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The fusion reactions induced by 4He projectiles on heavy target nuclei provide the reference to study the
reaction dynamics of exotic halo nuclei. The present analysis aims to probe the effects of different nuclear
density distributions and the effective nucleon-nucleon (NN) interaction potentials on the fusion cross section of
4He-induced reactions for heavy target nuclei. The nuclear densities for the heavy nuclei are obtained within the
well-known Skyrme-Hartree-Fock model and the relativistic mean-field (RMF) approach for the NL3∗ parameter
set. These densities are integrated with the density-dependent M3Y and the relativistic R3Y nucleon-nucleon
(NN) potentials to obtain the nuclear interaction potential. The fusion cross section and the astrophysical S factor
are obtained for 4He + 208Pb, 4He + 209Bi, 4He + 235U, and 4He + 238U systems within the �-summed Wong
model. The relativistic R3Y NN potential folded with RMF densities are observed to give a better fit to the
available experimental data. Furthermore, a comparison is made for the results obtained using Hill-Wheeler and
Wentzel-Kramers-Brillouin transmission coefficients for 4He + 208Pb system. We found a reasonable fit in the
cross section at around the Coulomb-barrier energies for both the approximations and also similar predictions
can be drawn for all considered systems.
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I. INTRODUCTION

The nuclear reactions between the light-mass projectiles
and heavy targets are extremely important in extending the
limits of the periodic table through the synthesis of new el-
ements [1–4]. Moreover, the fusion reactions involving the
radioactive beams serve as an optimal route to understand
the correlation between the nuclear structure and the reac-
tion dynamics [1–8]. Several light-mass nuclei with excessive
neutrons or protons demonstrate halo structures occupying
loosely bound nucleons. Various theoretical and experimental
efforts have been devoted to studying the effects of breakup
of these loosely bound light projectile nuclei on the fusion
mechanism [1,4,7,8]. One of the examples of halo nuclei
is 6He, which contains two loosely bound neutrons and is
a so-called Borromean nucleus. As a result, the reactions
induced by 6He halo nuclei on heavy targets such as the
6He + 208Pb, 6He + 209Bi, 6He + 235,238U, etc., have been the
interest of many studies [1,4,7,8]. The fusion dynamics of a
stable and strongly bound 4He projectile with a heavy-mass
target is a perquisite to understand the effects of halo structure
on the fusion process. In addition to this, the 4He-induced
reactions also play a crucial role in various astrophysical
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scenarios such as nucleosynthesis of stable neutron-deficient
p nuclei which are bypassed by the dominating neutron
capture processes [9–19]. The focus of the present analysis
is the investigation of the fusion dynamics of 4He-induced
reactions on heavy nuclei with Z � 82. The fusion mech-
anism of four reactions, namely, 4He + 208Pb, 4He + 209Bi,
4He + 235U, and 4He + 238U, is probed. The widely adopted
double-folding approach [20] is used to obtain the nuclear
potential between the interacting α and heavy nuclei. One
of the ingredients of the double-folding approach is the nu-
clear density distribution [20]. As a starting point, the density
distributions for the considered heavy nuclei are taken from
the well-established Skyrme-Hartree-Fock (SHF) formalism
[21]. The SHF calculations ignore the relativistic effects, so
we have also considered the nuclear densities arriving from
the relativistic mean-field (RMF) formalism [22–31] with the
NL3∗ [28] parameter set. Both of the SHF and RMF ap-
proaches are successful in providing results compatible with
the experimental observations for the nuclear bulk properties
such as the binding energies, deformations, charge radii, and
single-particle level ordering of the finite nuclei throughout
the nuclear chart. Moreover, these approaches are also well
developed for the description of nuclear matter characteristics.
In the present analysis, we are interested in examining the ef-
fects of the nuclear densities of the heavy target nuclei arriving
from the SHF and RMF calculations on the fusion dynam-
ics of α-induced reactions. The nuclear density distribution
for the projectile (4He) was derived from the experimental
data [32].
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The second ingredient of the double-folding approach is
the effective nucleon-nucleon (NN) interaction [20]. The
extensively used M3Y (Michigan 3 Yukawa) effective inter-
action with the inclusion of a realistic density dependence
(called the DDM3Y potential) is adopted here. Moreover,
the microscopic R3Y effective interaction derived from RMF
equations [31,33–36] is also used here to account for the
relativistic effects in the description of the fusion mecha-
nism of α-induced reactions. The α-induced reaction cross
sections are obtained within the �-summed Wong model given
by Gupta and collaborators [37,38]. Because the main interest
of the present analysis is the energy region of astrophysical
relevance, the cross section is further represented in terms of
the astrophysical S factor for all the reactions under study. The
possible comparison of theoretical results is also made with
the experimental data taken from the literature [39–41].

The study is organized as follows. The methodology used
to obtain the fusion cross section in terms of nuclear density
distributions and effective NN interaction is elaborated in
Sec. II. The detailed discussion of calculations and results is
carried out in Sec. III. Then the summary and conclusions of
the present theoretical analysis are presented in Sec. IV.

II. THEORETICAL FORMALISM

The key ingredient to probe the fusion mechanism of
nuclear and astrophysical reactions is the total interaction
potential formed between the fusing nuclei. This total po-
tential includes the long-range charge-dependent Coulomb
interactions, the angular-momentum-dependent centrifugal
interactions, and the short-range nuclear interactions of an
attractive nature. Thus, in the one-dimensional Schrödinger
equation, the total potential as a function of the separation
distance R between the two fusing nuclei can be written as

V �
T (R) = Vn(R) + VC (R) + V�(R). (1)

Here, VC (R) denotes the Coulomb potential, i.e., VC (R) =
ZpZt e2/R, and V�(R) denotes the centrifugal potential written

as V�(R) = h̄2�(�+1)
2μR2 . Vn(R) is the nuclear potential, which is the

most important ingredient of interaction potential and is cal-
culated here within the well-known double-folding approach
[20]:

Vn( �R) =
∫

ρp(�rp)ρt (�rt )Ve f f (|�rp − �rt + �R|≡r) d3rpd3rt , (2)

where ρp and ρt symbolize the density distributions for the
interacting projectile and target nuclei, respectively. As dis-
cussed above, the nuclear densities for targets are obtained
from the nonrelativistic SHF and the RMF approaches. Veff is
the effective NN interaction. Here, we have used two forms
of effective interactions: the density-dependent Michigan 3
Yukawa (DDM3Y) NN potential and the relativistic R3Y NN
potential.

The density of the α projectile was derived from the ex-
perimental charge density distribution [32]. We used the data
set in Ref. [32] with the largest range of momentum transfer
which was provided by Sick [42]. The nucleon density was
derived from the charge density distribution by unfolding
the finite proton and neutron charge distributions using the

parameters given in Ref. [43]. The unfolding procedure leads
to a root-mean-square (rms) radius of the α projectile of
1.47 fm, which is about 12% lower than the charge ra-
dius of 1.68 fm [32,42]. This choice of the α density has
been used widely and has provided excellent results (e.g.,
Refs. [15,44,45]). For completeness it has to be noted that the
influence of the unfolding procedure for the α projectile on
the potential in Eq. (2) is not as dramatic as one might expect
from the 12% change of the rms radius of the α projectile. The
potential is composed of three ingredients (ρp, ρt , Veff ), and
thus the rms radius of the potential is affected only by about
1−2% by the unfolding procedure of the projectile density.

A. Skyrme-Hartree-Fock approach for the nuclear densities

The self-consistent Hartree-Fock-Bogoliubov approach in
combination with Skyrme forces is a well established and
widely used model for the calculation of ground-state prop-
erties over the nuclear chart. In particular, nuclear proton
and neutron densities are provided as part of the nuclear
reaction code TALYS [46]. These SHF densities have been
calculated by Goriely et al. and are based on detailed studies
of mass formulas [21,47]. Because of their close similarity to
experimental density distributions, these SHF densities have
been adopted recently as the basis for the global Atomki-V2
α-nucleus potential [15]. Densities from a similar approach,
but using a Gogny force instead of a Skyrme force, are also
provided in TALYS. The differences between the SHF- and
Gogny-based densities in the nuclear surface are tiny, leading
to only marginal changes in the calculated fusion cross sec-
tions [48]. Thus, the Gogny-based densities are not included
in the present study.

B. Density-dependent M3Y effective NN potential

The DDM3Y interaction has been used in many studies
of α- and heavy-ion-induced reactions (e.g., Refs. [20,49])
and α decay [50,51]. The effective interaction Veff factor-
izes into a radial dependence and a density dependence. The
radial dependence is composed of a short-range repulsive
part, a long-range attractive part, and a zero-range exchange
part. The density-dependent part is calculated in the so-called
“frozen density approximation.” The parameters of the density
dependence are fitted to reproduce the strength of an effective
G-matrix interaction [52,53]. Details on all parameters of the
DDM3Y interaction are summarized in Ref. [44].

Double-folding α-nucleus potentials with the DDM3Y
interaction are often scaled by an overall normalization fac-
tor λ ≈ 1.1−1.4, leading to volume integrals JR of about
350 MeV fm3 for heavy target nuclei [44,45]. Usually, the
normalization factor is obtained by fits to the elastic scatter-
ing angular distributions. Such a normalization factor to the
DDM3Y potentials is applied here in the combination with
SHF densities only; this approach is based on the recently
suggested Atomki-V2 potential [15,16] where the normaliza-
tion parameter λ was chosen such that JR = 342 MeV fm3 for
magic and semimagic target nuclei and JR = 371 MeV fm3

for nonmagic target nuclei. Contrarily, no normalization (i.e.,
λ = 1.0) was used for the RMF densities (see next section).
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C. Relativistic mean-field densities and R3Y NN potential

In the RMF formalism, the atomic nucleus is considered as
a system comprising protons and neutrons that are represented
by Dirac spinors ψ of mass M. The interaction among these
pointlike Dirac nucleons is assumed to take place through the
exchange of effective pointlike particles: mesons and photons.
The description of the many-body systems of nucleons and
mesons is given by the phenomenological Lagrangian density
of the form [22–31]

L = ψ{iγ μ∂μ − M}ψ + 1

2
∂μσ∂μσ

−1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4 − gσ ψψσ

−1

4

μν
μν + 1

2
m2

wωμωμ − gwψγ μψωμ

−1

4
�Bμν. �Bμν + 1

2
m2

ρ �ρμ.�ρμ − gρψγ μ�τψ · �ρμ

−1

4
FμνFμν − eψγ μ (1 − τ3)

2
ψAμ. (3)

Here gσ , gω, and gρ symbolize the coupling constants for σ ,
ω, and ρ mesons having masses mσ , mω, and mρ , respectively.
The self-interaction properties of the nonlinear σ -meson field
are taken into the account by the constants g2 and g3. These
parameters generate a long-range repulsive NN potential that
plays a vital role in reproducing the saturation properties of
nuclear matter. Aμ, τ , and τ3 represent the electromagnetic
field, the isospin, and its third component, respectively. Fμν ,

μν , and �Bμν are the vector field tensors for the ωμ, �ρμ, and
photon, respectively, and are given as [28]

Fμν = ∂μAν − ∂νAμ, (4)


μν = ∂μων − ∂νωμ, (5)

and

�Bμν = ∂μ�ρν − ∂ν �ρμ. (6)

The equations of motion for nucleon and meson fields are
obtained by solving the Euler-Lagrange equations under the
mean-field approximation and are given as

(−iα · ∇ + β(M + gσ σ ) + gωω + gρτ3ρ3
)
ψ = εψ,( − ∇2 + m2

σ

)
σ (r) = −gσ ρs(r) − g2σ

2(r) − g3σ
3(r),( − ∇2 + m2

ω

)
ω(r) = gωρ(r), and( − ∇2 + m2

ρ

)
ρ(r) = gρρ3(r). (7)

The effective nucleon-nucleon interaction potential is derived
from the field equations for mesons in the limit of one-meson
exchange [31,33–36]. This so-called R3Y NN potential can
be written in terms of meson masses and coupling constants

as [31,33–36]

V R3Y
eff (r) = g2

ω

4π

e−mωr

r
+ g2

ρ

4π

e−mρr

r
− g2

σ

4π

e−mσ r

r

+ g2
2

4π
re−2mσ r + g2

3

4π

e−3mσ r

r
+ J00(E )δ(r). (8)

The term J00(E )δ(r) is a pseudopotential and takes care of
the effects of single-nucleon exchange between the interacting
nuclei. Here the R3Y NN interaction and relativistic densities
for RMF are obtained for NL3∗ [28] parameter sets. The
nuclear density distributions coming from the SHF and RMF
approaches are then integrated separately over the DDM3Y
and relativistic R3Y NN potentials as per Eq. (2) to estimate
the nuclear potential. A similar procedure is adopted in many
of the recent studies from us and others and can be found
in Refs. [31,33,34,36,54–56]. This nuclear potential is then
employed to calculate the cross section and the astrophysical
S factor by using the well-known �-summed Wong model
described in the upcoming subsection.

D. �-summed Wong model

The �-summed Wong model is an extended version of
the simplified Wong formula [37,38]. The �-summed Wong
formula accounts for the actual angular momentum depen-
dence of fusion barrier characteristics that was included in an
approximate manner in the simplified Wong formula [37,38].
The fusion cross section in terms of the summation over the �

partial waves is given by

σ (Ec.m.) = π

k2

�max∑
�=0

(2� + 1)P�(Ec.m.). (9)

Here, k =
√

2μEc.m.

h̄2 and Ec.m. denotes the energy of the collid-
ing target-projectile system in the center-of-mass frame. The
�max values at above-barrier energies are determined using the
sharp cutoff model [57] and are extrapolated for below-barrier
energies. Its typical values for the considered reactions in the
present work range up to 18h̄. The μ denotes the reduced
mass and P� denotes the transmission coefficient for the total
potential [see Eq. (1)] for the �th partial wave. Here, the
penetrability P� is obtained within the Hill-Wheeler (HW)
approximation of the parabolic barrier [58] and can be written
as

PHW
� =

[
1 + exp

(
2π (V �

B − Ec.m.)

h̄ω�

)]−1

. (10)

The quantity h̄ω� is called the barrier curvature and is eval-
uated at the barrier position R = R�

B corresponding to the
barrier height V �

B as

h̄ω� = h̄
[|d2V �

T (R)/dR2|R=R�
B
/μ

] 1
2 . (11)
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The position (R�
B) and the height (V �

B ) of the total interaction
potential given in Eq. (1) are obtained from the following
conditions:

dV �
T

dR

∣∣∣∣
R=R�

B

= 0, (12)

d2V �
T

dR2

∣∣∣∣
R=R�

B

� 0. (13)

The Hill-Wheeler approximation provides a simple expres-
sion [see Eq. (10)] for the transmission coefficient and
has emerged to be quite successful in describing the fu-
sion dynamics of various heavy-ion reactions [1,3,31,36–38].
However, at far-below-barrier center-of-mass energies, this
parabolic approximation for the fusion barrier becomes inad-
equate and overestimates the fusion cross section [1,59]. This
issue can be resolved by adopting the semiclassical Wentzel-
Kramers-Brillouin (WKB) approximation [59–63] at deep
sub-barrier energies. The transmission coefficient through the
actual barrier within the WKB approximation can be written
as

PWKB
� = exp

{
− 2

h̄

∫ r2

r1

√
2μ

[
V �

T (R) − Ec.m.

]}
. (14)

Here, r1 and r2 are the classical turning points and are solu-
tions of the equation on separation R,

V �
T (R) = Ec.m.. (15)

Astrophysical S factor. The �-summed Wong model is suc-
cessful in calculations of fusion and/or capture cross section
at above and around the Coulomb-barrier energies. But the
energies of astrophysical relevance lie far below the Coulomb
barrier where the cross section diminishes due to the domi-
nance of the Coulomb repulsion. So here the cross section is
rescaled in terms of the astrophysical S factor [64] given by

S(Ec.m.) = Ec.m. × σ (Ec.m.) exp(2πη). (16)

Here, η = Z1Z2e2

4π h̄v
is the dimensionless Sommerfeld parameter

and v = √
2Ec.m./μ is the relative velocity of the target-

projectile system.

III. RESULTS AND DISCUSSION

The theoretical formalism elaborated in the previous sec-
tion is now applied to study the fusion characteristics of
four α-induced reaction systems, namely, (a) 4He + 208Pb,
(b) 4He + 209Bi, (c) 4He + 235U, and (d) 4He + 238U. The
key input required to estimate the fusion probability of the
two fusing nuclei is the nuclear interaction potential. Here,
we have obtained the nuclear potential from the nuclear
densities and the effective NN interaction within the double-
folding approach. The nuclear density distributions of the
interacting target nuclei are obtained from the nonrelativistic
Skyrme-Hartree-Fock (SHF) approach and the relativistic
mean-field (RMF) formalism for the NL3∗ parameter set.
Figure 1 shows the radial distributions of total densities (sum
of proton and neutron densities) for all the four target nuclei
considered in the present analysis. It can be noted from Fig. 1
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FIG. 1. Radial distributions of total density (ρT = ρP + ρN ) for
all the target nuclei under study obtained from the RMF (solid lines)
and the SHF (dashed lines) approaches. See text for details.

that the SHF densities are higher in the central region as
compared to the RMF ones. This trend get inverted in the
nuclear surface region where the densities are observed to
fall sharply. Moreover, the difference between the SHF and
the RMF densities decreases as we move towards the surface
region of the nuclei. The effect of this minute difference
between SHF and RMF densities in the tail region on the
interaction barrier characteristics and consequently on the fu-
sion cross section is further investigated. For this, the target
densities along with the experimental density of 4He [32] are
integrated with the density-dependent M3Y and the relativis-
tic R3Y nucleon-nucleon (NN) interaction potentials. Thus,
we get four sets of nuclear potentials for each reaction system
denoted as M3Y-RMF, R3Y-RMF, M3Y-SHF, and R3Y-SHF.
Here, M3Y-RMF signifies that the density-dependent M3Y
NN potential is integrated over the nuclear density obtained
from the RMF formalism to estimate the nuclear potential.
Similar notations are used throughout the text from here on-
wards. The total interaction potential at � = 0 (i.e., sum of
nuclear and Coulomb potentials) as a function of separation
distance is shown in Fig. 2 for the illustrative case of the
4He + 238U system. A significant difference between the total
potential given by density-dependent M3Y and relativistic
R3Y NN potentials is noticed at smaller separation distance
(R). The R3Y NN potential is observed to give a much deeper
pocket as compared to the density-dependent M3Y NN po-
tential. This shows that the R3Y potential given in terms of
meson masses and coupling constants provides a much more
attractive core of the NN potential. Further, it is also noted
that the SHF density gives a deeper pocket as compared to
the RMF density. As the separation between nuclei increases,
the interaction potential is observed to become progressively
repulsive which results in the formation of a fusion barrier.
The magnified view of the barrier region of the interaction
potential is given in the inset of Fig. 2. Moreover, the posi-
tion (RB) and the height (VB) of the interaction barrier [see
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FIG. 2. The total potential (VT ) at � = 0 as a function of the
separation distance (R) for the 4He + 238U system calculated using
the DDM3Y and the R3Y NN potentials along with the density
distributions obtained from the SHF and the RMF approaches.

Eq. (1)] are also listed in Table I for all four reaction systems.
It can be noted from Fig. 2 as well as from Table I that
the R3Y-RMF and the M3Y-RMF nuclear potentials give the
lowest and highest fusion barriers, respectively. This shows
that the inclusion of relativistic effects in the description of
the NN interaction potential lowers the fusion barrier, which
consequently increases the fusion cross section. Moreover, the
replacement of the RMF density for the target by that arriving
from the SHF increases the barrier height when folded with
the R3Y potential and lowers the barrier for the density-
dependent M3Y NN potential. The fusion barrier height is
observed to increase with the charge number of the target
nuclei (Z2) due to the increase in the Coulomb repulsion. Also,
a comparison of barrier heights for the 4He + 235,238U systems
shows that the barrier height decreases as we move toward the
neutron-rich (higher N/Z value) target. This indicates that the
fusion probability increases with the target nucleus’ N/Z ratio
(isospin asymmetry).

As can be seen from Fig. 2, the M3Y-SHF potential is
significantly deeper than the M3Y-RMF potential. This results
from the scaling of the M3Y-SHF potential by the strength
parameter λ = 1.38, whereas λ = 1.0 was used for the M3Y-
RMF potential (see Sec. II B). As a consequence of the deeper

potential, the effective barrier in the M3Y-SHF case is slightly
lower than that for the M3Y-RMF case. If λ = 1.0 were used
also for the M3Y-SHF case, the effective barrier for the M3Y-
SHF case would be slightly higher than that in the M3Y-RMF
case. Next, we have calculated the fusion cross section for all
the systems using the �-summed Wong model furnished with
the SHF and the RMF formalisms. Both the SHF and the RMF
approaches are well established to describe the structural
properties of the finite nuclei throughout the nuclear chart and
the saturation properties of the nuclear matter. The SHF ap-
proach is based on the idea of the energy functional, whereas
the RMF formalism includes the mesonic degrees of freedom
in the microscopic description of nucleon-nucleon interaction.
Here we have studied the effects of nuclear density distribu-
tions obtained from both the SHF and RMF approaches on
the fusion mechanism α-induced reactions for the heavy target
nuclei.

Moreover, the microscopic R3Y NN interaction potential
derived from the RMF equations for mesons and the density-
dependent M3Y NN potential are used in the double-folding
approach in order to obtain the nuclear potential term of
the interaction potential. It is worth mentioning here that the
�-summed Wong model along with the RMF density distribu-
tions and the R3Y NN potential have been used successfully
to study the fusion characteristics of various heavy and super-
heavy nuclei [31,36,54]. Additionally this formalism has also
been applied to probe the fusion cross section and the S factor
of 12C + 12C at the center-of-mass energies of astrophysical
significance [55]. Thus, it is interesting and crucial to explore
the fusion dynamics of α-induced reactions for heavy target
nuclei at deep sub-barrier energies using the �-summed Wong
model supplemented with the RMF and SHF nuclear density
distributions.

The fusion cross section σ (mb) as a function of the
center-of-mass energy Ec.m. (MeV) for (a) 4He + 208Pb,
(b) 4He + 209Bi, (c) 4He + 235U, and (d) 4He + 238U systems
is shown in Fig. 3. The experimental cross sections ex-
tracted from Refs. [39–41] are also given for comparison.
The � values for these reaction systems are obtained from
the sharp cutoff model [57] at above-barrier energies and
are extrapolated for below-barrier energies. It is observed
that the M3Y-RMF and the R3Y-RMF nuclear potentials give
the lowest and the highest cross sections, respectively, at all
center-of-mass energies. However, the difference in cross sec-
tion decreases upon moving towards the energies above the
Coulomb barrier. This is because the structure effects entering

TABLE I. The position RB (in fm) and the height VB (in MeV) of the fusion barrier obtained from the DDM3Y and the R3Y NN potentials
along with the density distributions obtained from the SHF and the RMF approaches. See text for details.

M3Y-RMF R3Y-RMF M3Y-SHF R3Y-SHF

System RB VB RB VB RB VB RB VB

4He + 208Pb 10.9 20.339 09 11.3 19.8211 10.9 20.338 17 11.1 20.150 72
4He + 209Bi 10.9 20.598 23 11.3 20.0752 10.9 20.587 82 11.1 20.398 73
4He + 235U 11.2 22.245 41 11.6 21.6868 11.3 22.149 05 11.4 22.046 55
4He + 238U 11.2 22.091 87 11.6 21.5284 11.3 22.073 22 11.4 21.9679
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FIG. 3. The fusion cross section σ (mb) as a function of
the center-of-mass energy Ec.m. (MeV) for (a) 4He + 208Pb,
(b) 4He + 209Bi, (c) 4He + 235U, and (d) 4He + 238U systems cal-
culated for the DDM3Y and the R3Y NN potentials along with
the density distributions obtained from the SHF and the RMF ap-
proaches. The experimental data are taken from Refs. [39–41].

through the nuclear potential diminishes at the above-barrier
energies and only the angular momentum effect persists [31].
The comparison of the theoretical cross section data with the
experimental data shows that the relativistic R3Y effective
NN interaction folded with the RMF densities gives com-
paratively better fit to the experimental data than the other
combinations of density and NN potential.

As discussed in Sec. II, the magnitude of the cross sec-
tion decreases as we move towards the far-below-barrier
energy region of astrophysical significance. This can also be
noticed from Fig. 3, where the cross section decreases by a
factor of ≈103 as we move ≈ 6 MeV below the Coulomb
barrier. The cause of this fall in cross section is the dominance
of the Coulomb repulsion at energies far below the fusion
barrier. To reduce the effects of the Coulomb repulsion, next
we have plotted the cross section in terms of astrophysical
S factor (MeV b) in Fig. 4 for all the considered systems. It can
be noticed from Fig. 4 that the astrophysical S factor shows
an increasing trend towards the lower center-of-mass energies.
Again, the comparatively better fit to the experimental S factor
is observed for the case of the R3Y-RMF nuclear potential.
All these observations indicate that the inclusion of relativistic
effects in the description of fusion characteristics enhances the
cross section, especially at far-below-barrier energies of astro-
physical relevance for all four α-induced reactions considered
in the present analysis. Recently, a possible appearance of
a maximum in the S factor for the fusion of so-called light
heavy ions between 12C and 64Ni at sub-Coulomb energies
was discussed in Ref. [65]. Unfortunately, the experimental
data of the systems under study are not conclusive for the case
of α-induced reactions.

Hill-Wheeler vs WKB approximation. The fusion cross
sections and the S factors shown in Figs. 3 and 4 are cal-
culated with the transmission coefficient obtained within the
Hill-Wheeler approximation. This approximation is one of
the parabolic fusion barriers that works well around and
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FIG. 4. The astrophysical S factor (MeV b) as a function of
the center-of-mass energy Ec.m. (MeV) for the (a) 4He + 208Pb,
(b) 4He + 209Bi, (c) 4He + 235U, and (d) 4He + 238U systems cal-
culated for the DDM3Y and the R3Y NN potentials along with
density distributions from the SHF and the RMF approaches. The
experimental data are taken from Refs. [39–41].

above the Coulomb-barrier energies. However, at deep sub-
barrier energies, the Hill-Wheeler approximation is observed
to overestimate the fusion cross section, especially for reac-
tions involving lighter nuclei [1,59]. To assess the validity
of the Hill-Wheeler approximation at sub-barrier energies,
we have also compared its result with the well-known WKB
approximation [59–63], which gives the transmission coeffi-
cient through the exact fusion barrier. For this, we have only
considered the nuclear potential obtained using the R3Y NN
potential folded with the RMF density because, as evident
from the above discussion, it gives better overlap with the
experimental data than the other three sets of nuclear po-
tentials. Figure 5(a) shows the comparison of the parabolic
barrier (solid line) used in the Hill-Wheeler approximation
with the actual fusion barrier (dashed line) obtained for the
4He + 208Pb system. It can be observed from Fig. 5(a) that the
shape of the parabolic barrier is similar to that of the actual
barrier at a smaller separation distance, whereas it differs
at the larger separation. To explore its effects on the fusion
mechanism, the cross section and the S factor as functions of
the center-of-mass energy (Ec.m.) are also shown in Figs. 5(b)
and 5(c), respectively. It is observed that at energies well
below the barrier, the WKB transmission coefficient gives a
cross section and an S factor lower than those obtained within
the Hill-Wheeler approximation. However, the cross sec-
tions and the S factors given by both approximations almost
overlap at near-barrier energies. Further, the Hill-Wheeler
approximation is observed to provide a reasonable fit to the
experimental data at near-barrier energies for the 4He + 208Pb
system. However, the inclusion of channel-coupling effects,
which are not taken into account in the present analysis, may
improve the comparison with the experimental data. A more
systematic investigation of the effects of different transmis-
sion coefficients and channel couplings will be carried out in
subsequent studies.
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FIG. 5. (a) Comparison of the exact fusion barrier at � = 0h̄ (dashed line) obtained using the R3Y NN potential folded with the RMF
density with pure parabolic barrier fit (solid line). (b) The fusion cross section and (c) the astrophysical S factor calculated using Hill-Wheeler
(solid lines) and WKB (dashed lines) approximations for barrier transmission coefficients.

IV. SUMMARY AND CONCLUSIONS

The fusion characteristics of four α-induced reactions for
heavy target nuclei are explored within the well-known �-
summed Wong model. The cross section is also rescaled
in terms of the astrophysical S factor in order to mini-
mize the effects of Coulomb repulsion at deep sub-barrier
energies of astrophysical relevance. The effects of nu-
clear density distributions extracted from the nonrelativistic
Skryme-Hartree-Fock (SHF) and the relativistic mean-field
(RMF) formalisms for the NL3∗ parameter set along with
density-dependent M3Y and relativistic R3Y effective po-
tentials are studied on the fusion mechanism of α-induced
reactions. It is observed that the relativistic R3Y NN potential
integrated over the RMF nuclear density distributions gives
the lowest barrier and consequently the highest fusion cross
section for all the systems under study. The highest fusion
barrier and the lowest cross section are observed for the
density-dependent M3Y NN potential folded with the RMF
densities. The comparison of theoretical calculations with the
experimental cross sections shows that the R3Y-RMF nuclear
potential gives comparatively better overlap than the other
combinations.

Note that the R3Y-RMF approach can reproduce the exper-
imental data without the adjustment of parameters. For a good
reproduction of the experimental data, other potentials like the
widely used M3Y-SHF potential [15,16] needed some read-

justment. Furthermore, to examine the relative dependence of
the cross section and the S factor, the calculation is performed
by using Hill-Wheeler and WKB transmission coefficients
for the 4He + 208Pb system. We found a reasonable fit to the
experimental data in the cross section at around the Coulomb-
barrier energies for both the approximations and also similar
predictions can be drawn for all considered systems. From
the above observation, we can conclude that the inclusion
of relativistic effects in the description of fusion dynamics
enhances the cross section. Moreover, the fusion cross sec-
tion for α-induced reactions with heavy target nuclei at the
sub-barrier energy region of astrophysical significance is more
sensitive to the choice of nuclear potential as compared to
the above-barrier energy region. A more comprehensive study
involving more intermediate- and heavy-mass nuclei can be
carried out to further probe the effects of different density
distributions and effective NN interactions on the α-induced
reactions.
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