-
try. The response of the system to this deformation, quantified
via the ratio v2/ε2 [9,10], where ε2 is the elliptic anisotropy
of the quark-gluon plasma prior to its expansion, has then
been employed to confront elliptic flow measurements to the
predictions of ideal and viscous hydrodynamics, as well as
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transport theory [11–14]. Analyses of this kind have been re-
vamped in recent times [15–20] due to the striking observation
of sizable v2 in so-called small systems [21,22], involving
either the collision of two light ions (e.g., protons), or the
collision of a proton with a nucleus. Such systems possess no
evident separation of scales that would justify a hydrodynamic
picture. Collective behavior is, however, observed to persist
down to collisions that emit as few as 20 particles per unit
rapidity. Finding an interpretation for such observations is a
pressing issue in the field. Do small systems create a fluidlike
quark-gluon plasma? Can fluid behavior manifest with such a
few (albeit strongly interacting) particles?

Motivated in part by these questions, in this paper we
introduce an experimental method to study the type of col-
lective behavior characterizing the expansion of cold atomic
clouds. The question we want to address is precisely: How
many (strongly interacting) particles are needed for a system
to develop an amount of collectivity close to that expected
in the hydrodynamic limit? The response coefficient v2/ε2,
not yet fully explored with expanding ultracold clouds, pro-
vides a straightforward tool to address this question. The main
conceptual advance brought by our analysis is the realiza-
tion that this quantity can in fact be measured in cold atom
experiments, for any particle number. The first experimental
determination of v2/ε2 will, thus, demonstrate a new method
to characterize the collective behavior of few- and many-body
quantum systems, bringing new insight on small systems in
the context of high-energy experiments.

This paper is organized as follows. In Sec. II, we review
the principles of nonrelativistic fluid dynamics, we introduce
elliptic flow, and we discuss the response coefficient, v2/ε2,
that is the main focus of this study. In Sec. III, we review the
status of elliptic flow measurements with cold atoms, and we
explain our new proposed method to measure v2 (and thus
v2/ε2) for any particle number in such experiments. In Sec. IV
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we compute, then, the baseline v2/ε2 expected in quantum
mechanics for a noninteracting Fermi or Bose gas, and we
provide qualitative expectations for the outcome of experi-
ments with interacting gases. Section V is left for conclusive
remarks and an outlook on further opportunities offered by
our proposal.

II. ELLIPTIC FLOW AS AN EMERGENT COLLECTIVE
PHENOMENON

A. Principles of fluid dynamics

Before introducing the notion of elliptic flow, it is worth
recalling the generic principles underlying the equations of
nonrelativistic fluid dynamics, and the approximations on
which they are based. A similar review can be found in, e.g.,
Refs. [7,23]. Hydrodynamics is a prime example of collective
description for systems that are in local thermal equilibrium
and that can be described by emergent macroscopic fields
(e.g., velocity, temperature, and chemical potential), in the
sense of statistical physics. The dynamics of a system we
classify as a fluid follows entirely from conservation laws of
energy, mass (or particle number), and momentum. The con-
served charges are, hence, the mass density ρ, the momentum
density Pk , and the energy density E , which satisfy continuity
relations,

∂tρ + ∂ jρ j = 0, ∂tE + ∂ jE j = 0, ∂tPk + ∂ jP jk = 0,

(1)

where j and k label spatial coordinates, ρ j represents the
mass current, E j the energy current, and P jk is the momentum
density current. The local fluid velocity, v j , is defined by the
equation for the mass current,

ρ j = ρv j, (2)

and correctly transforms as a velocity under Galilei transfor-
mations. Splitting all quantities into a velocity-dependent part
and a part that transforms as a scalar with respect to Galilei
boosts,

Pk = ρvk, P jk = ρv jvk + Tjk,

E = 1
2ρv2 + ε, E j = Ev j + viTi j + q j, (3)

we have introduced an internal energy density ε, the stress
tensor Tjk , which is symmetric in absence of an external
torque, and the heat flow q j . Consequently, Eqs. (1) become

∂tρ + ∂ j (ρv j ) = 0,

ρ(∂t + v j∂ j )vk + ∂ jTjk = 0,

(∂t + v j∂ j )ε + ε∂ jv j + (∂ jvk )Tjk + ∂ jq j = 0. (4)

We obtain, thus, a system of 14 variables but only 5 indepen-
dent equations to determine them.

To move further, one exploits the fact that hydrodynam-
ics is a description of long-wavelength properties that vary
slowly in time, such that it is natural to consider a systematic
expansion in the derivatives of the thermodynamic fields ρ, v j ,

ε.1 The derivative expansion does not converge, and one has
to truncate it. To zeroth order in the fluid velocity, the stress
tensor reads

Tjk = δ jk p, (5)

corresponding to ideal fluid dynamics. The second line of
Eq. (4) for the conservation of momentum becomes, in this
case, the Euler equation

ρ(∂t + v j∂ j )vk = −∂k p, (6)

where (∂t + v j∂ j ) is also referred to as the material derivative.
The first-order correction to the stress tensor, involving one
power of gradients, has the following form:

Tjk = δ jk p − (2ησ jk + δ jkζ∂ivi ), (7)

where we have now introduced the shear stress tensor σ jk =
1
2∂ jvk + 1

2∂kv j − 1
3δ jk∂ivi, which is the only traceless and

symmetric tensor of first order in the derivatives of ρ, ε, and
v j . The (positive and dimensionful) coefficients of the linear
combination in Eq. (7), η and ζ , are, respectively, the shear
viscosity and the bulk viscosity of the fluid. The conservation
of momentum leads, then, to the Navier-Stokes equation,

ρ(∂t + v j∂ j )vk = −∂k p +
{
∂ j

[
η

(
∂ jvk + ∂kv j − 2

3
δ jk∂ivi

)]

−∂k[ζ∂ivi]

}
. (8)

Similarly, in the equation for the conservation of energy, the
last line in Eq. (4), the first-order truncation of the heat flow
involves a temperature gradient multiplied by an additional
transport coefficient, q j = −κ∂ jT , where κ is the thermal
conductivity. Note that more transport coefficients appear if
one goes beyond first order in the derivative expansion, al-
though we do not consider this possibility here. The reduction
of variables due to truncating the gradient expansion leads,
then, to a system of equations like (4), which, supplemented
with an equation of state, and with the knowledge of the
transport coefficients η, ζ , and κ for the considered substance,
can now be solved (at least numerically).

What is, then, the limit of validity of this description? The
picture of the gradient expansion holds only if the viscous
terms are small corrections on top of the ideal one. The rel-
evant expansion parameter depends on the type of flow, which
can either be compressible or incompressible. A compressible
flow implies that the typical fluid velocity, v, is larger than the
typical speed of sound defined by c2

s = ∂ p/∂ρ|s/n, such that
the Mach number

Ma = v/cs (9)

is close to unity. Here we deal with expanding gases, for
which the flow is compressible and Mach number could be of

1Other fields can be chosen, e.g., temperature, T , and chemical
potential, μ, which are related to ρ and ε via the equation of
state p(μ, T ), namely, ρ(μ, T ) = m ∂ p

∂μ
and ε(μ, T ) = −p(μ, T ) +

T ∂ p
∂T + μ

∂ p
∂μ

.
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FIG. 1. Illustration of the mechanism leading to elliptic flow in a fluid presenting an elliptical density profile. Left: Initial condition with
an elliptical asymmetry in the (x, y) plane. Right: Density of momentum at a later time during the hydrodynamic evolution. The distribution
presents a cos(2φp) modulation. Figure adapted from Ref. [26].

order unity. Assuming for simplicity that the only nonvanish-
ing transport coefficient is η, inspection of the Navier-Stokes
equation shows that the magnitude of the viscous term relative
to the ideal one is quantified by the inverse Reynolds number,

Re−1 = η

ρvL
, (10)

where L is the typical macroscopic length scale. For situations
where Ma is of order unity one can see Re−1 as a parameter
controlling the derivative expansion, while more generally this
role is played by Ma2Re−1 [7,24]. In kinetic theory it is more
common to employ as an expansion parameter the Knudsen
number,

Kn = Ma

Re

√
γπ

2
= λmfp

L
, (11)

where γ = cp/cV is the ratio of specific heats and λmfp (=
η/(ρv) for some systems) is the particle mean free path.
The Knudsen number is a good expansion parameter in the
hydrodynamic limit (λmfp � L).

We see, then, that the dimensionless numbers we use to
characterize the system involve either transport coefficients or
the particle mean free path. These quantities are encoded in
the microscopic dynamics that underlies the fluid description,
and as such they can be difficult to evaluate (e.g., in the case of
quantum fluids). Knowing whether a system can be described
by hydrodynamics or not is, thus, a nontrivial problem. This
is especially true for mesoscopic systems, which are the focus
of the present paper. Our goal is to present a new method to
assess whether the collective dynamics exhibited by generic
few- and many-body systems resembles hydrodynamics, and
to which extent it does so.

B. Converting spatial anisotropy into momentum anisotropy

We use the concept of elliptic flow, a straightforward
consequence of the equations of hydrodynamics originally
pointed out by Ollitrault [25]. We recall the Euler equation (6),
stating that the acceleration within the fluid is governed by a
pressure gradient force (where dv j/dt is the material deriva-
tive of v j)

ρ
dv j

dt
= −∂ j p. (12)

We follow the illustration of Fig. 1 for a fluid in two dimen-
sions. The left panel gives the state of a fluid with an elliptical
deformation, elongated along y, at the initial condition. If
we let such a system expand, according to Eq. (12) the fluid
experiences more acceleration along the x direction than along
y. Asymptotically, this imbalance of forces acting on the initial
condition leads to a momentum distribution within the fluid
that is elongated along x, as shown in the right panel of Fig. 1.
By labeling φp the azimuthal momentum angle, the system
presents in particular a cos(2φp) asymmetry.

Elliptic flow is, hence, the quadrupole asymmetry of the
asymptotic momentum distribution of flowing particles re-
sulting from this mechanism of shape inversion. Following
the notation of particle physicists, we dub dN/dφp the distri-
bution of the azimuthal angles (in momentum space) of the
detected particles (a quantity that integrates to N , the total
number of particles). Elliptic flow is defined as the second
Fourier harmonic of this spectrum:

V2 = 1

2πN

∫ 2π

0
dφp

dN

dφp
ei2φp �= 0. (13)

Note that this is a complex number, but can be reduced to a
single magnitude, v2 ≡ |V2|, if the initial deformation of the
fluid has a known orientation. It is further worth pointing out
that if one relaxes the ideal fluid assumption of Eq. (6), and
considers the Navier-Stokes equation in Eq. (8), the second
term on the right-hand side contributes to the force with a sign
which is opposite to that of the pressure gradient, thus acting
against the development of elliptic flow during the expansion
of the fluid. This explains why elliptic flow provides a natural
means to probe the viscous coefficients, η an ζ , of an expand-
ing fluid [6,8]. Let us also remark here that a noninteracting
ideal classical gas at some temperature T > 0 would not show
any elliptic flow because the momentum distribution would be
isotropic.

Elliptic flow can be considered as a smoking gun of col-
lective behavior within a many-body system. However, its
observation does not alone imply that a fluid dynamic de-
scription is valid. For example, a particle system driven by
a Boltzmann equation with some collision kernel will develop
elliptic flow, albeit less efficiently than hydrodynamics. Our
goal is to demonstrate that elliptic flow can indeed be used as
an indicator of the amount of collectivity observed in a given
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FIG. 2. Left: Sketched qualitative evolution of v2/ε2 as a function of the interparticle interaction strength, and fixed particle number, N .
Right: Same but at fixed interaction strength and varying particle number. The dashed parts of the proposed trajectories represent the regimes
where quantum effects may play a decisive role.

system, and to determine whether such collectivity is close to
that expected in a genuine hydrodynamic scenario.

C. Quantifying the response to the initial deformation

To give a measure of how collective a system is, we use
the following idea originally introduced by Poskanzer and
Voloshin [9] in the context of high-energy nucleus-nucleus
collision experiments. Elliptic flow emerges as a response of
the system to the global deformation of its geometry. If we
quantify the initial spatial deformation via an eccentricity pa-
rameter, ε2, then the ratio v2/ε2 quantifies how efficiently the
dynamics of the expansion has converted the initial elliptical
deformation in position space into an elliptical modulation of
the particle distribution in momentum space. If one knows,
then, what the value of v2/ε2 is in hydrodynamics, then one
can quantify how close the expansion dynamics is to hydro-
dynamic.

In the context of relativistic collision experiments, any
statement concerning the fluidity of the produced quark-gluon
plasma based on the v2/ε2 ratio is plagued by a sizable
theoretical uncertainty on the value of ε2. In full generality,
the eccentricity can be defined as the normalized quadrupole
moment of the density profile [27],

E2 = ε2ei2ψ2 = −
∫

x n(x)|x|2ei2φ∫
x n(x)|x|2 , (14)

where ψ2 is the direction along which the elliptical anisotropy
is oriented, the minus sign on the right-hand side is a conven-
tion, x is a coordinate in the (x, y) plane where the system
lies, while n(x) represents the density of particles (sometimes
energy density is used in the relativistic context). In heavy-ion
collisions, the shape of the energy density of the quark-gluon
plasma cannot be resolved by the particle detectors, but can
only be inferred indirectly via model assumptions, which en-
genders a significant uncertainty.

This leads us to the most important point of this paper. In
the context of experiments on expanding cold atomic clouds,
the choice of ε2 is part of the experimental setup, and the
value of v2/ε2 can therefore be measured. This opens up the
possibility of performing quantitative studies of the nature of
the collective behavior of expanding gases via measurements
of elliptic flow. Here we are concerned with the onset of

hydrodynamic behavior. This can be addressed in two main
ways, illustrated in Fig. 2.2

As done in the plot on the left of the figure, one can
look at a sample with a given particle number, N , and tune
the interactions among constituents. A noninteracting system
undergoes a free streaming (or ballistic) expansion, which
does not develop any anisotropy.3 Increasing the interaction
strength, the ratio v2/ε2 converges to its hydrodynamic value.
Alternatively, as illustrated in the right-hand plot of Fig. 2, one
can keep the interparticle interaction strength fixed, and vary
the number of particles. Hydrodynamics is then recovered for
N → ∞. We note that the trajectory of v2/ε2 for a classical
gas would approach zero linearly in both panels of Fig. 2,
i.e., for both weak interactions (at fixed particle number)
and low particle numbers (at fixed interaction strength), as a
consequence of the fact that v2 is proportional to the number
of collisions [10]. For a quantum gas, such regimes are more
difficult to predict, and require experimental investigations.

Both scenarios presented in Fig. 2 can be explored by
means of cold atom experiments. First of all, in analogy
with the situation realized in the context of high-energy
nuclear collisions (and discussed in Fig. 1), one can pre-
pare cold clouds lying in effectively elliptically deformed
two-dimensional (2D) shapes. Atoms are typically trapped
in harmonic oscillator potentials characterized by frequen-
cies ωx, ωy, and ωz, such that an effective 2D system can
be obtained by setting one of these frequencies to a value
much higher than the others. Second, the interatom interac-
tion strength can be tuned experimentally. In a Fermi gas,
the strength of interaction can be quantified via the product
kF a [30], where a is the magnitude of the s-wave scat-
tering length of the two-body interactions, while kF is the
Fermi wave number, giving the typical interparticle distance,

2We discuss a picture where hydrodynamics emerges from interac-
tions. One should note that elliptic flow is experimentally observed
also in Fermi gases at zero temperature governed by superfluid
hydrodynamic equations [28,29], where the pressure gradient is not
driven by collisional forces, but interaction terms still play a decisive
role.

3This is not the case in a quantum gas, where, for noninteracting
particles, quantum effects modify nontrivially v2/ε2 in the few-body
limit. We will address this in Sec. IV.
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kF ∝ n1/D (for D spatial dimensions). At a given N , the value
of a, and thus the interaction strength, can be magnetically
tuned by means of Feshbach resonances [31]. Finally, optical
techniques to prepare high-fidelity states down to N = 1 in
two-dimensional systems are also available [32]. The curves
proposed in Fig. 2 could, thus, be readily investigated experi-
mentally with expanding ultracold gases.4

In this paper, we are mostly concerned with the case where
interactions are kept fixed and the particle number is varied.
As we discuss in the next section, this is, on the one hand,
the kind of setup that has not been explored yet in studies of
elliptic flow with expanding ultracold gases and, on the other
hand, the case that most naturally connects to the situation
of relativistic nuclear collisions, as one moves from large to
small collision systems. We have, thus, outlined a well-defined
conceptual method to exploit elliptic flow in the classification
of the collective behavior of few- and many-body systems.
In the remainder of this paper, we explain how v2/ε2 can
be measured in practice for any value of N , and provide
our predictions and expectations for the outcome of future
experimental investigations.

III. MEASURING ELLIPTIC FLOW IN
EXPANDING COLD GASES

A. Studies at high particle number

Before moving on to the description of elliptic flow in few-
and many-body systems, let us briefly recall existing exper-
imental investigations in the context of ultracold gases. The
possibility that an ultracold Fermi gas may develop elliptic
flow as a consequence of interactions was first pointed out by
Dalfovo et al. [34]. A theory of such phenomena, dealing with
the expansion of a cloud of weakly interacting Fermi atoms
at zero temperature driven by superfluid hydrodynamic equa-
tions, was presented shortly afterwards in a remarkable paper
by Menotti et al. [28]. The first experimental observation of
elliptic flow with a Fermi gas was obtained at Duke University
by O’Hara et al. [29], whose results we now analyze in detail.

In this experiment, a cloud of strongly interacting (kF a 	
1) 6Li atoms is squeezed into a two-dimensional trap with a
strong elliptical asymmetry. The aspect ratio of the cloud is
defined by

λ = ωy

ωx
, (15)

4Let us briefly comment that similar studies may also be conducted
in the three-dimensional (3D) case. While in general more com-
plex, these systems can in fact provide additional symmetry. This
is the case for a 3D gas at a strongly interacting fixed point of the
atomic interaction (saturating the unitary bound), which leads in
particular to conformal invariance. In two spatial dimensions there is
no strongly interacting fixed point, but only the noninteracting one,
which also has a conformal symmetry. In this case, symmetry allows
for analytical calculations of certain isotropic quantities and access to
anisotropic quantities in a perturbative expansion in the anisotropy,
even in the presence of strong interactions [33].

FIG. 3. Shape of the cloud of ultracold 6Li atoms observed by
O’Hara et al. [29] after an asymptotically large time t = 2 ms. The
profile is obtained from a two-dimensional Thomas-Fermi distri-
bution of widths σx = 375 μm and σy = 159 μm. The red ellipse
corresponds to the shape of the trap at the initial condition, where
λ = 0.035.

where ω j is the frequency of the confining harmonic oscillator
potential along direction j. We introduce, hence, the ellipticity
of the trap, ε2, via the following universal definition,

ε2 = 1 − λ

1 + λ
, (16)

which satisfies 0 < ε2 < 1 for ωy < ωx, and can be employed
in any experimental setup without requiring the actual knowl-
edge of the one-body particle density of the system [viz., n(x)
in Eq. (14)]. However, for a single particle in the ground state
of a two-dimensional harmonic oscillator, Eq. (16) agrees in
fact with Eq. (14).

The experiment of Ref. [29] makes use of a trap that is as
eccentric as experimentally possible:

λ = 0.035 → ε2 = 0.932. (17)

Once the trap is released, the expansion of the cloud leads
to an inversion of the initial shape and the observation of
elliptic flow. The density of the cloud observed at the asymp-
totically large time t = 2 ms is reproduced here in Fig. 3.5

The profile corresponds to a parameter-free two-dimensional
Thomas-Fermi distribution [29], with widths σy = 159 μm
and σx = 375 μm. The figure shows as well the shape of the
trap at the initial condition, before release, as an ellipse. From
the knowledge of the cloud profile, which we dub dN

dxdy , and
assuming that at the asymptotic time the cloud has the same
shape in both momentum and coordinate space,6 the value of

5For the sake of completeness, we note that the trapped cloud of
O’Hara et al. [29] is not a genuine two-dimensional system, but
rather a strongly squeezed prolate ellipsoid with axial symmetry and
a radial dimension much shorter than the axial one. The profile in
Fig. 3 represents, hence, a column-integrated particle density, though
this is irrelevant for the present discussion.

6This is a valid assumption as soon as the size of the asymptotic
cloud is much bigger than the initial size, which is clearly not the
case for the cloud at t = 2 ms displayed in Fig. 3. The experimental
value of v2 found in Eq. (18) should thus be viewed as a lower bound
for the hydrodynamic result.
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elliptic flow can be then obtained directly from the profile in
Fig. 3 as

v2 = 〈cos(2φ)〉 =
∫

dxdy
dN

dxdy

x2 − y2

x2 + y2
= 0.42. (18)

Since ε2 ≈ 1, we further obtain

v2/ε2 = 0.45, (19)

representing the first experimental determination of such
quantity from an elliptic flow measurement. We note that this
value is close to that found in model calculations of peripheral
208Pb + 208Pb collisions at the Large Hadron Collider [16],
where v2/ε2 ≈ 0.3. A reason for this similarity is that the
strongly interacting Fermi gas at T = 0 shares similar magni-
tudes of viscous corrections with the quark-gluon plasma [27].
In particular, while the values of η for these two fluids differ
by orders of magnitude due to the huge temperature differ-
ence, the quality of the fluid, η/s, where s is the entropy
density, is similar: η/s ≈ 0.1. In addition, we note that O’Hara
et al. [29] repeat their experiments after switching off the
interaction between atoms in the asymmetric trap. The dis-
appearance of elliptic flow is observed for such a scenario,
due to the fact that the critical velocity for the breakdown of
superfluidity decreases with decreasing interaction strength,
leading eventually to a ballistic expansion.

Subsequent experiments with expanding ultracold gases
have investigated, among others, elliptic flow for both
repulsive and attractive interactions [35,36], in the expan-
sion of Fermi-Fermi mixtures [37], as a probe of viscous
corrections [38–40], in the expansion of normal Bose sys-
tems [41–43] and dipolar gases [44]. Of particular relevance
for our analysis is the study by Fletcher et al. [43]. This
experiment analyzes elliptic flow in an expanding cloud of
39K atoms for different choices of the interaction strength. The
idea is thus similar to that discussed in the left-hand side of
Fig. 2, where N is kept large.

Experimental studies of elliptic flow in cold atomic gases
have a common denominator: they deal with regimes of very
large (macroscopic) numbers of atoms, where hydrodynamics
becomes applicable as the system is strongly interacting. As
anticipated, a systematic study of the disappearance of elliptic
flow as one moves to mesoscopic systems by reducing the
number of trapped atoms, while keeping interactions active,
is missing. Data from proton-nucleon (or deuteron- and 3He-
nucleus) collisions and proton-proton collisions at high energy
points to the emergence of collective, hydrodynamiclike be-
havior in systems containing as few as 20 produced particles
per unit rapidity [45–48]. It would be of paramount relevance
to assess whether such behavior emerges as well in the ex-
pansion of cold atomic gases. We only need, then, a method
to measure elliptic flow in expanding clouds of few atoms,
where the notion of a continuous spectrum dN

dxdy does not hold
anymore. We establish now such a method.

B. Elliptic flow from few to many particles

In the hydrodynamic limit where N → ∞, it is enough to
perform the experiment once to measure v2/ε2. This is not the
case in mesoscopic gases. At fixed ε2, the expansion of a finite

number of particles leads to a value of v2 that fluctuates, with
a statistical dispersion that depends on N . For such scenarios,
one has to resort to a statistical description of v2. This leads to
one of our main results, namely, the realization of a straight-
forward technique to achieve this goal. The orientation of the
trap is known experimentally. If the short axis of the trap is
along the x direction, then

v2 = 〈cos(2φp)〉, (20)

where, as illustrated in Fig. 4, φ is defined such that φ = 0 (or
φ = π ) is aligned with the x direction, and the angular bracket
denotes an average over the azimuthal angles of the atoms col-
lected, asymptotically, in all the experiments. In other words,
one should keep the orientation of the trap fixed, let the system
expand, and then record the angles of the outgoing atoms.
This has to be repeated a statistically significant number of
times to reduce the dispersion of cos(2φ). The outcome is a
spectrum of azimuthal angles, dN/dφ, which will look like
that proposed in Fig. 4. If the system responds collectively to
its initial anisotropy by generating elliptic flow, then a cos(2φ)
modulation emerges. This modulation becomes stronger when
the trap ellipticity, ε2, is increased.

A comment is in order, concerning the relation of this tech-
nique to that employed in measurements of v2 in high-energy
experiments. In heavy-ion collisions, the elliptical deforma-
tion of the quark-gluon plasma is mainly sourced by the
nonzero distance (or impact parameter) between the centers of
the colliding nuclei. The orientation of the resulting elliptical
system is randomly fluctuating in the plane of the collision,
and cannot be controlled experimentally. Due to this, the av-
erage 〈cos(2φp)〉 vanishes. To overcome this problem, one has
to compute instead 〈cos 2(φ1 − φ2)〉, where subscripts 1 and 2
label two distinct particles, and the average is now performed
over all particle pairs in the selected sample of events. The
distribution of the relative angle has the same structure as
the histograms of Fig. 4 in the presence of elliptic flow. The
drawback of this method is that the resulting v2 contains all
kinds of spurious two-body correlations (dubbed in jargon
nonflow) emerging from phenomena unrelated to the dynami-
cal response to the geometry of the system (coming, e.g., from
the decay of hadronic jets or high-mass particle resonances).
Removing such effects to isolate the genuine collective signal
requires highly nontrivial experimental effort. Cold atom ex-
periments offer, thus, the unique possibility of controlling the
direction of the ellipse,7 and allow one to isolate elliptic flow
from the simple one-body density in momentum space.

We have, thus, outlined a straightforward methodology to
measure v2, and consequently v2/ε2 in expanding mesoscopic
cold atomic clouds. We can move on, then, to the presentation

7At high energy, measurements of particle emission with respect to
a given axis are performed when the colliding objects are polarized.
This is done in the measurement of transverse spin asymmetries [49]
in either p↑-p or e−-p↑, where p↑ indicates a beam of polarized
protons. A recent work [50] discusses the possibility of scattering po-
larized deuterons off large ions to exploit the experimentally known
orientation of the deuteron system and look for elliptic flow with
respect to such a direction.
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FIG. 4. Illustration of the manifestation of elliptic flow in the asymptotic angular distribution of interacting atoms following the release
of a trap presenting an elliptical asymmetry. The eccentricity of the trap, ε2, is converted into a cos(2φ) modulation of the particle spectrum,
i.e., to nonzero elliptic flow, v2, by the expansion. Different line styles correspond to different values for the initial ε2. The inset shows an
illustration of the initial condition of the system for Natoms = 6.

of our predictions and expectations for future experimental
campaigns.

IV. QUALIFYING COLLECTIVITY IN EXPANDING
ULTRACOLD GASES

In this section, we first present predictions for v2/ε2 as
a function of atom number in the case of a noninteracting
Fermi or Bose gas, which we are able to work out analytically.
Subsequently, we discuss our expectations for interacting
samples, and the emergent signatures of hydrodynamic col-
lectivity driven by interactions.

A. Noninteracting Fermi gas

Within a classical picture, a system of noninteracting parti-
cles at some given temperature does not carry any momentum
anisotropy, neither at the initial time, nor during or after
the expansion. However, this is not the case in the limit of
particles at low temperature, where quantum effects cannot
be neglected. As position and momentum representation of
the wave function are linked by a Fourier transform, and the
Fourier transform of an ellipse in position space is an ellipse
rotated by 90◦ in momentum space, if we set up one or more
noninteracting particles in an anisotropic (elliptical) harmonic
oscillator, we would expect the particles after release to move
faster along the short axis. In this case, the collective behavior
leading to the shape inversion is not driven by interactions,
and cannot qualify as hydrodynamic. This provides, essen-
tially, a baseline for the magnitude of elliptic flow in absence

of interactions at a given N . We consider now such an effect
for gases at both T = 0 and T > 0, its magnitude compared to
known hydrodynamic limits, and its scaling with the number
of trapped fermions. Subsequently, we extend our considera-
tions to trapped bosons.

1. Single particle, N = 1, with minimal energy

The time evolution of a single particle in a harmonic po-
tential is governed by the Schrödinger equation (in units with
h̄ = 1),

i∂t |ψ〉 = Ĥ |ψ〉, (21)

where the Hamiltonian reads

Ĥ = p̂2
x + p̂2

y

2m
+ 1

2
m

(
ω2

x x̂2 + ω2
y ŷ2

)
. (22)

In momentum space, this is solved by the well-known formula

ψn1,n2 (px, py) = 〈px, py|ψn1,n2〉

= 1√
2n1+n2 n1! n2! πm

√
ωxωy

Hn1

(
px√
mωx

)

× Hn2

(
py√
mωy

)
e− p2

x
2mωx

− p2
y

2mωy , (23)

where the Hn are Hermite polynomials. We assume now that
the quantum particle has minimal energy and occupies the
ground state. The elliptic momentum anisotropy for this state
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FIG. 5. Prediction for v2/ε2 for the dynamics of a single fermion
trapped in an anisotropic trap characterized by an aspect ratio λ.
The eccentricity is defined as ε2 = (1 − λ)/(1 + λ). The blue dot
at λ = 0.035 corresponds to the value of v2/ε2 measured by O’Hara
et al. [29].

can be calculated as

〈cos(2φp)〉
ψ0,0

=
〈

p2
x − p2

y

p2
x + p2

y

〉
ψ0,0

=
∫

dpxdpy

p2
x − p2

y

p2
x + p2

y

|ψ0,0(px, py)|2

= 1 − √
λ

1 + √
λ

, (24)

which is a remarkably simple function of the aspect ratio, λ =
ωy/ωx.

After turning off the trap, the particle expands freely. The
free expansion does not influence the momentum anisotropy,
as the operator cos(2φp) commutes with the free Hamiltonian.
Hence, the asymptotic momentum anisotropy is equal to the
initial one,

v2 = 1 − √
λ

1 + √
λ

. (25)

The ratio v2/ε2, where we use ε2 = (1 − λ)/(1 + λ), is plot-
ted as a function of λ in Fig. 5. It is equal to unity in the limit
λ = 0, and to 0.5 for λ → 1. With these conventions, we find,
hence, that v2/ε2 is larger for a single particle than for the
superfluid hydrodynamic system at t = 2 ms produced in the
experiment of O’Hara et al. [29] with N ≈ 105. The curve in
Fig. 5 represents a new prediction of quantum mechanics to
be tested with expanding clouds of cold atoms.

2. Several particles, N > 1, with minimal energy

We move on, then, to the case of multiple noninteracting
fermions in the same harmonic trap. At zero temperature these
particles will fill up the energy levels with each level below the

Fermi energy being occupied by exactly one particle (assum-
ing a single spin polarization). For a noninteracting sample,
the N-particle state factorizes into N independent one-particle
states (up to antisymmetrization). Due to the fermionic nature
of the particles, the state is antisymmetrized as

|�〉 = 1√
N!

∑
σ∈SN

sign(σ )
N⊗

i=1

∣∣ψni,mi (σ (i))
〉
, (26)

where σ is an element of the symmetric group SN , and
|ψni,mi ( j) 〉 is the one-particle state with excitation numbers ni

and mi in x and y directions, referred to particle j. In general,
then, the expectation value of an operator Aj = A(x j, p j ),
depending only on position and momentum of particle j, does
not depend on the choice of such particle, i.e.,

〈Aj〉� = 1

N

N∑
i=1

〈A〉ψni ,mi
, (27)

due to the particles being indistinguishable. The expectation
value with respect to |�〉 of any operator can, hence, be
written as an average:

〈A〉� = 1

N

N∑
i=1

〈Ai〉�. (28)

With this notation in mind, it is instructive to evaluate the
expectation value of p2

x (or, analogously, p2
y),

〈
p2

x

〉
�

= mωx

(
1

2
+ 1

N

N∑
i=1

ni

)
. (29)

Assuming ωy > ωx, that means an excitation in the y direction
contributes more to the average momentum (squared) than one
in the x direction, but also that excitations in the y direction
require more energy. Since the fermions will fill up the energy
levels in ascending energy order, we can estimate that simi-
larly for a sufficiently high number of particles, the average
momentum distribution will become isotropic.

As an example, a system of N = 2 fermions would have
two sets of quantum numbers, (n1, m1) and (n2, m2), which
cannot be equal due to the antisymmetrization. For this simple
system v2 is then calculated as

v2 = 〈cos(2φp)〉
�2

= 1
2

(〈cos(2φp)〉ψn1,m1
+ 〈cos(2φp)〉ψn2 ,m2

)
.

(30)

Calculating now 〈cos(2φp)〉� numerically for different parti-
cle numbers, we obtain the ratio v2/ε2 that is plotted in Fig. 6.
We indeed observe a dilution of v2 with increasing N which
follows closely

|v2| ∝ 1

N
. (31)

Increasing ε2 leads to a further depletion of v2, meaning that
v2 from quantum effects increases with ε2 weaker than lin-
early. We stress, once more, that the results of Fig. 6 represent
a prediction of quantum mechanics to be tested experimen-
tally. We emphasize that v2 → 0 for large N is expected
from simple considerations. As discussed, e.g., in Ref. [30], a
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FIG. 6. Predictions for v2/ε2 as a function of atom number. The symbols represent the results obtained by evaluating v2 from the expectation
value in Eq. (24) where the wave function is that of a system of N noninteracting Fermions. Different symbols correspond to different choices
of ε2. The solid lines are proportional to 1/N (respectively, 3/N for the upper line, 1.1/N for the line in the middle, and 0.5/N for the lower
line), and help guide the eye. The dashed line is the hydrodynamic result of O’Hara et al. [29].

noninteracting system of fermions described within the semi-
classical picture of the Fermi-Dirac distribution undergoes
ballistic-type expansion, and does not lead to any momentum
anisotropy even if trapped in a deformed potential.

3. Finite temperature effects

Going above zero temperature, the state of the system can
no longer be defined as a single state |ψ〉, but must instead
be described by a density operator ρ. In thermal equilibrium
at temperature T (or equivalently β = 1/(kBT )) and fixed
particle number, the density operator reads

ρ = e−βH (N )

Z
= 1

Z

∑
(nN ,mN )>...>(n1,m1 )∈N2

∣∣�(n1,m1 ),...,(nN ,mN )
〉

× 〈
�(n1,m1 ),...,(nN ,mN )

∣∣ e−β
∑N

i=1 Eni ,mi , (32)

where H (N ) is the N-particle Hamiltonian, which in the nonin-
teracting case discussed here is just the sum of the individual
free Hamiltonians for each particle, Z = tr(e−βH (N )

) is the
partition sum, and lastly “>” is any ordering on N2 that avoids
overcounting. Expectation values of operators with respect to
this system are now given by

〈A〉ρ = tr(ρA). (33)

With these definitions in mind we repeat the calculations from
the previous sections.

For a single particle, N = 1, the calculation simplifies sig-
nificantly since we can ignore the antisymmetrization and the
states only have two quantum numbers,

ρ = e−βH

Z
= 1

Z

∞∑
n=0

∞∑
m=0

|ψn,m〉〈ψn,m|e−β(nωx+mωy ),

Z =
∞∑

n=0

e−βnωx

∞∑
m=0

e−βmωy . (34)

With this we can now calculate expectation values for 〈p2
x〉

(and analogously 〈p2
y〉) analytically to be

〈
p2

x

〉 = mωx

(
1

2
+ 1

eβωx − 1

)
. (35)

The ratio of the expectation values thus becomes〈
p2

y

〉
〈p2

x〉
= λ

tanh(βωx/2)

tanh(βωy/2)
. (36)

In the low-temperature limit, β → ∞, the ratio of momenta
converges to the aspect ratio of the trap frequencies, λ, while
in the high-temperature limit, β → 0, the momentum aspect
ratio approaches unity. This suggests that v2 should vanish
as well at high temperatures, a behavior that is confirmed by
our numerical calculations shown in Fig. 7. For this result we
truncate the sums in Eq. (32) at a cutoff �num = 400, which
guarantees a good convergence of the calculated v2 even for
high temperatures, where higher energy excitations become
more and more relevant.8

For multiple particles, N > 1, the cost of the numerical
calculation grows exponentially in the number of particles
(with simple algorithms), so a numerical study of these sys-
tems is beyond the scope of this paper. In general, pure
quantum correlation effects driven mainly by the exclusion
principle should disappear with increasing temperature. This
is the case, for instance, for Pauli crystals [51], which dissolve
quickly as soon as the temperature of the system increases

8Let us note that, as found in Fig. 5, for Natoms = 1 at T = 0 the ratio
v2/ε2 grows monotonically with ε2 (or with 1/λ). This dependence
is not modified by an increase of T in Fig. 7. However, we have
checked that this is not always the case. For N > 1, the ordering of
v2/ε2 with ε2 can indeed be modified by a change in the temperature,
which could also be investigated experimentally.
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FIG. 7. Temperature dependence of v2/ε2 for Natoms = 1, ob-
tained from Eq. (34) by summing m and n up to 400. Different
symbols represent different values of ε2. We note that the red curve
in Fig. 5 corresponds to the variation of v2/ε2 in the T = 0 limit.
We note that the combination kBT/

√
ωxωy is dimensionless in units

where h̄ = 1.

and thermal excitations become relevant (kBT 	 √
ωxωy). As

v2 for a single particle vanishes at high T , it is natural to
expect the same behavior to appear as well for higher numbers
of particles, where v2 is essentially given by an average of
states. Numerically, we have checked that this is true up to
Natoms = 4. This generic expectation can also be justified by
means of analytical considerations in the limit of very high
temperature, i.e., that one has

lim
T →∞

v2 = 0 (37)

for any number of particles. The relevant calculation can be
found in the Appendix.

4. Noninteracting bosonic gas

Bosonic ensembles are symmetrized instead of antisym-
metrized. At T = 0, a multiparticle state of noninteracting
bosons thus has the form

|�〉 = 1√
N!

∑
σ∈SN

N⊗
i=1

∣∣ψni,mi (σ (i))
〉
. (38)

To get to ensemble expectation values one can employ the
same formulas as in the fermionic case, namely, Eqs. (27)
and (28). However, as bosons occupy the same energy level,
they are all in the ground state at minimal energy, such that
the momentum anisotropy is given by the ground-state result,
Eq. (25).

For T > 0, the calculation again requires a density opera-
tor. The main difference with the fermionic case is that, due to
the symmetrization, different particles having the same quan-
tum numbers are allowed. The computation of v2 for any N in
such a scenario would thus proceed along the same lines of the
previous section up to a redefinition of the populations of the
considered states, and should lead to similar results in terms of
scaling with Natoms. In addition, once the temperature is high
enough that quantum effects become negligible, the bosonic
and fermionic systems are expected to behave similarly. In
the limit T → ∞, in particular, one can apply the result of the

Appendix to the bosonic case as well, such that we expect v2

to vanish for any N .

B. Expectations for interacting gases

Quantitative estimates of v2 as a function of the particle
number in the mesoscopic regime require a detailed knowl-
edge of the interatom interaction and the development of
dedicated numerical tools, which is outside the scope of the
present study. For higher values of Natoms, a kinetic description
should become appropriate. Within such a framework, the
indicator of where in parameter space we might find the onset
of fluid behavior is the Knudsen number defined in Eq. (11).
In classical kinetic theory, we can find an expression for the
mean free path in Eq. (11),

Kn = 1

σnL
, (39)

where L is the relevant macroscopic scale (the size of the
atomic cloud), σ is the particle-particle cross section, and n
is the particle density. We estimate now how these quantities
scale with the particle number N . The cross section is a prop-
erty of the interaction that does not depend on the particle
number,

σ ∝ N0. (40)

Assuming that N is proportional to the volume, the system
size in D spatial dimensions scales as

L ∝ N1/D. (41)

The density, which scales like particle number per volume,
becomes thus independent of the particle number:

n ∝ N0. (42)

From these considerations, we obtain that the Knudsen num-
ber scales essentially like the inverse system size,

Kn ∝ N−1/D, (43)

which in two dimensions yields Kn ∝ N−1/2. It decreases
fairly quickly with increasing particle number. As for the
dependence of Kn on interaction strength, that is very de-
pendent on the spatial dimension. In general the cross
section grows with increasing strength of interactions, in our
two-dimensional case roughly logarithmically [52]. So alto-
gether the Knudsen number will decrease strongly with the
number of particles and weakly with the interaction. The
(possibly) hydrodynamic regime, Kn � 1, we hence expect to
reach rather quickly by increasing N by the above heuristics.
In addition, the expansion of the cloud leads to an increase
in system size and to a decline of the particle density, such
that Kn will grow during the expansion of the atomic cloud.
This, at some point, will cause a hydrodynamic description
to fail and be replaced by individual free particle trajectories
(in analogy with the kinetic freeze-out of the quark-gluon
plasma).

The global picture concerning the ratio v2/ε2 is given in
Fig. 8, which is essentially a version of Fig. 2 updated with all
the insights gained from the previous discussions. The contri-
bution of quantum effects, discussed in the previous section,
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FIG. 8. Expectation for the ratio v2/ε2 in the expansion of a cold
atomic gas, as a function of the number of atoms. Pure quantum v2/ε2

is depicted as a solid line decreasing like 1/N . Classical trajectories
for an interacting gas start, on the other hand, at v2/ε2 = 0, and
reach a maximum in the hydrodynamic limit, where Natoms ≈ 103 (for
traps on the order of micrometers in size). The dotted line indicates
the hydrodynamic result obtained from the measurements of O’Hara
et al. [29]. The precise way the system approaches hydrodynamics
depends on the interaction strength, as illustrated by the red dashed
lines.

is depicted as a green solid line that falls off like 1/N (very
close to the case with ε2 = 0.4 in Fig. 6). For an interacting
classical system, as discussed in Fig. 2, the ratio v2/ε2 starts at
zero and approaches the hydrodynamic limit for large Natoms.9

For zero-temperature 6Li atoms and ε2 ≈ 1, a lower bound on
such a limit is given by the experiment of O’Hara et al. [29],
i.e., 0.45. In the mesoscopic regime, Natoms ≈ 5, both quantum
and thermal excitations may contribute equally. For such a
region, we leave a question mark, to be investigated via ex-
perimental data. Finally, once quantum effects should become
subleading (maybe around N ≈ 20), the system approaches
the hydrodynamic regime more or less steeply depending on
the interaction strength, as illustrated by the dashed curves in
Fig. 8.

Wrapping up, future experiments can map the onset of
effects driven by interactions with increasing particle number,
and investigate how quickly the ratio v2/ε2 converge to its
hydrodynamic value. Hitting this hydrodynamic limit for few
atoms would imply that an effective hydrodynamic descrip-
tion for such systems would lead to the right result, at least
for this observable. Experimental measurements of the ratio
v2/ε2 as a function of particle number would, thus, establish a
new way of characterizing the collective dynamics of micro-,
meso-, and macroscopic systems. This will open a new win-
dow onto the collective behavior of ultracold quantum gases,
as well as shed new light on the apparent collectivity displayed
by small systems in the context of high-energy collisions.

9Such number depends on the Fermi wave number as well as on the
size of the trap, and for the typical setups of cold atom experiments,
we expect that 103 atoms is large enough.

V. CONCLUSION AND OUTLOOK

We discussed a method to characterize the collective dy-
namics of few- and many-body systems. It relies on the
response, v2/ε2, of a considered system to an elliptical de-
formation of its geometry. We have pointed out, in particular,
the unique possibilities offered by cold atom experiments in
such kinds of searches, namely, that (i) v2/ε2 can be measured
experimentally, (ii) the number of particles in the system
can be chosen precisely, and (iii) the strength of interparticle
interactions can be tuned. By studying how v2/ε2 approaches
its hydrodynamic value, one can quantify how close the col-
lective expansion exhibited by a given system is to that of a
fluid.

There are several generalizations of our analysis that may
lead to further experimental investigations. One could, for
instance, deform the trap with a geometry more compli-
cated than an ellipse. A triangular deformation would lead
to so-called triangular flow [53], v3, which can be measured
experimentally in the same way as v2 provided that the ori-
entation of the triangle is known. One can, thus, look at the
ratio v3/ε3 [14] to analyze the degree of collectivity. The
same applies to all kinds of shapes [14,17]. In addition, one
could search for the development of anisotropic flows in the
case of isotropic traps. In such scenarios, the deformation
of the system is determined from the random distribution of
atom positions, which fluctuates randomly on a realization-
by-realization basis due to density fluctuations. As we pointed
out at the end of Sec. III, techniques to measure anisotropic
flow in the absence of a globally deformed geometry with a
known orientation are commonly used in heavy-ion collisions,
and could be readily adapted to cold atom experiments. Such
measurements, as opposed to the single-particle anisotropies
that we have proposed to study in this paper, would grant
access to genuine two-body (or many-body) correlations that
are present in the system, or developed during the expansion.
This would open a window onto additional manifestation of
fluctuations, either quantum fluctuations in the small-N limit,
or thermal (statistical) fluctuations at larger N , or their inter-
play for mesoscopic clouds.

Studying the onset of fluid dynamic behavior with increas-
ing particle number could also be conceptually interesting
from a quantum information theoretic point of view. Theoret-
ical concepts like the generation of entanglement entropy and
its relation to local dissipation [54] could be more tractable
when particle numbers are small.

A potentially far-reaching extension of our study could
finally involve the analysis of the collective behavior of sys-
tems that are not in local thermal equilibrium. This is unlike
standard cold atom experiments where the systems are locally
thermalized before the release of the trap. Mesoscopic out-of-
equilibrium systems should not be hydrodynamic; however,
they may still develop a sizable elliptic flow. If one were able
to tune the degree of equilibration of a given gas, one could
study the emergence of collective behavior via the ratio v2/ε2

as a function of the degree of thermalization. This is very close
to the problem that one encounters when studying small sys-
tem collisions in high-energy experiments. A proton-proton
collision cannot reach local thermal equilibrium; however,

044908-11



STEFAN FLOERCHINGER et al. PHYSICAL REVIEW C 105, 044908 (2022)

an effective hydrodynamic description for the development
of anisotropic flows may remain appropriate. These kinds
of questions have triggered in recent times a vast body of
work [55–57]. Such approaches suggest, notably, that systems
that do not reach local thermal equilibrium remain governed
by effective constitutive relations formally equivalent to those
of hydrodynamics. The possibility of studying these issues via
the analysis of the elliptic flow of out-of-equilibrium meso-
scopic gases would, thus, establish an even tighter connection
between small systems collisions at the Large Hadron Col-
lider and expanding ultracold clouds of few atoms in tabletop
experiments.
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APPENDIX: VANISHING v2 AT HIGH TEMPERATURES

We can argue that v2 will vanish in the high-temperature
limit by introducing a cutoff for the quantum numbers,

lim
T →∞

v2 = lim
β→0

lim
�→∞

1

Z�

�∑
n=0

�∑
m=0

〈cos(2φp)〉n,me−β(nωx+mωy ),

(A1)
where Z� is the defined as in Eq. (34) with the sums only
going to �. Since the sums converge absolutely (the operator
| cos(2φp)| has a finite expectation value), we can exchange
the limits,

lim
T →∞

v2 = lim
�→∞

lim
β→0

1

Z�

�∑
n=0

�∑
m=0

〈cos(2φp)〉n,me−β(nωx+mωy )

= lim
�→∞

1

(� + 1)2

�∑
n=0

�∑
m=0

〈cos(2φp)〉n,m. (A2)

This is, however, just an average of v2 over all states with
n � � and m � �. In the limit � → ∞ this is the same as
averaging over all states which in turn is the same as the limit
of infinite particle number n → ∞ at zero temperature. From
the previous discussion we thus argue that

lim
T →∞

v2|N=1 = lim
N→∞

v2|T =0 = 0. (A3)

Let f be a bijection from N to N × N. Then the T → ∞
limit of the elliptic flow can be written as

lim
T →∞

v2|N=2 = lim
β→0

lim
�→∞

1

2Z (�)
2

�∑
n=0

�∑
m=n+1

(〈cos(2φp)〉 f (n) + 〈cos(2φp)〉 f (m)

)
e−β

∑
i∈{x,y}( fi (n)+ fi (m))ωi

= lim
�→∞

1

�(� + 1)

�∑
n=0

�∑
m=n+1

(〈cos(2φp)〉 f (n) + 〈cos(2φp)〉 f (m)

)

= lim
�→∞

1

�(� + 1)

[
�∑

n=0

(� − n)〈cos(2φp)〉 f (n) +
�∑

n=0

�∑
m=n+1

〈cos(2φp)〉 f (m)

]

= lim
�→∞

1

�(� + 1)

[
�∑

n=0

(� − n)〈cos(2φp)〉 f (n) +
�∑

n=0

�∑
m=0

〈cos(2φp)〉 f (m) −
�∑

n=0

n∑
m=0

〈cos(2φp)〉 f (m)

]

= lim
�→∞

1

�(� + 1)

[
�∑

n=0

(� − n)〈cos(2φp)〉 f (n) + �

�∑
n=0

〈cos(2φp)〉 f (n) −
�∑

n=0

(� − n + 1)〈cos(2φp)〉 f (n)

]

= lim
�→∞

(
1 − 1

�

)
1

(� + 1)

�∑
n=0

〈cos(2φp)〉 f (n) = lim
�→∞

1

(� + 1)

�∑
n=0

〈cos(2φp)〉 f (n). (A4)

This is again just the average of v2 over all states. With this
we get

lim
T →∞

v2|N=2 = lim
N→∞

v2|T =0 = 0. (A5)

Similar arguments can be made for higher particle numbers
albeit with more complicated combinatorical considerations.

In general the argument is that (after exchanging the limits)
the sums without considering the antisymmetrization will give
a contribution that is the desired average over all states with a
prefactor of order one. The part that is subtracted to account
for the overcounting will also be the state averaged value, but
with prefactors that have negative powers of �. In the limit

044908-12
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� → ∞, the first term dominates and relation (A5) holds.
This argument holds for a bosonic gas as well where the sums

in the above calculations start at m = n instead of m = n + 1
which only changes the structure of the subleading terms.
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