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Simulation of the fission process of the excited compound nuclei 210Rn and 215Fr produced in fusion
reactions within the framework of the modified statistical model
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In the framework of the modified statistical model there have been simulated fission process of the excited
compound nuclei 210Rn and 215Fr produced in 16O + 194Pt and 19F + 196Pt reactions and calculated the evap-
oration residue cross section, the fission cross section, the fission probability, the average prescission neutron
multiplicity, the mean fission time, and the anisotropy of fission fragments angular distribution as a function of
excitation energy. The classical collective motion of the excited compound nuclei about the ground state, the
temperature dependence of the location, the height of fission transition points, and the projection of the total
spin of the compound nucleus onto the symmetry axis K have been considered in the statistical calculations.
A constant nuclear dissipation was applied in the statistical calculations. In the statistical calculations, the
temperature coefficient of the effective potential k and the scaling factor of the fission-barrier height rs were
considered as a free parameter and their magnitudes inferred by fitting measured data on the evaporation
residue cross section and the fission cross section for the excited compound nuclei 210Rn and 215Fr. It was
shown that the results of calculations are in good agreement with the experimental data by using appropriate
values for these parameters equal to k = 0.0160 ± 0.0050 MeV−2 and rs = 1.0030 ± 0.0020 for 210Rn and
k = 0.0065 ± 0.0040 MeV−2 and rs = 1.0040 ± 0.0015 for 215Fr. Furthermore, by using appropriate values of
parameters k and rs have been calculated the average prescission neutron multiplicity, the fission probability,
the mean fission time, and the anisotropy of fission fragments angular distribution for the nuclei 210Rn and
215Fr. Comparison of the theoretical data with the experimental data were shown that the modified statistical
model is well able to reproduce different experimental data. Although, at high excitation energies the results of
calculations for the anisotropy of fission fragments angular distribution and fission probability are slightly lower
than the experimental data.

DOI: 10.1103/PhysRevC.105.044604

I. INTRODUCTION

Although the phenomenon of nuclear fission has been dis-
covered since about 80 yr back, the study of fission is still of
general interest. Nuclear fission was discovered in December
1938 by chemists Hahn and Strassmann and physicists Meit-
ner and Frisch [1,2]. Shortly after the discovery of nuclear fis-
sion, it was interpreted in analogy with the fission of a charged
liquid drop. Then, Bohr and Wheeler proposed the standard
liquid drop model to describe the fission process of nuclei [3].
According to this model the decay width can be expressed
by � = h̄/t̄ . Although, the fission lifetime determined from
the standard liquid drop model turns out to be too small to
allow for the rather large number of experimentally observed
light particles that evaporated prior to fission [4]. It should be
mentioned that the Bohr and Wheeler description was based
on a statistical model according to which fission is governed
by the available phase space above the fission barrier. Then,
Kramers introduced a picture of fission as a diffusion process
across the fission barrier [5]. This description, later refined by
Grangé et al. [6] with introducing a friction constant which
governing the coupling between the equilibrated intrinsic nu-
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clear degrees of freedom and the nuclear deformation. The
theoretical estimate of the transition-state fission decay width
according to Bohr and Wheeler can be given as

� f = 1

2π

1

ρCN(E∗)

∫ E∗−B f

0
ρsad(E∗ − B f − ε)dε, (1)

where ρCN and ρsad are the level density of the compound
nucleus at the ground and saddle points, respectively. B f is
the fission barrier height, and ε represents the kinetic energy
associated with the fission distortion. It should be mentioned
that in the limit of a small barrier height or very high excitation
energy the temperatures at the ground and saddle points will
be equal, and the fission decay width can be given by

� f = T

2π
exp

(−B f

T

)
, (2)

where T is the temperature of the nucleus. Furthermore, the
barrier height can be large enough and the excitation energy
low enough such that the temperatures at the ground state and
the saddle point are significantly different and so the fission
decay width can also be given by

� f = Tsp

2π
exp

( −2B f

Tgs + Tsp

)
, (3)
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where Tsp and Tgs are the temperature of the compound
nucleus at the saddle and ground-state points, respectively. In
Eq. (1) the density of states can be considered approximately
as ρ ∝ exp(2

√
aU ) where a and U are the level-density

parameter and the thermal excitation energy, respectively.
The thermal excitation energy of the system given by
U = E∗ − V (q), where E∗ is the total excitation energy of
the system and V (q) is the potential energy.

Dynamical calculations of the fission rate using the
Langevin equation [7] or the Fokker-Planck equation [5] give
an asymptotic fission decay width for a system with fixed spin
K about the symmetry axis as follows:

� f (K ) = (
√

1 + γ 2 − γ )
h̄ωeq

2π
exp

(
−B f

T

)
, (4)

where γ is the dimensionless nuclear viscosity and given by
γ = β/2ωsp, β is the reduced nuclear dissipation coefficient
(ratio of dissipation coefficient to inertia), and ωeq, ωsp are the
curvatures of the potential-energy surface at the equilibrium
position and the fission saddle point, respectively. B f , ωeq and
ωsp are all assumed functions of K .

After Bohr and Wheeler model, many statistical and
dynamical model codes were proposed to describe fission
process of nuclei (see, for example, Refs. [8–29]. It should
be mentioned that in many statistical codes that introduced to
describe the fission process missing three pieces of physics
as first pointed out by Lestone and McCalla in Ref. [30].
These key pieces of physics are the determination of the total
level density of the compound system taking into account
the collective motion of the system about the ground-state
position, the calculation of the location and height of fission
saddle points as a function of excitation energy and the in-
corporation of the orientation (K state) degree of freedom.
It should be mentioned that in many statistical model codes
(see, for example, Refs. [12–16]) authors have used the ratio
of the level-density parameters at saddle and equilibrium de-
formations, asp/aeq, and a scaling of the fission barrier heights
fB, which can be adjusted to reproduce different experimental
data. Although, the fission process cannot be accurately mod-
eled as a function of the excitation energy by using a fixed
value of asp/aeq and the spin dependence of the T = 0 fission
barriers [30] (T is the temperature). Lestone and McCalla in
Ref. [30] introduced a modified statistical model (MSM) and
in this model, they considered the above missing three pieces
of physics and also other parameters as free parameters which
perform similar roles as asp/aeq and fB. They considered the
temperature coefficient in the effective potential formula k,
and a scaling of the modified liquid drop model (MLDM)
radii from their default values to calculate the surface and
Coulomb energies with the parameter rs. The surface energy
is proportional to the square of rs, while the Coulomb energy
is inversely proportional to rs. A value rs = 1 is the standard
MLDM with fission-barrier heights in agreement with the
finite range liquid drop model. Raising rs above one decreases
the Coulomb energy and increases the surface energy. This

cases the fission barriers to increase. It should be stressed
that the advantage of using rs instead of fB is that the curva-
ture at the ground states and the fission transition points, the
barrier locations and heights are all being determined in a self-
consistent manner as a function of spin J , projection of spin
about the symmetry axis of the nucleus K , and temperature of
the nucleus. The main purpose of this research is to present the
ability of MSM to reproduce different features of the fission
process of the excited nuclei 210Rn and 215Fr produced in
16O + 194Pt and 19F + 196Pt reactions, respectively.

The present paper has been arranged as follows. In Sec. II,
we describe the model and basic equations. The results of
calculations are presented in Sec. III. Finally, the concluding
remarks are given in Sec. IV.

II. DETAILS OF THE MODEL

In the framework of the MSM the time evolution of an
excited compound nucleus produced in a fusion reaction is
followed over small time steps. At each time step, evaporation
of prescission particles and the γ particle from a compound
nucleus are taken into account by using a Monte Carlo sim-
ulation technique. The loss of spin for a compound nucleus
is taken into account by assuming that each neutron, proton
or γ quanta carries away 1h̄ whereas the α particle carries
away 2h̄. The compound nucleus can follow various decay
routes depending upon the relative probabilities of different
decay channels. It should be stressed that one can consider
fission along with emission of neutrons, protons, α particles,
and γ rays as the decay channels of a compound nucleus. A
compound nucleus can either undergo fission with or without
preceding evaporation of particles and γ rays or reduce to an
evaporation residue. In the calculations based on the statistical
model, we obtain the decay widths for particle emission and
fission width and the kind of decay is selected in terms of
a standard Monte Carlo cascade procedure with consider-
ing the weights of �ν/�tot with (v = fission, n, p, α, γ ) and
�tot = ∑

ν �ν . The final results for different observables can
be obtained as averages over a large ensemble of events.

It should be noted that the potential energy, level density,
the evaporation, and fission widths depend on the spin of the
compound nucleus. The spin of a compound nucleus can be
sampled from the spin distribution. The spin distribution of
compound nuclei dσ (J )/dJ , produced in fusion reactions can
be determined by [31]

dσ (J )

dJ
= 2π

K2

2J + 1

1 + exp
( J−Jc

δJ

) , (5)

here K is wave number, Jc is the critical spin and δJ is
the diffuseness parameter. The parameters Jc and δJ can be
determined by [31]

Jc =
√

APAT /ACN
(
A1/3

P + A1/3
T

)
(0.33 + 0.205

√
Ec.m . − Vc),

(6)

and

δJ =
{

(APAT )3/2 × 10−5[1.5 + 0.02(Ec.m . − Vc − 10)] for Ec.m. > Vc + 10,

(APAT )3/2 × 10−5[1.5 − 0.04(Ec.m. − Vc − 10)] for Ec.m. < Vc + 10,
(7)
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FIG. 1. The spin distributions calculated for the compound nu-
clei (a) 210Rn and (b) 215Fr produced in 16O + 194Pt and 19F + 196Pt
reactions at Ec.m. = 80, 90, and 100 MeV.

when 0 < Ec.m. − Vc < 120 MeV center-of-mass (c.m.); and
when Ec.m. − Vc > 120 MeV the term in the last brackets is set
equal to 2.5. Figures 1(a) and 1(b) show the spin distributions
calculated for the compound nuclei 210Rn and 215Fr produced
in 16O + 194Pt and 19F + 196Pt reactions, for example, for pro-
jectile energies Ec.m. = 80, 90, and 100 MeV.

It is clear from Figs. 1(a) and 1(b) that at higher center-of-
mass energies of the projectiles the compound nuclei formed
with a larger value of spins.

The potential-energy V can be obtained from the MLDM.
The MLDM uses a family of axially symmetric and mass
symmetric shapes. These shapes define the Coulomb, surface,
and rotational energies of nuclei as a function of a single
deformation parameter q = r/R0, where r is the distance be-
tween the centers of masses of the future fission fragments
and R0 is the radius of the spherical nucleus. In the MLDM,
the potential energy of a nucleus can be written as [32,33]

V (q, A, Z, J, K ) = Bs(q)E0
s (Z, A) + Bc(q)E0

c (Z, A) + Erot.,

(8)

where Bc(q) and Bs(q) are Coulomb and surface energy terms,
respectively. E0

s and E0
c are, respectively, the surface and

Coulomb energies of the corresponding spherical system as
determined by Myers and Swiatecki [34,35]. In Eq. (8) Erot. is
the rotational energy and can be determined by

Erot. = [J (J + 1) − K2]h̄2

I⊥(q) 4
5 MR2

0 + 8Ma2
+ K2h̄2

I||(q) 4
5 MR2

0 + 8Ma2
, (9)

where K is the projection of J on the symmetry axis of the
nucleus, M is the mass of the system, R0 = 1.2249A1/3 (fm)
and a = 0.6 (fm). I⊥ and I‖ are the momenta of inertia with
respect to the axes perpendicular and parallel to the symmetry
axis of the fissioning nucleus.

It should be noted that the Bohr-Wheeler fission decay
width given by Eq. (2) was obtained assuming that the
level-density parameter is independent of the nuclear shape.
Although, this equation by using a deformation dependence
of the level density of the form

a(q) = avA + asA
2/3Bs(q), (10)

can be written as

� f ≈ T

2π
exp(Beff/T ). (11)

In Eq. (10) A is the mass number of the compound nucleus,
and Bs(q) is the surface energy in the liquid drop model. The
values of the parameters av = 0.073 and as = 0.095 MeV−1

in Eq. (10) are taken from the work of Ignatyuk et al. [36]. In
Eq. (11) Beff is the effective potential barrier height and can
be given by

Beff = B f − aT 2, (12)

where a is equal to the difference in the level-density param-
eter at the saddle point and the equilibrium position. It should
be noted that at finite temperature the driving force is the free
energy [37],

F = E∗ − T S(q, Eint.), (13)

where S is the entropy. If the level-density parameter is a
function of nuclear deformation, then the locations of equi-
librium points will be a function of excitation energy and
can be defined by the equilibrium points in the entropy or
level-density parameter as a function of deformation,

(
∂S(q)

∂q

)
Eint.

≈
(

∂ (2
√

a(q)Eint.)

∂q

)
Eint.

= 0, (14)

and not as the equilibrium points in the T = 0 potential en-
ergy. Searching for the equilibrium points in the entropy is the
same as searching for the equilibrium points in a temperature-
dependent effective potential energy [38],

Veff (q, A, Z, J, K, T ) = V (q, A, Z, J, K ) − a(q)T 2. (15)

If the level-density parameter is assumed to be as Eq. (10),
then the effective potential can be obtained using a (1−kT 2)
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FIG. 2. The effective potential for the compound nuclei (a) 210Rn
and (b) 215Fr as a function of the coordinates q and K at T =
1.5 MeV and J = 30h̄. The numbers at the contour lines represent
the effective potential energy values in MeV. The dashed line curves
show the dependence of saddle point deformations on K .

dependence of the surface energy,

Veff (q, A, Z, J, K, T )

= Bs(q)E0
s (Z, A)(1 − kT 2) + Bc(q)E0

c (Z, A)+Erot.,

(16)

where k = cSA2/3/E0
S . Töke and Swiatecki [39] obtain cs ≈

0.27, and other estimates of cs give values of k that range
from 0.007 to 0.022 MeV–2 [36,40–43]. It should be stressed
that cs is very sensitive to the assumed properties of nuclear
matter and to other approximations [43]. Figures 2(a) and
2(b) show the effective potential calculated for the compound
nuclei 210Rn and 215Fr as a function of the coordinates q and K
at T = 1.5 MeV and J = 30 h̄. It can be seen from Figs. 2(a)
and 2(b) that the inclusion of the K coordinate changes not
only the fission barrier height, but it affects also the saddle
point configuration. It is also clear from Figs. 2(a) and 2(b)
that for a given value of spin the height of the fission barrier
increases with increasing the value of K and, consequently,
increases the number of evaporated prescission particles.

The particle emission width of a particle of kind v can be
determined as Ref. [44],

�ν = (2sv + 1)
mν

π2h̄2ρc(Eint.)

×
∫ Eint.−Bv

0
dεvρR(Eint. − Bv − εv )εvσinv.(εv ), (17)

here sv is the spin of the emitted particle v, mv is its reduced
mass with respect to the residual nucleus, ε is the energy of
the emitted particle, Eint. is the intrinsic excitation energy of
the parent nucleus, and Bv is liquid drop binding energies
of the emitted particle v. ρc(Eint.) and ρR(Eint. − Bv − εv )
are the level densities of the compound and residual nuclei.
The inverse cross sections can be written as [44]

σinv.(εv ) =
{
πR2

ν (1 − Vν/εν ) for εν > Vν,

0 for εν < Vν,
(18)

with

Rν = 1.21
[
(A − Aν )1/3 + A1/3

ν

] + (
3.4/ε1/2

ν

)
δν,n, (19)

where Av is the mass number of the emitted particle v =
n, p, α and δvn is the δ function. The barriers for the charged
particles are

Vν = [(Z − Zν )ZνKν]/(Rν + 1.6), (20)

with Kv = 1.32 for α and 1.15 for the proton.
The γ -ray decay width at each time step is calculated as in

Ref. [45],

�γ
∼= 3

ρc(Eint.)

∫ Eint.

0
dε ρc(Eint. − ε) f (ε), (21)

here ε is the energy of the emitted γ ray and f (ε) is calculated
by

f (ε) = 4

3π

e2

h̄c

1 + η

mc2

NZ

A

�Gε4

(�Gε)2 + (
ε2 − E2

G

)2 , (22)

with EG = 80A−1/3, �G = 5 MeV, and η = 0.75 [46], EG and
�G are the position and width of the giant dipole resonance,
respectively.

The fission width for a system with fixed spin K about the
symmetry axis can be determined by Eq. (4). By assuming
axially symmetric shapes for nuclei the full fission decay
width can be obtained by summing over all possible K s [32],

� f =
∑J

K=−J P(K )� f (K )∑J
K=−J P(K )

, (23)

where P(K ) is the probability that the system is in a given K
and it can be expressed as follows:

P(K ) = T

h̄ωeq
exp

(
−Veq

T

)
, (24)

Veq is the potential energy at the equilibrium position as a
function of K .

It should be stressed that the level density is a key physical
quantity in the calculations because it comes in all the disinte-
gration widths. In the framework of the MSM the level density
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of a spherical compound nucleus as a function of the total
excitation energy E∗, the total spin J , and the projection of
spin about the symmetry axis of the nucleus K is determined
by [37]

ρsph(E∗, J, K ) ∝ exp(2
√

aEint.)

E2
int.

, (25)

where Eint. is intrinsic energy. The intrinsic energy for a rotat-
ing system can be given by Eint. = E∗ − V (q) − Erot.. For the
spherically symmetric case the rotational energy is obviously
independent of K , and the level density can be given as

ρsph(E∗, J ) =
J∑

K=−J

ρsph(E∗, J, K )

∝ (2J + 1)
exp (2

√
aEint.)

E2
int.

. (26)

In Eq. (26) the 2J + 1 factor is associated with the com-
plete freedom of the orientation degree of freedom in the case
of a spherical compound nucleus. For an arbitrary deforma-
tion, a multiplication factor associated with the orientation
degree of freedom can be considered for Eq. (26) as follows:

f =
J∑

K=−J

exp

( −K2

2K2
0 (q)

)
≈ K0

√
2πerf

(
2J + 1

2
√

2K0(q)

)
, (27)

where

K2
0

(q) = T Ieff (q)/h̄2. (28)

The inverse of the effective moment of inertia can be deter-
mined by I−1

eff = I−1
‖ − I−1

⊥ .
The total fusion cross section is usually calculated from

σFus =
∑

J

dσFus(J )

dJ
, (29)

where, the spin distribution of the compound nucleus can be
considered by Eq. (5). The fission cross section can also be
determined in terms of the fusion cross section as follows:

σFiss =
∑

J

σFus(J )
� f

�tot
. (30)

At a given beam energy E , the total evaporation residue
cross section can be obtained by summing of the cross
sections from each J , these being the products of the cap-
ture cross sections, and the probabilities of surviving fission
[1 − Pf (J, E∗)],

σEr (E ) = πλ2
∑
J=0

(2J + 1)TJ [1 − Pf (J, E∗)], (31)

where TJ is the transmission coefficient for Jth partial wave
and Pf is fission probability of the compound nucleus.

In the MSM, one can use the saddle point transition model
[47–49] to analyze the fission fragment angular distributions.
The fission fragment angular distributions can be determined
by three quantum numbers: J , M, K , where J is the spin of
a compound nucleus, M is the projection of J on the axis of

the projectile ion beam, and K is the projection of J on the
symmetry axis of the nucleus. In the case of fusion of spinless
ions, M = 0. Then at fixed values of J and K , the angular
distribution can be determined as follows:

W (θ, J, K ) = (J + 1/2)
∣∣dJ

M=0,K (θ )
∣∣2

, (32)

where θ is the angle between the nuclear symmetry axis and
the beam axis and dJ

M=0,K (θ ) is the Wigner rotation function
[47]. It should be mentioned that in the case of heavy-ion-
induced fission reactions, the spin of compound nucleus is
usually much larger than the ground-state spins of the target
and projectile and is perpendicular to the beam axis, so in
this case also M = 0. At high values of J , W (θ, J, K ) can be
approximated as

W (θ, J, K ) = J + 1/2

π
[(J + 1/2)2sin2θ − K2]1/2. (33)

The fission fragments angular distribution can be deter-
mined by averaging Eq. (33) over the quantum numbers J and
K as follows:

W (θ ) =
∞∑

J=0

σJ

J∑
K=−J

P(K )W (θ, J, K ), (34)

where σJ and P(K ) are the distributions of compound nuclei
with respect to the total spin and its projection, respectively
[49]. It can be shown that the anisotropy of fission fragment
angular distribution can be given by the following approxi-
mate relation:

〈W (180
◦
)〉

〈W (90◦)〉 = 1 + 〈J2〉
4K2

o

, (35)

where the variance of K distribution Ko, is given by the ex-
pression,

K2
o = (T/h̄2)Ieff . (36)

III. RESULTS AND DISCUSSIONS

In the framework of the MSM have been simulated fis-
sion process of the excited compound nuclei 210Rn and 215Fr
produced in 16O + 194Pt and 19F + 196Pt reactions, respec-
tively. The evaporation residue cross section, the fission cross
section, the fission probability, the anisotropy of fission frag-
ments angular distribution, the average prescission neutron
multiplicity, and the mean fission time have been calculated
for the excited compound nuclei 210Rn and 215Fr. In the statis-
tical calculations, the reduced nuclear dissipation coefficient
is set as 3 × 1021s−1, a value that is consistent with exper-
imental and theoretical estimates [31,50,51]. In the present
calculations, the parameters k and rs are adjusted to repro-
duce a single residue and fission cross sections. Figures 3(a),
3(b), 4(a), and 4(b) show the results of calculations for the
residue and fission cross sections for the excited compound
nuclei 210Rn and 215Fr. It can be seen from Figs. 3(a), 3(b),
4(a), and 4(b) that the results of the calculations are in good
agreement with the experimental data by using values of
k = 0.0160 ± 0.0050 MeV−2 and rs = 1.0030 ± 0.0020 for
210Rn and k = 0.0065 ± 0.0040 MeV−2 and rs = 1.0040 ±
0.0015 for 215Fr.
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FIG. 3. The results of the evaporation residue cross section and
the fission cross section for the compound nucleus 210Rn, calculated
with considering k = 0.0160 ± 0.0050 MeV−2 and rs = 1.0030 ±
0.0020. The solid circles are experimental data [52,53].

Figures 5(a) and 5(b) show the results of calculations
for the average prefission neutron multiplicities for the ex-
cited compound nuclei 210Rn and 215Fr. It can be seen from
Figs. 5(a) and 5(b) that by considering appropriate values
for the parameters k and rs where obtained in the analyze
of residue and fission cross sections can be satisfactorily
reproduced the experimental data on the average prefission
neutron multiplicities for the excited compound nuclei 210Rn
and 215Fr. It can be seen from Figs. 5(a) and 5(b) that at lower
and intermediate excitation energies the values of the average
prefission neutron multiplicities calculated with considering
appropriate values for the parameters k and rs are close to
the experimental data, although at higher excitation energies
the calculated data are slightly lower than the experimental
data. This is probably due to the compound nucleus at higher
excitation energy is formed with a larger value of spin and
temperature. Thus, the fission barrier height will be reduced,
and, therefore, the neutron widths are comparable to the fis-
sion widths, and so the calculations data for the prescission
neutron multiplicities are slightly lower than the experimental
data. It should be mentioned that in simulation of the fis-
sion process of a compound nucleus, it is very important to
consider the effect of the parameters k and rs. It can be inves-
tigated, for example, by estimation of the prescission neutron
multiplicity for the excited compound nuclei 210Rn and 215Fr

FIG. 4. The results of the evaporation residue cross section and
the fission cross section for the compound nucleus 215Fr, calculated
with considering k = 0.0065 ± 0.0040 MeV−2 and rs = 1.0040 ±
0.0015. The solid circles are experimental data [54,55].

with considering k = 0 and rs = 1. The results of calculations
for neutron multiplicities by using k = 0 and rs = 1 are also
included in Figs. 5(a) and 5(b). It is clear from Figs. 5(a) and
5(b) that by using k = 0 and rs = 1 the results of calculations
for prescission neutron multiplicities decreased for 210Rn and
215Fr.

Figure 6 shows the results of anisotropy of the fission
fragment angular distribution as a function of energy for the
excited compound nucleus 210Rn and Figs. 7(a) and 7(b)
show the results of the fission fragment angular distribution
as a function of scattering angle at bombarding energy Elab =
89.80 and Elab = 104.90 MeV for the excited compound nu-
clei (a) 210Rn and (b)215Fr.

It can be seen from Figs. 6 and 7 that the difference be-
tween the results calculated with MSM and experimental data
are small, although at higher excitation energies the calculated
data are slightly lower than the experimental data.

In the present research the fission probability has been
also calculated for the excited compound nucleus 210Rn with
considering k = 0.0160 ± 0.0050 MeV−2 and rs = 1.0030 ±
0.0020. Figure 8 shows the fission probability for the com-
pound nucleus 210Rn as a function of excitation energy. It
can also be seen from Fig. 8 that at higher excitation energies
the results of calculations lie slightly below the experimental
data.
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FIG. 5. The results of the prefission neutron multiplicities as a
function of excitation energy for the excited compound nuclei (a)
210Rn and (b) 215Fr calculated with considering appropriate values for
the parameters k and rs (solid lines). The dotted lines show the results
of the prefission neutron multiplicities calculated with considering
k = 0 and rs = 1. The solid circles are experimental data [56,57].

Finally, in the present investigation the mean fission time
have been calculated for the excited compound nuclei 210Rn
and 215Fr. Figure 9 shows the results of the mean fission time
as a function of excitation energy for the excited compound

FIG. 6. The results of anisotropy of the fission fragment angular
distribution as a function of excitation energy for the compound
nucleus 210Rn. The solid circles are experimental data [53].

FIG. 7. The results of fission fragment angular distributions as
a function of scattering angle at bombarding energies Elab = 89.80
and Elab = 104.90 MeV for the excited compound nuclei (a) 210Rn
and (b)215Fr. The solid circles are experimental data [53,58].

nuclei 210Rn and 215Fr. It can be seen from Fig. 9 that the
mean fission time decreases rapidly with increasing excitation
energy.

FIG. 8. The results of fission probability as a function of exci-
tation energy for the compound nucleus 210Rn. The solid circles are
experimental data [53].
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FIG. 9. The results of the mean fission time for the excited com-
pound nuclei 210Rn and 215Fr calculated in the framework of the
MSM.

IV. CONCLUSIONS

In the framework of the modified statistical model have
been calculated the evaporation residue cross section, the
fission cross section, the fission probability, the average
prescission neutron multiplicity, the mean fission time, and
the anisotropy of fission fragments angular distribution as a
function of excitation energy for the excited compound nuclei
210Rn and 215Fr produced in fusion reaction. In the statistical

calculations, the temperature coefficient of the effective po-
tential k and the scaling factor of the fission-barrier height,rs,
were considered as a free parameter and their magnitudes
inferred by fitting measured data on the evaporation residue
cross section and the fission cross section. It was shown
that the results of calculations are in good agreement with
the experimental data by using appropriate values for these
parameters equal to k = 0.0160 ± 0.0050 MeV−2 and rs =
1.0030 ± 0.0020 for 210Rn and k = 0.0065 ± 0.0040 MeV−2

and rs = 1.0040 ± 0.0015 for 215Fr. In the present investi-
gation, by using appropriate values of parameters k and rs

have also been calculated the fission probability, the average
prescission neutron multiplicity, the mean fission time, and the
anisotropy of fission fragments angular distribution for the
compound nuclei 210Rn and 215Fr. Comparison of the theo-
retical data with the experimental data was shown that the
modified statistical model is well able to reproduce these
experimental data for the nuclei 210Rn and 215Fr by using
appropriate values for the parameters k and rs. Although, at
high excitation energies the results of calculations for the
anisotropy of fission fragments angular distribution and fis-
sion probability are slightly lower than the experimental data.
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