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Sensitivity of time-dependent density functional theory to initial conditions
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Time-dependent density-functional theory is mathematically formulated through nonlinear coupled time-
dependent three-dimensional partial differential equations, and it is natural to expect a strong sensitivity of
its solutions to variations of the initial conditions, akin to the butterfly effect ubiquitous in classical dynamics.
Since the Schrödinger equation for an interacting many-body system is, however, linear and mathematically
the exact equations of the density-functional theory reproduce the corresponding one-body properties, it would
follow that the Lyapunov exponents are also vanishing within a density-functional theory framework. Whether
for realistic implementations of the time-dependent density-functional theory the question of the absence of
the butterfly effect and whether the dynamics provided is indeed a predictable theory was never discussed. At
the same time, since the time-dependent density-functional theory is a unique tool allowing us to study the
nonequilibrium dynamics of strongly interacting many-fermion systems, the question of predictability of this
theoretical framework is of paramount importance. Our analysis, for a number of quantum superfluid many-body
systems (unitary Fermi gas, nuclear fission, and heavy-ion collisions) with a classical equivalent number of
degrees of freedom O(1010) and larger, suggests that its maximum Lyapunov exponents are negligible for all
practical purposes.
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I. PREAMBLE

Dynamical systems are often deterministic but at the same
time unpredictable in the long run. In 1884 Gösta Mittag-
Leffler initiated the idea of a new international prize in
mathematics in honor of King Oscar II of Sweden and Nor-
way. The first challenge was to solve the N-body problem
interacting according to Newton’s law of gravitation. In 1888
Henri Poincaré submitted his answer, about 300 hand-written
pages, to which upon request he added another 100 or so
hand-written pages, and he was awarded the prize. The initial
Poincaré “solution” had an error, he missed what we now
know as the butterfly effect, an error which he fixed before
his results were later published [1]. The entire dramatic story
is available online [2]. Poincaré’s insights were further ex-
tended by the work of Lyapunov [3], who introduced the now
ubiquitous Lyapunov exponents. The topic remained practi-
cally dormant until the paper of Lorenz [4], who soon after
apparently introduced the meme butterfly effect as a poetic
illustration of the high sensitivity of deterministic systems
to initial conditions. This is how we have learned that the
equations of motion of a physical system can be deterministic
and at the same time can be unpredictable in the long run.
The chaos theory was born before anyone had any clue that
quantum mechanics would quite soon change the world in
so many ways, and in particular our interpretation of chaos.
Recently, a statistical approach was suggested as an alterna-
tive reformulation of the three-body problem challenge [5–8],
which renders this problem deterministic.

Classical chaos studies show that a system of interacting
particles, being nonlinear in character, would typically show
sensitivity to initial conditions. Unless a classical Hamilto-
nian system is integrable it is characterized by the presence
of at least one positive Lyapunov exponent, rendering any
long-time predictions totally unreliable, even though the equa-
tions of motion are unquestionably deterministic. Popularly
this is referred to as the butterfly effect and in scien-
tific literature as deterministic chaos. If the time-dependent
density-functional theory (TDDFT), which by default is a
nonlinear theory, unlike the many-body Schrödinger equa-
tion, would be sensitive to initial conditions, the TDDFT
would be unpredictable and useless as a theoretical tool.
The sensitivity of a many-body system to initial conditions
would be equivalent to the absence of the linear regime, as
any small initial perturbation would increase exponentially
in time and the many-body system would be basically
unstable.

Our goal is to ascertain whether the TDDFT equations are
characterized by nonvanishing Lyapunov exponents.

II. QUANTUM MECHANICS VERSUS
CLASSICAL MECHANICS

In this section we review a number of aspects of chaos
theory in the classical and quantum descriptions of nature,
which can be skipped by the informed reader.

The Lyapunov exponent λ of a dynamical system is a
quantity which characterizes the rate of separation of initially
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infinitesimally close trajectories:

λ = lim
t→∞ λ(t ) = lim

t→∞
1

t
ln

|δZ(t )|
|δZ(0)| , (1)

where δZ(t ) are the differences between the two full sets of
phase-space variables. In practice one evaluates λ via Eq. (1)
by starting from a fixed small |δZ(0)| and by evolving in time
the system for a relatively long time. For an N-dimensional
Z(t ) one defines a spectrum of N Lyapunov exponents. In the
case of a Hamiltonian dynamics, Liouville’s theorem implies
that

N∑
k=1

λk = 0, (2)

and, moreover, that a number of these Lyapunov expo-
nents identically vanish in the presence of symmetries and
conserved quantities. In the case of dissipative dynamics∑N

k=1 λk < 0. The sum of all positive Lyapunov exponents
gives an estimate of the Kolmogorov-Sinai entropy [9]. A
related quantity is the Lyapunov dimension or Kaplan-Yorke
dimension [10].

A particular class of classical systems is interesting in
connection with quantum dynamics: for any quadratic Hamil-
tonian in the canonical coordinates and momenta all the
Lyapunov exponents are identically zero. It is trivial to show
that the nonrelativistic quantum dynamics with instantaneous
interactions between particles is mathematically equivalent
to a classical system of infinitely many coupled harmonic
oscillators. If a quantum N-body system with coordinates x =
(r1, . . . , rN ) satisfies the time-dependent Schrödinger equa-
tion

ih̄�̇(x, t ) =
∫

dy H (x, y)�(y, t ), (3)

then one can introduce the continuous classical canonical
coordinates and momenta, similarly to fluid dynamics [11],
and the corresponding total Hamiltonian of the “classical”
continuum canonical coordinates. We suppressed, for the sake
of simplicity, the spin, isospin, and any other discrete degree
of freedom (DoF). A set of continuous canonical coordinates
and momenta convenient for our purpose is

qx(t ) =
√

2Re�(x, t ), (4)

px(t ) =
√

2Im�(x, t ), (5)

H = 1

h̄

∫
dxdy�∗(x, t )H (x, y)�(y, t ), (6)

where H is the corresponding classical Hamiltonian of
quadratic form, and where x labels these canonical coordi-
nates. Using the classical Poisson brackets one immediately
obtains the classical Hamiltonian form of the Schrödinger
equation:

q̇x(t ) = {qx(t ),H} = δH
δpx(t )

, (7)

ṗx(t ) = {px(t ),H} = − δH
δqx(t )

. (8)

This Hamiltonian form of the Schrödinger equation naturally
implies that all Lyapunov exponents of any nonrelativistic
many-body Hamiltonian with instantaneous interactions iden-
tically vanish, and thus it strictly follows that there is no
quantum chaos, or there is no sensitivity to the initial condi-
tions for any quantum many-body problem with instantaneous
interactions. Alternatively, one can state that the Schrödinger
equation is linear and thus no exponential divergence between
initially close quantum states can be observed.

This is the reason why, for many decades now, theorists
tried to answer such questions using argumentation based on
the correspondence principle: Why a quantum Hamiltonian,
which in the classical limit h̄ → 0 has chaotic dynamics,
does not show any sensitivity to initial conditions? How can
one identify the signatures of chaotic features present in
the classical limit in the quantum description? Most of the
studies of quantum chaos focused on several aspects: (i) the
presence of either the Poisson or of the random matrix energy-
level distributions in quantum systems [12] compared with
their corresponding integrable or chaotic classical counter-
parts [13]; and (ii) the “scars” on the quantum wave functions
in the limit h̄ → 0 left by the classical periodic orbits [14–18].
Unfortunately, the wave function “scars” cannot be studied
in case of quantum many-body systems, for obvious reasons.
The role of the boundary effects versus the role of the inter-
action between particles were not always clearly separated
in such studies. In an overwhelming fraction of studies of
quantum chaos the object was devoted to billiards, typically
in two dimensions. In the present study we concentrate solely
on the role of the interaction between particles.

In spite of all the insight gathered during the past several
decades in quantum chaos, one did not really put in evidence
a sensitivity to initial conditions in a manner as clear as in
classical dynamical systems. Recently, a new approach has
been advocated: the study of the so-called out-of-time-ordered
correlator (OTOC) [19,20], in particular, the quantity

C(t ) = −Tr{e−βĤ [x̂(t ), p̂(0)]2}
h̄2Tr{e−βĤ } , (9)

where [x̂(t ), p̂(0)] is the commutator of the Heisenberg coor-
dinate and momentum operators

x̂(t ) = e−iĤt/h̄x̂(0)eiĤt/h̄, (10)

p̂(t ) = e−iĤt/h̄ p̂(0)eiĤt/h̄, (11)

[x̂(t ), p̂(t )] = ih̄, [x̂(t ), p̂(0)] = ih̄
∂ x̂(t )

∂ x̂(0)
, (12)

where t is time and β = 1/T is the inverse temperature. (It is
not a requirement to use the canonical average.) The reason
for such a choice is that the Poisson bracket {A, B} of the
classical limit of the quantum operators Â, B̂ is related to the
quantum commutator

lim
h̄→0

[Â, B̂]

ih̄
= {A, B}. (13)

One can establish an apparent link between the OTOC and
classical chaos and show that the maximum Lyapunov expo-
nent of a quantum system has an upper bound. Maldacena
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et al. [20], Tsuji et al. [21] have proven that, under some very
reasonable assumptions,

λMSS = lim
t→∞

ln C(t )

2t
� πT

h̄
. (14)

In Ref. [20] the authors overlooked that {x(t ), p(0)} ≡
∂x(t )/∂x(0) ∝ exp(λt ) and thus C(t ) ∝ exp(2λt ). In the clas-
sical limit, one discusses the behavior of �xk (t )/�xk (0) ∝
exp(λt ), but not of its square |�xk (t )/�xk (0)|2 ∝ exp(2λt )
because it is done using the OTOC for quantum-mechanical
systems, see Eq. (9).

It was shown that the quantum Lyapunov exponent,
see Eq. (9), can be extracted from the thermally averaged
Loschmidt echo signal [22],

L(t ) = |〈ψ |eiH0t/h̄e−i(H0+V )t/h̄|ψ〉|2, (15)

which exhibits a fast exponential decay ∝ exp(−2λt ). Here
V stands for a small perturbation—a diagnostic widely used
theoretically and experimentally. There is thus a difference be-
tween the sensitivity discussed in classical chaos and quantum
chaos. In classical systems one perturbs the initial conditions,
while in quantum studies one often perturbs the evolution
Hamiltonian. Recently, it was argued again, using quantum
computing reasoning, that there is no butterfly effect in a gen-
uine quantum evolution [23], as was argued also for decades
in the literature.

These various conclusions deserve some introspection.

(1) Classically, a system manifests a chaotic behavior in
isolation, not in contact with a thermal bath, as Malda-
cena et al. [20] have assumed. One can, however, relate
the temperature T used by Maldacena et al. [20] with
the energy-level density of a (large) quantum system

ρ(E ) = Trδ(E − H ) ∝ eS(E ), (16)

where S(E ) is the entropy, and then the temperature
can be defined as

1

T
= dS(E )

dE
(17)

for a large isolated system which reaches statistical
equilibrium [24].

The statistical mechanical equilibrium is not an
instantaneous quality, so it is difficult to determine
from an instantaneous snapshot of the system [24]. The
equilibrium characterizes the behavior of a system,
in particular of an isolated system, over a very long
time, when according to Boltzmann the time average
becomes identical to the phase-space average. Thus
the time should be long enough for the system to have
managed to cover a relevant part of the phase space,
for the system to be capable of revealing its statistical
equilibrium properties. The equilibration time for a
many-body system (assuming extensivity of the sys-
tem properties) is in theory exponentially large ∝e#N

as only for a very long time the many-body density
matrix of the system reaches equilibrium as a result
of visiting all allowed phase-space cells. On the other
hand, simple quantities, such as the one-body distri-
bution or the two-body correlations reach equilibrium

in a much shorter time, typically after a relatively
small number of interparticle collisions. An interpar-
ticle collision can be characterized qualitatively only
in a relatively dilute system, and therefore the analysis
of dense systems is a qualitatively complicated issue.
In dense systems one can replace the particles with
quasiparticles and perform a similar analysis. In par-
ticular, the entropy increase in time, often discussed
in literature, should be evaluated over time intervals
longer than the equilibration times.

Equation (9) implicitly assumes that C(t ) is calcu-
lated for a system in thermal equilibrium at all times.
Since C(t ) increases exponentially, the inverse rate

1/λMSS 
 τequil (18)

should be longer than the equilibration rate of the
system.

(2) Classical mechanics appears as a singular limit of
quantum mechanics, and very likely the order in which
the limits h̄ → 0 and t → ∞ are taken influence the
interpretation of the results of various studies.

In the classical limit there is no upper limit on the
maximum value of a Lyapunov exponent, which in
a sense explains the abundance of classical chaotic
systems, if one is to take the limit h̄ → 0 first in
Eq. (14). At the same time one can justify why many-
body quantum systems do not have random matrix
fluctuations on energy scales �E much larger than the
average level separation in large system [25–27],

�E ∝ T 3/2 
 1

ρ(E0)
≈ exp

(
−aT

2

)
, (19)

when statistical equilibrium is achieved. This estimate
was obtained by considering the behavior of the level
density of nonrelativistic many-fermion systems de-
rived by Bethe [28],

ρ(E ) ∝ exp(
√

aE ), (20)

and the corresponding average equilibrium energy and
variance

E0 ≈ aT 2, �E ∝ T 3/2, (21)

and a ≈ A/10, where A is the nucleus atomic mass.
(3) A quantum system can be initialized with any energy

E with an energy width �E � E . Such a packet can
likely be chosen to be also rather well localized so
as 〈�xk (0)〉〈�pk (0)〉 ≈ h̄, where k = 1, . . . , N . It is
sufficient to assume that localization is in phase space,
and, as in the case of squeezed states, 〈�xk (0)〉 ∝ h̄α

and 〈�pk (0)〉 ∝ h̄1−α or consider any other orienta-
tion of such an ellipse or even any other shape with
comparable area in the phase space. The more recent
hypothesis of eigenstate thermalization and related
studies [29–31] are similar approaches to define the
relaxation time to reach statistical equilibrium in ac-
cordance to the principles of statistical mechanics [24].

(4) Quantum packets spread with time, and if the system
is finite in space, an initial wave packet with a spatial
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size smaller than the system size eventually spreads
over the entire system during the Ehrenfest time τE .
For a chaotic system, the Ehrenfest time is determined
by 〈�xk (0)〉 exp(λτE ) ≈ L if one considers the separa-
tion of various trajectories in real space. Consider all
possible initial conditions of a classical Hamiltonian
system in a small volume in phase space of com-
pact size (linear dimensions L in all directions). If a
Hamiltonian system is chaotic and various trajectories
diverge exponentially, and since according to Liouville
theorem the phase-space volume is conserved, with
time this initial compact phase-space volume evolves
into a fractal, which can overlap significant parts of the
entire phase space.

(5) One can prepare two identical systems with slightly
different initial conditions Z1,2(0) and record as a func-
tion of time �Z(t ) = Z1(t ) − Z2(t ) and thus extract
their relative velocity.

Obviously, the absence of the speed of light in
Eq. (14) restricts the validity of this upper bound to
nonrelativistic systems only. Since two initially in-
finitesimally close trajectories cannot separate with a
relative speed greater than twice the speed of light, the
Lyapunov exponents are strictly vanishing in relativis-
tic theories. Since the linear momenta however can
increase indefinitely, the character (and maybe even
existence) of chaos in a relativistic system might be
qualitatively different from that in a Newtonian sys-
tem. However, if one would still find a butterfly effect
in a relativistic system, when one or a small number
of momenta can increase exponentially, a fact that will
point likely to the absence of ergodicity. A significant
amount of energy will then get concentrated among
few degrees of freedom, which will correspond to a
relatively small part of phase space.

III. STRONGLY INTERACTING QUANTUM
MANY-BODY SYSTEMS

The main issue we will be concerned with in this work
is the presence or absence of chaotic behavior in a quantum
many-body system under realistic conditions.

(1) When analyzing a concrete quantum many-body sys-
tem and well-specified phenomena, we will assume
that the role of h̄ = 0 cannot be ignored and therefore
we will not consider the h̄ → 0 limit.

(2) For specific physical phenomena, often there is no
meaning to consider the limit t → ∞. A typical case is
a chemical reaction AB + C → A + BC at later times,
after the complex BC has been formed and it is safely
separated from A. However, by slightly changing the
initial conditions, the emerging molecules might end
up in drastically different configurations, and this can
be interpreted as a significant sensitivity to initial con-
ditions.

It has been established that, for interacting quantum many-
body systems, there exist two equivalent quantum-mechanical
formulations: the many-body Schrödinger equation and the

density-functional theory (DFT) [32–38], if one is interested
only in the behavior of the one-body or the number density
of the system n(r, t ) and the total energy of the system. How-
ever, the two formulations, while mathematically proven to
be equivalent, have completely different realizations in terms
of underlying equations. While the Schrödinger equation is
linear and is always equivalent to an infinite continuum system
of coupled classical oscillators, DFT is manifestly a nonlinear
theory. Since typical implementations of DFT are formulated
in terms of single-particle wave functions (spwfs), these spwfs
can be in the same manner split into their real and imaginary
parts and DFT can be shown to be mathematically equivalent
to very complex continuum classical systems governed by
nonlinear (nondissipative) classical Hamiltonian equations of
motion, similar to Eqs. (7) and (8).

The equivalence of the many-body Schrödinger equation to
the TDDFT was proven under a number of assumptions so
far [34,36–38], which in practice are not always realized. In
particular, Runge and Gross [34] showed that, for a particu-
lar choice of initial conditions, one can introduce a density
functional, which in an exact DFT formulation also implies
the existence of memory terms [37,38]. While even for static
DFT formulations, when memory terms are not necessary,
the construction of a density functional is still more an art
than a science, the density functional for TDDFT should
include memory terms and the density functional may de-
pend on the initial conditions as well. Nevertheless, if the
collective motion of the many-body system is “adiabatic”
one can invoke in practical implementations the adiabatic
approximation [37,38] and use a static density functional for
a time-dependent problem. This “adiabatic approximation” is
used in all, if not the majority of practical implementations
of TDDFT and it is the framework adopted in the present
study, as also suggested by Runge and Gross [34], see their
theorem 4, which leads to a natural extension of the Kohn-
Sham scheme [33] to time-dependent problems.

A. Upper bounds for the maximum Lyapunov exponents
for some quantum many-body nonrelativistic systems

It is instructive to estimate the upper bound for the Lya-
punov exponent, Eq. (14), for a realistic system. While there
is plenty of them, let us focus on quantum systems at room
temperature, condensed-matter systems, low-energy nuclear
systems, and the unitary Fermi gas, for which a nonrelativistic
quantum description is applicable.

For a condensed-matter system at room temperature,

λCM
MSS = πT

h̄
≈ 1.2 × 1014 s−1, (22)

and combing this with the time it takes, an electron with a
kinetic energy of 3 eV to traverse 100 nm (τcross = 1.3 ×
10−13 s), we obtain

λCM
MSSτcross ≈ 15. (23)

We used 100 nm as the possible size of a quantum billiard,
which is also a reasonable estimate of the mean-free path in
typical metals.
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A characteristic temperature of an excited nucleus is T =
O(1) MeV, which leads to

λnuclear
MSS ≈ 0.016 c/fm = 5.33 × 10−26 s−1. (24)

A heavy nucleus has a diameter ≈12 fm, a nucleon has a
velocity ≈c/4, and the time it takes to cross a nucleus is
τcross ≈ 50 fm/c, so

λnuclear
MSS τcross = O(1). (25)

The time between two nucleon collisions is not much differ-
ent, τcoll ≈ τcross.

Another system to which we turn our attention to is the
unitary Fermi gas (UFG), which is the “most superfluid sys-
tem” known, with a critical temperature Tc ≈ 0.17εF, where
εF = h̄2k2

F/2m is the Fermi energy of the noninteracting Fermi
gas with the same number density n = k3

F/3π2. For the UFG
the two-body collision time is tcoll ≈ π h̄/2εF and thus at Tc,

λUFG
MSStcoll = O(1), (26)

and thus is similar to the estimates obtained above.
In all these cases, the estimates of λ given by Eq. (14)

are upper-bound estimates and one would expect, according
to Eq. (18),

λMSSτequil � 1 (27)

in order to observe chaotic behavior in a quantum system in
statistical equilibrium. The question arises as to whether such
strongly interacting nonrelativistic fermions could be chaotic
in reality. The times τcoll and τcross are referred to as dissipation
and scrambling times, respectively, in Ref. [20] and related
studies. What our estimates here show is that, in physical
systems of interest in condensed matter, nuclear, and cold
atom physics, there is no separation of scales between the
dissipation and scrambling times and the conjectured onset of
the chaoticity timescale 1/λMSS.

B. Time-dependent density-functional theory

Nevertheless, the initial question we raised is still le-
gitimate: Do the Schrödinger and DFT descriptions, which
are identical for one-body observables, display any chaotic-
ity? This issue, which was not addressed in the literature
yet, specifically for time-dependent phenomena, except for a
few instances we are aware of [39–42]. In particular, Balian
and Vénéroni [39] address a narrower question concerning
the Lyapunov stability of the time-dependent Hartree-Fock
(TDHF) approximation and of the random-phase approxima-
tion (RPA) only in the case when the initial state minimizes
either the microcanonical, canonical, or the grand canonical
partition function, respectively. Since at the minimum of a
partition function the RPA spectrum is real [43], a Lyapunov
instability is naturally not expected and formally it follows
to be a mathematically correct statement [39], for either a
classical or a quantum many-body system. Our interest here
is the more general problem, when the initial state of the
quantum system is a (highly) excited state.

DFT does not provide a recipe to construct the energy
density functional and thus any DFT implementation relies
on a number of assumptions. Even in the case of electrons in

atoms and molecules or in condensed-matter systems, even
though the Coulomb interaction is known and the nonrela-
tivistic Schrödinger equation is very accurate in principle for
their description. For nuclear systems the situation is even
worse, since the interaction between nucleons is not known
with enough accuracy, and moreover the relativistic effects are
not entirely negligible and the effects of non-nucleon degrees
of freedom (virtual mesons, quarks, and gluons) are some-
times required. Nevertheless, as in the case of the Schrödinger
equation, where we know the form of the equation and have
to provide the interparticle interaction, in the case of DFT
we know the framework and we have to provide the energy
density functional.

In 1964, Hohenberg and Kohn [32] proved the remarkable
mathematical theorem that the many-electron wave function
of an N-electron system in the presence of nuclei is in
one-to-one correspondence with the electron number density.
This result implies that the N-electron wave function is fully
determined by the electron number density alone. It also
implies that an energy density functional depending on the
electron number density exists, and its minimum determines
the ground-state electron number density and the ground-state
energy of the N-electron system, in full agreement with the
solution of the N-electron Schrödinger equation. This theo-
rem has been generalized over the years to any excited state,
to electron systems in various statistical ensembles, and to
time-dependent phenomena [36–38]. Since the specific form
of the Coulomb electron-electron interaction plays no role in
these proofs, these results apply equally to any many-fermion
systems, irrespective of the nature of the (static) interaction
between them. One should remember also that DFT does not
provide information about the n-body number densities for
n > 1. If the energy density functional is known then one can
extract only the one-body number density, the energy of the
system, and related observables.

A particular many-fermion system deserves special at-
tention: the unitary Fermi gas (UFG) suggested by Bertsch
[44–46]. In the Bertsch [44] formulation, the UFG is a ho-
mogeneous infinite system of equal number of spin-up and
spin-down fermions, interacting with a zero-range potential
and an infinite scattering amplitude. The UFG energy per
particle of a large homogeneous N-particle system is then
given by the function

lim
a→∞ lim

r0→0

E (N,V, h̄, m, r0, a)

N

∣∣∣∣N
V =const

= ξ
3

5
εF , (28)

n = N

V
= k3

F

3π2
, εF = h̄2k2

F

2m
, (29)

where V , a, r0, and m are the volume, scattering length,
effective range, and mass of the fermions, respectively, and
n, kF , and εF are the number density, Fermi wave vector,
and Fermi energy of the free Fermi gas, respectively, with
the same N and V . For the UFG, apart from mass m and
Planck’s constant [which factors out in Eq. (28)], the only
dimensional system-dependent quantity is the Fermi wave
vector. The dimensionless constant ξ is known as the Bertsch
parameter, and by now has been determined both theoret-
ically ξ = 0.372(5) [47] and experimentally ξ = 0.376(5)
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[48]. From dimensional arguments and requiring translational,
rotational, time-reversal symmetries, the Galilean invariance,
and the renormalizability of the theory one can show that, for
an inhomogeneous system, the energy density functional of a
UFG is determined as

ε(r) = h̄2

m

[
α

τ (r)

2
+ β

3(3π2)2/3n5/3(r)

5

+ γ
|ν(r)|2
n1/3(r)

− (α − 1)
j2(r)

n(r)

]
+ · · · , (30)

where we have neglected further gradient corrections like
≈|∇n|2/n. The number, kinetic, anomalous, and current den-
sities are defined as follows:

n(r) = 2
∑

0<Ek<Ec

|vk (r)|2, (31)

τ (r) = 2
∑

0<Ek<Ec

|∇vk (r)|2, (32)

ν(r) =
∑

0<Ek<Ec

uk (r)v∗
k (r), (33)

j(r) = 2Im
∑

0<Ek<Ec

v∗
k (r)∇v(r). (34)

They are parametrized in terms of the Bogoliubov quasi-
particle wave functions (qpwfs) uk (r), vk (r), obtained as the
solutions of the self-consistent equations

(
(h(r) − μ) �(r)

�∗(r) −(h∗(r) − μ)

)(
uk (r)
vk (r)

)

= Ek

(
uk (r)
vk (r)

)
, (35)

where

h(r) = − h̄2α

2m
∇2 + δε(r)

δn(r)
+ Vext(r), �(r) = − δε(r)

δν∗(r)
.

(36)

Here Vext(r) stands for a trapping potential and μ is the
chemical potential. The need for the kinetic-energy density
in addition to the number density was discussed in Ref. [33].
The anomalous and current densities are required to be able
to disentangle the superfluid phase from the normal phase and
the static system from the system with flow, respectively. The
current density is needed in the case of currents, e.g., when
quantized vortices are present. The dimensionless parameters
α, β, and γ are extracted from quantum Monte Carlo calcula-
tions of the homogeneous UFG [49,50].

Many properties of trapped inhomogeneous finite UFG
can at this point be evaluated by using the two different,
independent, and exact methods, the DFT and the solution
of the many-body Schrödinger equation using a Monte Carlo
approach (QMC). The DFT and QMC results agree to the
level of QMC numerical errors [49,50], and therefore the DFT
and Schrödinger descriptions indeed agree as expected.

The time-dependent systems are described within the
TDDFT framework,

ih̄

(
u̇k (r, t )
v̇k (r, t )

)
=

(
[h(r, t ) − μ] �(r, t )

�∗(r, t ) −[h∗(r, t ) − μ]

)

×
(

uk (r, t )
vk (r, t )

)
. (37)

A direct comparison of the time-dependent Schrödinger and
TDDFT solutions has not yet been performed. However,
the time-dependent Schrödinger equation for a simplified N-
fermion superfluid system, very similar to the UFG [51–53]
has similar solutions with the TDDFT for UFG [54]. One
of the most spectacular successes of TDDFT was the correct
identification of the generation of vortex rings and their dy-
namics [55–58], which were initially incorrectly identified as
heavy solitons [59] and later confirmed as vortex rings experi-
mentally as well [60]. Subsequently, it was demonstrated that
the TDDFT for the unitary Fermi gas correctly describes the
evolution of the full solitonic cascade, contrary to simplified
approaches like the standardly applied Gross–Pitaevskii equa-
tion [58].

We discuss two other examples of strongly interacting
many-fermion systems: nuclear fission and collisions of su-
perfluid heavy ions. In the case of nuclear systems, we have
so far only approximate forms of the energy density func-
tionals, which are also significantly more complex than the
UFG energy density functional. To describe nuclear systems
one has to explicitly add neutron and proton degrees of free-
dom and also the spin-orbit interaction and the corresponding
number spin densities, for details, see Refs. [61–67]. The
nuclear qpwfs, separately for neutrons and protons, have four
components {uk (r,↑), uk (r,↓), vk (r,↑), vk (r,↓)} to account
for spin 1/2 in the presence of the spin-orbit interaction.

Since both the Schrödinger equation and the TDDFT lead,
in principle, to the same number density n(r, t ) and related
observables, it is natural to examine the sensitivity to initial
conditions of this quantity. We introduce noise in the initial
state according to the prescription discussed in Ref. [42].
Namely, in the case of UFG, we slightly alter the initial values
of the qpwfs as follows:(

uk (r, 0)
vk (r, 0)

)
→

(
uk (r, 0)[1 + εαu(r)]
vk (r, 0)[1 + εαv (r)]

)
, (38)

where ε is the strength of the noise and αu,v (r) are complex
numbers with real and imaginary uniform random numbers
in the interval [−1, 1]. The random quantity α(r) appear to
introduce discontinuities in the modified qpwfs, as neighbor-
ing lattice points are not correlated. However, this apparent
discontinuity is at the scale pcut = h̄π/l , where l is the lattice
constant, and thus accommodated in our numerical scheme. In
the case of nuclear systems, all four components of the proton
and neutron qpwfs are modified accordingly. The perturbed
qpwfs are not orthonormal anymore, but the solutions of the
corresponding TDDFT equations satisfy all expected symme-
tries and conservation laws. According to our discussion in
Sec. II, this type of perturbation of the initial qpwfs is equiva-
lent to the change in coordinates and momenta when studying
the sensitivity to initial conditions in the equivalent classical

044601-6



SENSITIVITY OF TIME-DEPENDENT DENSITY … PHYSICAL REVIEW C 105, 044601 (2022)

FIG. 1. Several consecutive frames demonstrating the evolution of a system with 12 quantized vortices, perturbed by a spherical ball
stirring them in the time interval �t = 170ε−1

F , after which the UFG is left to evolve undisturbed. The system remains superfluid during the
entire evolution. Time is in units of 1/εF and in the case of UFG one also typically chooses h̄ = 1.

Hamiltonian framework of either the Schrödinger equation or
of the corresponding TDDFT. Since the primary DFT theorem
implies that there is a one-to-one mapping � ↔ n, we can al-
ternatively apply the perturbation to the densities. The specific
method of introducing the perturbation should not influence
the final result.

C. Vortex dynamics in a unitary Fermi gas

The first example that we discuss is the simulation of the
dynamics of 12 quantized vortices in a UFG with N = 1004
fermions in a simulation box N = NxNyNz = 403, where the
dimension of the equivalent classical phase space is 4 × N2 ≈
1.6 × 1010. Initially, the vortices are parallel to the sides of
the simulation box and have alternate vorticities, see the first
frame in Fig. 1. At time t = 0 a spherical ball is introduced
into the system and starts stirring the system until the time
t = 170ε−1

F when the ball is again extracted (in the case of
an UFG, one uses the units m = h̄ = 1) and during this time
energy is pumped into the system. The UFG is superfluid
initially, and the amount of energy pumped into the sys-
tem during the time interval (0, 170)ε−1

F is sufficiently small
so that the system remains superfluid. The stirring process
destabilizes the vortex grid and vortices begin to cross and re-
connect, as conjectured by Feynman [68], and in this manner
quantum turbulence (QT) is generated. This type of turbulence
is routinely characterized as a random and chaotic motion of
the fluid. Indeed, most of studies in the QT field are done by
means of the so-called vortex filament model (VFM), which
converts the quantum problem into classical motion of vor-
tex lines that interact nonlinearly [69]. Since the number of
vortices and antivortices are equal, eventually they annihilate
each other and after t ≈ 600ε−1

F there are no vortices left in
the system.

The density plays the central role in the DFT approach, and
in order to measure the Lyapunov exponent we will track this
quantity. In Fig. 2 we show as a function of time

λ(t )

εF
= 1

2εFt
ln

∫
d3r[nε (r, t ) − n0(r, t )]2∫
d3r[nε (r, 0) − n0(r, 0)]2

, (39)

where nε (r, t ) and n0(r, t ) are the densities arising from
perturbed and unperturbed initial states, respectively. These
results were obtained using the code [70]. We used different
methods to introduce the initial perturbation. Noise in the

initial qpwfs, in the form of Eq. (38), of different strengths
(ε = 0.5%, and 1%) provide a very similar value of λ(t )
for late times. Alternatively, instead of perturbing the wave
functions, one can perturb the initial Hamiltonian by adding
the noise to the density or to the order parameter, however,
we do not find significant sensitivity of the final result on
the perturbation method. Finally, we have checked that the
result does not depend on the discretization. Compare the
time series for spatial lattices 403 and 323, where we keep
a fixed volume of the simulation domain and adjusted the lat-
tice spacing accordingly. All these result clearly demonstrate
that for the studied system the Lyapunov exponent λUFG =
limt→∞ λ(t ) ≈ 0.005εF .

At times larger than t ≈ 600ε−1
F the vortices disappeared

from the system, the system becomes a uniform gas with many
excited phonons and the time average is a thermal equilibrium
state. From the energy in the final state, using the equation of
state E (T ), which was obtained quite accurately both theoret-

FIG. 2. The time evolution of λ(t ) for different methods of in-
troducing the noise: perturbation of quasiparticle wave functions
(� + δ�), and initial Hamiltonian through density (n + δn) or the
order parameter (� + δ�). The value after label (0.5% or 1.0%) in-
dicates strength of the noise ε. On top the upper bound by Maldacena
et al. [20] is depicted.
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ically and experimentally [46], we determine the temperature
T corresponding to the equilibrated state, T/εF ≈ 0.17, which
is practically equal to the critical temperature Tc. The length of
simulations are, however, rather short for the system to have
thermalized. At thermal equilibrium at this temperature the
UFG is most likely in the so-called pseudogap phase, when
the long-range superfluid correlations vanished, but a pairing
gap is still present [71–75] and where the ratio of the viscosity
to the entropy is minimal [76], and the system is often referred
to as a perfect fluid. At this temperature, evaluated using the
UFG equation of state [77–79],

λUFG
MSS

εF
= πT

εF
≈ 0.53, (40)

which is about two orders of magnitude higher than what we
observe in our calculations.

D. Nuclear fission

In Ref. [42] we reported preliminary results on the influ-
ence of noise in initial conditions in TDDFT simulations on
some properties of the emerging nuclear reaction products.
In such calculations, the reaction products are followed in
time only until they are reasonably far spatially separated
and they do not exchange energy, momentum, or particles
anymore. At that point the various properties of the emerging
reaction products are evaluated, and that is where we judge
the sensitivity to the initial conditions.

TDDFT nuclear fission simulations are equivalent to a
classical Hamiltonian system with a dimension of the phase
space (4 × 302 × 60)2 ≈ 4.7 × 1010 and we notice that the
maximum Lyapunov exponent is very small or vanishing. In
Fig. 3 we plot the quantity

λ(t ) = 1

2t
ln

∫
d3r[nε (r, t ) − n0(r, t )]2∫
d3r[nε (r, 0) − n0(r, 0)]2

. (41)

It is clear that that the Lyapunov exponent again is very small,
well below the conjectured upper limit λnuclear

MSS , see Eq. (24).
Here, we restrict ourselves only to perturbations of initial
quasiparticle wave functions of the type given in Eq. (38). We
start the induced fission simulation relatively late in the evolu-
tion of the reaction 235U(n, f ) [80]. As has been well known
for many decades, when a low-energy neutron is absorbed by
a nucleus, a compound nucleus is formed [81], which lives for
a very long time ≈10−15 s. before scission. At this excitation
energy the level density is very high [28],

ρ(E ) ∝ exp(
√

aE ), where a ∝ A, (42)

and A is the atomic number. During this time the shape of the
compound nucleus changes very slowly from a very compact
almost spherical one to one resembling a peanut at the top
of the outer fission barrier. During this time the dynamics
of the nucleus is qualitatively similar to a biological cell
division [82], in which the nuclear surface tension competes
with the Coulomb interaction, leading ultimately to nuclear
scission [82].

From the top of the outer fission barrier until scission the
nuclear shape evolves relatively fast ≈10−19 s. This time is,
however, much longer than the characteristic single-particle

FIG. 3. In the upper panel we display the evolution of the neutron
(upper half of each frame) and proton (lower half of each frame)
number densities of fissioning 236U in a simulation box 303 × 60 fm3

into a heavy (left) and light (right) fragments. The neutron and proton
numbers of the heavy (left) and of the light (right) fragments are
(83.6, 52.2) and (60.4, 39.8), respectively The shapes of the distri-
butions and the neutron and proton numbers of the fission fragments
are hardly affected by the level of noise level. In the lower panel we
show the time evolution of λ(t ) as obtained from Eq. (41). After scis-
sion, which occurs at t ≈ 2400 fm/c, the excited fission fragments
emerge, after thermalization, with temperatures T ≈ 1 MeV [41,63],
which results in λnuclear

MSS ≈ 0.016 c/fm.

time ≈10−22 s. Nucleons collide with the moving walls of
the fissioning nucleus, the nucleus heats up, its intrinsic en-
tropy increases, similar to Fermi’s acceleration mechanism
for the origin of cosmic radiation [83]. The nuclear dynam-
ics is highly nonequilibrium [63,66,67] and the collective or
the nuclear shape motion of the fissioning nuclear system is
overdamped.

The dynamics of the fissioning nucleus from the outer
fission barrier until scission is similar to some extent to the
evolution of a complex molecule, which undergoes some big
rearrangements of its atoms. The total energy is conserved, but
energy is continuously converted from the nuclear configura-
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tional energy in the molecule into the energy of the electron
cloud. In the case of the fissioning nucleus, the configuration
energy is approximately equal to the sum of the Coulomb
energy and the surface energy. While the nucleus evolves
from the outer fission barrier towards the scission configu-
ration it elongates, while preserving its volume. The surface
area increases and the surface energy increases proportionally,
but at the same time the average separation of the electric
charges increases and the Coulomb energy decreases. At small
elongations of the fissioning nucleus the surface potential
energy dominates, but as soon as the nucleus reaches the outer
fission barrier the sum of surface and Coulomb energies is
dominated by the Coulomb energy [82]. The approximate sum
of the surface potential and Coulomb energy decreases by
≈15–20 MeV from the top of the fission barrier until scission.
This energy difference is converted into internal energy of the
system. Only a small part (≈10%) of the energy is converted
into kinetic flow energy of the nuclear fluid, the rest being
converted into heat.

The other noticeable aspect of the fission dynamics from
the outer fission barrier until scission put in evidence in
TDDFT simulations is that, during the descent from the neigh-
borhood of the outer fission barrier, the shape dynamics has a
focusing character. Since the shape evolution is overdamped
the collective motion is similar to that of a parachute, which
follows the steepest descent with a rather small “terminal
velocity.” As a result, trajectories with rather distinct initial
conditions behave like a group of parachutists who jump out
of a plane at different times and land relatively close to each
other, as both their vertical and longitudinal velocities are
damped. This is the reason why the λ(t ) in the case of fission
is negative before the scission occurs.

Note that, after the scission, the number of nucleons in each
fragment, as well as their energies, are fixed. Since these are
measured observables experimentally, this moment defines for
all practical purposes the meaning of the “infinite-time limit.”
In spite of the complex nature of the problem, the evolution
turns out to be very weakly sensitive to the initial noise, with
the corresponding Lyapunov exponent being well below the
prediction of Maldacena et al. [20].

E. Collisions of heavy ions

A second nuclear physics example is from heavy-ion col-
lisions 238U + 238U at a center-of-mass energy of 1200 MeV.
In this case the dimension of the equivalent phase space is
(4 × 303 × 64)2 ≈ 5.3 × 1010. After the collision, the two
fragments are highly excited because the final total kinetic
energy is only ≈600 MeV. By changing the initial kinetic
energy from 600 to 1600 MeV the final kinetic energy barely
changes, and the final estimated temperatures of the fragments
varies by at most a factor of two. The case illustrated in Fig. 4
is in the middle of this energy range, see also Ref. [42]. From
the excitation energy of the reaction fragments one can extract
their equilibrium temperatures T ≈ 3.5 MeV, obtained using
Bethe formula [28,42], which according to Eq. (14) leads to
an upper limit λMSS = 0.057 c/fm.

Upon adding noise at the level ε = 0.03, see Eq. (38),
the nuclei acquire a total initial excitation energy of about

FIG. 4. In the upper panel we display the evolution of the neu-
tron (upper half of each frame) and proton (lower half of each
frame) number densities of a fissioning 238U + 238U collision in
a simulation box 303 × 64 fm3 into two highly excited and not
yet equilibrated fragments. The shapes of the neutron and proton
distributions are hardly affected by the noise level. In the lower
panel, the time evolution of λ(t ), Eq. (41), in the case collision
of two heavy ions 238U + 238U at a center-of-mass energy of 1200
MeV is shown. After separation the excited fragments emerge, after
thermalization, with temperatures T = 3.55 MeV, which results in a
λnuclear

MSS ≈ 0.057 c/fm.

50 MeV, corresponding to an initial temperature T ≈ 1.5
MeV. In a time ≈250 fm/c the two nuclei touch “noses”
and remain in contact up to a time ≈700 fm/c. Until the
nuclei coalesce, which a relatively fast process, only the long-
range Coulomb interaction between them leads a small charge
polarization of the colliding nuclei. The two nuclei form a
dinucleus at about 300 fm/c, which starts separating into
two fragments around 550 fm/c and the contact time is thus
relatively short. Similarly to the fission process, after the sep-
aration, fragments and their properties are fixed, and there is
no reason to consider the evolution in the context of extracting
of the Lyapunov exponent. Nevertheless, λ(t ) appears to be
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almost saturated, and again by about two orders of magnitude
less than the upper bound.

IV. CONCLUSIONS

We have analyzed several strongly interacting quantum
many-fermion systems in which superfluid correlations are
very important in order to correctly describe their nonequi-
librium dynamics, with a number of degrees of freedom of
the order of 1010 or larger. Their dynamical evolution is
described within an extension of the TDDFT to superfluid
systems, which is expected to be mathematically equivalent to
the description of the same systems using the time-dependent
many-body Schrödinger equation, but only at the level of
the one-body densities. Since the Schrödinger equation is
linear, no exponential sensitivity to the variations of the initial
conditions exists. Therefore, if one replaces the initial many-
body wave function �(x1, . . . , xN , t ) → �(x1, . . . , xN , 0) +
δ�(x1, . . . , xN , 0)

〈�(0)|δ�(0)〉 ≡ 〈�(t )|δ�(t )〉 � 1, (43)

one does not expect an exponential divergence of the two
wave functions. The overlap of two arbitrary wave functions
〈�1(0)|�2(0)〉 = 〈�1(t )|�2(t )〉 is always preserved in the
case of a time-dependent Schrödinger equation. As we men-
tioned in the introduction, the Schrödinger equation is also
mathematically equivalent to a system of classical coupled
harmonic oscillators, for which the absence of chaos is well
known.

Even though the Schrödinger description is in principle
mathematically identical to the DFT description at the one-
body density level, the DFT equations are nonlinear, their
sensitivity, or the absence of such sensitivity, to the initial
conditions has never been demonstrated. In this study we
have presented strong arguments that for very large realistic
quantum many-body systems the Lyapunov exponents within
a DFT description are much smaller than the conjectured by
Maldacena et al. [20] upper limit. However, even though the
Lyapunov exponents are nonvanishing, they are small enough
as not to alter the quality of the conclusions inferred within
the present TDDFT framework.

We presented typical simulation results for three differ-
ent strongly interacting many-fermion superfluid systems. By
changing various parameters, particle number, energy density
functionals, energy of the system, and so forth, the results
remain qualitatively similar. In all cases the Lyapunov expo-
nents are smaller by a factor of 10, . . . , 100 than the upper
limit conjectured by Maldacena et al. [20], Tsuji et al. [21],
but likely not vanishing as one would have expected, if
the TDDFT is mathematically equivalent to the Schrödinger
equation at the level of one-body number density. The most
obvious offender appears to be the energy density functional
used. Strictly speaking, in the TDDFT the evolution equa-
tions are expected to have memory terms [37,38], which are
absent in all the cases we have discussed here. If the quantum
evolution is “slow” one can invoke the adiabatic limit of the
energy density functional, when the memory terms can be
susceptibly neglected, which was assumed in all the cases
we studied. Thus, the measure to what extent the Lyapunov

exponents are not vanishing points to the accuracy to the
current implementation of the TDDFT formalism in the case
of strongly interacting fermion systems.

A second cause leading to nonvanishing Lyapunov expo-
nents, which we cannot fully rule out at this time, could
be due to the accumulation of numerical errors in evalu-
ating the evolution of a system with O(1010) phase-space
variables in current numerical implementations. The tests we
have performed so far indicate that our codes are, however,
numerically quite accurate [42,70]. On the other hand, the
theory is operative only if one can use it to make predictions.
It is hard to achieve it without practical implementation. The
Nobel Committee already recognized this critical aspect when
awarding the prize in 1998 to Walter Kohn “for his develop-
ment of the density-functional theory.” Thus, in reality, one
should measure the quality of the TDDFT by taking into
account contributions to the Lyapunov exponent coming from
both sources: the accuracy of the underlying energy density
functional and its numerical realization.

The absence of positive Lyapunov exponents within
TDDFT is crucial when one considers extracting the mag-
nitude of fluctuations of various physical quantities within a
mean-field approach [84–90], such as neutron, proton, and
neutron-proton particle variances. Balian and Vénéroni [84]
designed a variational approach based on an action-like func-
tional

I = TrA(t1)D(t1)

−
∫ t1

t0

dtTr

(
A(t )

dD(t )

dt
+ i[H,D(t )]

)
, (44)

where D(t ) and A(t ) are two time-dependent operators of the
same nature as a density operator and an observable, and H
is the Hamiltonian. Unfortunately, this action-like functional
cannot be minimized and can only be made stationary with
respect to arbitrary variations of both D(t ) and A(t ), subject
to boundary conditions

D(t0) = D, A(t1) = A, (45)

where D is the initial value of the density matrix and A is
the final value of the observable of interest. This approach
appears to be useful in practice in carefully chosen situations.
The dispersion of the observable A(t1) can then be determined
from the limit

〈〈A2(t1)〉〉 = 1

2
lim
ε→0

〈[D − σ (t0, ε)]2〉
ε2

, (46)

where

σ (t1, ε) = A(t1, ε) = eiεAD(t1)e−iεA, (47)

where one chooses in practice ε = 0.001, . . . , 0.0001. One
thus needs to propagate the equations of motion forward in
time for D(t ) and backward in time for σ (t, ε), and in the
presence of chaoticity such results will become totally unpre-
dictable. As we have shown here and partially in Ref. [42] the
TDDFT equations lack sensitivity to initial conditions with
high numerical accuracy.

For practical reasons, the resilience of the TDDFT frame-
work to describe the evolution of dense quantum many-body
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systems with respect to the level of noise is remarkable.
On the other hand, the present results show a different as-
pect of the decades old question: Under what conditions can
we observe the sensitivity to initial conditions in realistic
time-dependent nonequilibrium phenomena in dense quantum
many-body systems in the absence of the limit h̄ → 0? In
TDDFT applications it makes sense to examine the validity
of the theory up to the point in time when predictions are
expected. In the case of quantum turbulence at the stage when
the quantized vortices have already decayed, in the case of
nuclear fission and heavy-ion collisions in nuclear physics
that is at the time when the properties of the emerging frag-
ments have been defined. These timescales are to some extent
not very long, but large enough to allow for the evidence
of sensitivity to initial conditions. Niels Bohr’s compound
nucleus [81], formed for example in the case of the neutron-
induced fission of 235U(n, f ) [80], is an example of a quantum
many-fermion system which evolves for extremely long times
τ ≈ 10−15 s. To have a noticeable effect of the sensitivity to
initial conditions in a compound nucleus one would have to
distinguish or measure properties of different quantum states,
characterized by different quantum numbers, thus be sensitive
to energy differences comparable to the average level separa-
tion �E = 1/ρ(E ). One could argue also that one would have
to discriminate between systems with spectral properties char-
acterized either of the random matrix theory—typically the
Gaussian orthogonal ensemble (GOE)—or of the integrable or
Poisson type [12–14,16–19,29,30,91], in order to distinguish
between various final configurations, thus be able to probe

energy differences larger than the separation between several
levels in complex quantum systems at significant excitation
energies, where the level density is quite high. Induced fission
[80], one of the three cases we considered here, is an example
where a compound nucleus is formed [81], at an excitation
energy with very high level density [28], and the outcomes of
the reaction are largely independent of the excitation mecha-
nism. Such long timescales are likely unachievable within an
unrestricted real-time quantum framework and using present
and near future computational resources.
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