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Even-even Nd isotopes in an SD-pair shell model
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Nucleon pair shell model truncated to SD collective pair subspace (SDPSM) was applied to study the
properties of the low-lying states of the even-even 144–156Nd isotopes. It is found that, within the M scheme,
the systems with the number Nν = 7 of neutron pairs (or the number Nπ = 7 of proton pairs) can be studied in
the SDPSM for the first time. The results show that the properties of the low-lying states of the even-even Nd
isotopes can be reproduced approximately, and the even-even 144–156Nd isotopes may be a good candidate for the
first-order shape phase transition.
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I. INTRODUCTION

In nuclear physics, the full-fledged shell model is a
powerful microscopic method to describe nuclear structure.
However, the huge number of configurations often surpasses
the capability of the shell model. The nucleon pair shell model
(NPSM) [1–4] was proposed in 1993, in which the building
blocks of the configuration space are the nucleon pairs in-
stead of the single valence nucleon. Guided by the success of
the interacting boson model (IBM) [5] and interacting boson
fermion model (IBFM) [6,7], one can truncate the full shell-
model configuration space to a collective S-pair and D-pair
subspace, which is called the SD-pair shell model (SDPSM)
[8–10].

The SDPSM and its application have been studied exten-
sively in the last two decades [11–19]. It was shown that
the properties of the low-lying states of the even-even nuclei
[13], the typical features of U(5), SU(3), and O(6) limiting
cases, the shape evolution and the critical points properties in
the IBM, can all be well reproduced in the SDPSM [20–22].
Therefore, the SDPSM can not only provide a sound shell-
model foundation for the IBM but also demonstrate that the
truncation scheme adopted in the SDPSM is reasonable [13].

Although the SDPSM can be used to reproduce the general
behavior of the IBM, because the CPU time increases with
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Nν (Nπ ) dramatically, the systems studied in the SDPSM were
still limited to the cases with Nπ (Nν ) � 5 [12].

In Ref. [23], the NPSM constructed in the M-scheme was
proposed and it was found that the CPU time used in calcu-
lating the matrix elements can be reduced a lot. Moreover,
Lei and his collaborators also found an efficient way to cal-
culate the matrix elements in the M scheme [24]. These new
techniques in the NPSM make it possible to study the well-
deformed medium or heavy nuclei [23,24]. As an example,
even-even 144–156Nd isotopes are studied in this paper.

The paper is organized as follows: In Sec. II we give a
brief introduction of the model. The calculated results of the
even-even Nd isotopes are discussed in Sec. III. And a brief
summary and discussion are given in Sec. IV.

II. THE MODEL SCHEME

To study the properties of the even-even Nd isotopes,
a Hamiltonian composed of the pairing plus quadrupole-
quadrupole interactions is adopted, which is

Ĥ =
∑

σ=π,ν

Ĥσ − κQ2
π · Q2

ν,

Ĥσ = H0σ − G0σ A(0)† · A(0) − G2σ A(2)† · A(2)† − κσ Q2 · Q2,

H0σ =
∑

a

εaC
†
aCa,

A(0)† =
∑

a

â

2
(C†

a × C†
a )0,
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A(2)† =
∑

ab

q(ab2)(C†
a × C†

b )2,

â =
√

2 ja + 1, (1)

where H0σ is the single-particle (s.p.) energy term with σ =
ν for neutrons and σ = π for protons, G0, G2, and κ are
the monopole pairing, quadrupole pairing, and quadrupole-
quadrupole interactional strengths, respectively. C†

a stands
for the single-particle creation operator, where a denotes all
possible quantum numbers (nl j) of the particle. (C†

a × C†
b )t

stands for two-particle coupled creation operator with total
angular momentum t . The quadrupole operator Q(2) is defined
as

Q(2)
μ =

∑
cd

q(cd2)P2
μ(cd ),

q(cd2) = (−1) jc− 1
2

ĵc ĵd√
20π

C20
jc

1
2 , jd − 1

2
�cd2〈Nlc|r2|Nld〉,

�cd2 = 1

2
[1 + (−1)lc+ld +2],

P2
μ(cd ) = (C†

c × C̃d )2
μ. (2)

Here N is the principal quantum number of the spherical
harmonic oscillator with energy (N + 3

2 )h̄ω0, lc and ld are
the orbital angular-momentum quantum numbers of the sin-
gle particle at levels c and d , respectively, C20

jc
1
2 , jd − 1

2
is the

Clebsch-Gordan (CG) coefficient, and the time-reversal op-
erator C̃a is defined as C̃ jama = (−) ja−maCja−ma . The matrix
element 〈Nlc|r2|Nld〉 is given by

〈Nlc|r2|Nld〉

=
{(

N + 3
2

)
r2

0 , lc = ld
ϕ
√

(N + ld + 2 ± 1)(N − ld + 1 ∓ 1) r2
0 , lc = ld ± 2,

where the phase factor ϕ can be taken as ±1, r2
0 = h̄

MN ω0
=

1.012A
1
3 fm2, MN is the mass of a nucleon, and ω0 is the fre-

quency of the harmonic oscillator. The E2 transition operator
is simply taken as

T (E2) = eπQ(2)
π + eνQ(2)

ν , (3)

with eσ (σ = π, ν) being the effective charges for protons or
neutrons.

The collective S pair and D pair are defined as

Ar†
m =

∑
a

y(abr)(C†
a × C†

b )r
m (r = 0, 2), (4)

where the structure coefficients satisfy the symmetry relation

y(abr) = −(−) ja+ jb+ry(bar). (5)

As an approximation, the collective S-pair structure coeffi-
cients are chosen to be

y(aa0) = ĵa
νa

μa
, (6)

where νa and μa are occupied and empty amplitudes obtained
by solving the BCS equation, while the collective D-pair
structure coefficients are obtained from the commutator,

A2† = D† = 1
2 [Q2, S†]. (7)

There are two schemes: the J scheme [3,8] and the M
scheme [23,24], to constructed the multipair basis vector. In
this work, the M scheme is adopted, which is defined as

|r1r2 · · · rN ; m1, m2 · · · mN , M〉
= Ar1

m1
Ar2

m2
· · · ArN

mN
|0〉, (8)

where ri and mi stand for the angular momentum and its
projection of each collective pair, respectively. And the total
projection M of the total angular momentum is given by

M =
N∑

i=1

mi.

The overlap between two states is a key quantity, since the
matrix elements of one-body and two-body interactions can
all be expressed as a summation of the overlaps. The overlap
between two states is

〈0|AM1 A†
M2

|0〉 ≡ 〈r1μ1, . . . rNμN ; M1|s1ν1, . . . , sNνN ; M2〉

=
N∑

k=1

[
2

∑
ab

y(abrk )y(absN )δrk ,sN δμk ,νN

×〈r1μ1 · · · rk−1μk−1, rk+1μk+1 · · · rNμN ; M1 − νN |s1ν1 · · · sN−1νN−1; M2 − νN 〉 +
1∑

i=k−1

∑
r′

iμ
′
i

×〈r1μ1 · · · r′
iμ

′
i · · · rk−1μk−1, rk+1μk+1 · · · rNμN ; M1 − νN |s1ν1 · · · sN−1νN−1; M2 − νN 〉

]
, (9)
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where r′
iμ

′
i is a new collective pair with

Ar′
i

−μ′
i
=

∑
aa′

y′(aa′r′
i )A

r′
i

−μ′
i
(aa′), y′(aa′r′

i ) = z(aa′r′
i ) − (−)a+a′+r′

i z(a′ar′
i ),

z(aa′r′
i ) = −4r̂i r̂k ŝ

∑
tσ

t̂ (−)rk+ri+r′
i−μiCr′μ′

i
ri−μi,tσCtσ

rk−μk ,sμ

∑
bb′

y(a′b′ri)y(abrk )y(bb′s)

{
rk s t

a b′ b

}{
ri t r′

i

a a′ b′

}
. (10)

One can see that, although the overlap is still calculated recur-
sively, the most time-consuming factor, the recoupling of the
angular momentum, is not needed any more. The summation
over the projection μ′

i of the new pair is redundant, since it is
a constant value μ′

i = μi + μk − νN . The overlap for one pair
state in M scheme is the same as that in the J-scheme, which
is

〈r1μ1|s1ν1〉 = 2δr1,s1δμ1,ν1

∑
ab

y(abr1)y(abs1). (11)

More details of the model and its applications can be found in
Refs. [3,8,10,24].

III. THE RESULTS

A. Parameters

To study the properties of the low-lying states of the even-
even 144–156Nd, 50–82 (0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2) and
82–126 (1 f7/2, 0h9/2, 1 f5/2, 2p3/2, 2p1/2, 0i13/2) major shells
coupled to the doubly closed nucleus 132Sn are considered
for protons and neutrons, respectively. The s.p. energies for
neutrons and protons are fixed as the experimental data of
133Sn and 133Sb [25–27], and listed in Table I.

The parameters in Hamiltonian (1) are determined as fol-
lows: the monopole pairing interactional strengths are fixed
as those used in Ref. [28], which are G0π = 0.14, G0ν = 0.12
(in MeV) for protons and neutrons, respectively. The other
parameters G2σ , κσ , and κ are determined by fitting the low-
lying spectra and listed in Table II.

B. Spectra

The low-lying spectra of the even-even Nd isotopes are
presented in Fig. 1, from which one can see that the gen-
eral agreement between the experiments and calculations is
achieved for the low-lying states.

For 144Nd, 2+
1 and 4+

1 states can be fit very well, but 6+
1

and 8+
1 states are higher than the experiments. Although 0+

2 ,
2+

2 , 4+
2 , 2+

3 , and 3+
1 states cannot be well fit in the SDPSM,

except for the 0+
2 state, which is lower than the 2+

2 state, the

TABLE I. Adopted s.p. energies εσ (σ = π or ν ) for protons
(50–82 shell) and neutrons (82–126 shell) (in units of MeV).

jν 1 f7/2 0h9/2 1 f5/2 2p3/2 2p1/2 0i13/2

εν 0 1.561 2.005 0.854 1.656 1.8

jπ 0g7/2 1d5/2 1d3/2 2s1/2 0h11/2

επ 0 0.963 2.69 2.99 2.76

order of states, 2+
2 , 4+

2 , 2+
3 , and 3+

1 , is the same as that of the
experiments.

For 146Nd, 2+
1 , 4+

1 , and 6+
1 states can be reproduced very

well, but the calculated states with J � 8 are higher than the
experiments. Although the calculated 0+

2 and 2+
2 states are

lower than the experiments, the order of the two states is the
same as that of the experiments; that is, the 0+

2 state is lower
than the 2+

2 state.
For 148Nd, 2+

1 , 4+
1 , and 6+

1 states can be fit very well, and
the states with J � 8 are higher than the experiments. Except
for the 0+

2 and 2+
3 states, which are reproduced satisfactorily,

the calculated 2+
2 and 3+

1 state are lower than the experiments,
and the other states are higher than experiments.

For 150Nd, 2+
1 , 4+

1 , and 6+
1 states can be fit approximately.

The states with J � 8 are still higher than the experiments.
Except for the 3+

1 and 2+
3 states, the other states, 0+

2 , 2+
2 , 2+

3 ,
4+

2 , 5+
1 , and 6+

2 states are all close to the experimental values.
For 152–156Nd, 2+

1 , 4+
1 , and 6+

1 states can be reproduced
very well, and the states with J � 8 are also higher than the
experiments.

It is known that only the S and D collective pairs are
included in the SDPSM. The fact that the states with J � 8
cannot be reproduced satisfactorily in the SDPSM may imply
that the truncation of the shell-model space to collective S-pair
and D-pair subspace is a good approximation for the low-lying
states, while it is too small for the high-lying states.

From Fig. 1, one can also see that, although the calculated
6+

1 and 8+
1 states are higher than the experiments for the

even-even Nd isotopes, the larger the number of the neutron
pairs, the better the agreement between the calculations and
experiments.

It is known that the evolution of nuclear structure (shape)
with Nν (Nπ ) often exhibit quantum phase transitions (QPTs),
or called shape phase transitions (SPTs). Lots of related issues
have been studied [29–48] since the two analytical descrip-
tions of critical-point symmetry known as X(5) and E(5) for
first- and second-order spherical-deformed phase transitions
[49,50], respectively, were introduced in the collective model

TABLE II. The parameters (in units of MeV/r4
0 ) used for each

nucleus.

144Nd 146Nd 148Nd 150Nd 152Nd 154Nd 156Nd

G2π 0.054 0.045 0.028 0.022 −0.01 0.015 0.015
G2ν 0.039 0.015 0.025 0.030 0.033 0.032 0.035
κ2π 0.008 −0.012 −0.038 0.011 −0.100 0.023 0.012
κ2ν 0.030 0.010 −0.023 0.030 0.011 −0.010 −0.010
κ 0.260 0.192 0.175 0.100 0.110 0.150 0.176
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FIG. 1. The low-lying energy spectra of Nd isotopes. The experimental data are taken from Ref. [25].

[51]. It is known that the even-even 144–152Nd isotopes may
be a realistic case of the first-order QPTs. Therefore, it is
interesting to study if the behavior of the QPTs can be repro-
duced in the SDPSM. To this end, some widely used effective
parameters [52–56], the energy ratios R42 = E4+

1
/E2+

1
, R02 =

E0+
2
/E2+

1
, and R60 = E6+

1
/E0+

1
, are studied with the results

given in Figs. 2–4.
From Fig. 2 one can see that the experimental results can

be reproduced very well. The predicted R42 for 150Nd is 2.87,
close to the experimental value 2.93 and the value of X(5)
symmetry 2.91 [57]. The calculated results for 152Nd, 154Nd,
and 156Nd are 3.26, 3.27, and 3.32, respectively, which are
close to the experimental results reaching nearly the rotational
limit 3.33. The overall trend of R42 for Nd isotopes can be well
reproduced. Figure 3 shows that, except for 144Nd, for which
the calculated result is smaller than the experimental value,
R02 increases with Nν , and the general trend of R02 can be
well reproduced in the SDPSM. For R60, as shown in Fig. 4,
the variation trends of the experiments and calculations are
similar, the maximal values occur around 146Nd, and then they
decrease with Nν . Since the predicted 0+

2 states for 144Nd and
146Nd are lower than those of the experiments, the calculated
R60 are larger than the experimental values. The calculated

FIG. 2. The experimental and calculated energy ratio R42 of
even-even 144–156Nd isotopes. The experimental data are taken from
Ref. [25]. R42 vs κ for the system with Nπ = 5 and Nν = 3 is shown
in the inset, where the parameters are fixed as G0π = 0.14 MeV,
G0ν = 0.12 MeV, G2π = G2ν = 0, κπ = κν = 0, and κ changes from
0 to 0.3 MeV/r4

0 .
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FIG. 3. The experimental and calculated energy ratio R02 of
even-even 144–156Nd isotopes. The experimental data are taken from
Ref. [25]. R02 vs κ for the system with Nπ = 5 and Nν = 3 is shown
in the inset, where the parameters are fixed as G0π = 0.14 MeV,
G0ν = 0.12 MeV, G2π = G2ν = 0, κπ = κν = 0, and κ changes from
0 to 0.3 MeV/r4

0 .

R02 and R60 for 154Nd and 156Nd are also provided, but no
experimental values are available.

Our previous works [21,22] show that the typical QPTs
features given in the IBM can be reproduced in the SDPSM,
i.e., some widely used effective parameters studied in the
IBM can be reproduced by changing the control parameters
(or the interactional strengths). To reveal if the general be-
havior of the QPTs from spherical to rotational pattern can
be reproduced in the SDPSM for the even-even Nd isotopes,
the energy ratios R42, R02, and R60 changing with the proton-

FIG. 4. The experimental and calculated energy ratio R60 of
even-even 144–156Nd isotopes. The experimental data are taken from
Ref. [25]. R60 vs κ for the system with Nπ = 5 and Nν = 3 is shown
in the inset, where the parameters are fixed as G0π = 0.14 MeV,
G0ν = 0.12 MeV, G2π = G2ν = 0, κπ = κν = 0, and κ changes from
0 to 0.3 MeV/r4

0 .

neutron quadrupole interaction strength are presented for the
system with Nπ = 5 and Nν = 3. The parameters we used are
G0π = 0.14 MeV, G0ν = 0.12 MeV, G2π = G2ν = 0, κπ =
κν = 0, and κ changes from 0 to 0.3 MeV/r4

0 . The calculated
results are inserted in Figs. 2–4. From the inserted figures,
one can clearly see that the general behavior of the QPTs
from spherical to rotational pattern can be exhibited in the
evolutions the even-even Nd isotopes.

C. B(E2) values

To further study if the SDPSM can reproduce the properties
of the low-lying states of the even-even Nd isotopes, B(E2)
values are taken to be compared between the theoretical cal-
culations and the experiments. By fitting B(E2; 0+

1 → 2+
1 ) of

144Nd, the effective charges in Eq. (3) are fixed as eπ = 2.0e
for protons and eν = 1.0e for neutrons, which are close to the
values adopted in the other works in the SDPSM [28,58].

Calculated B(E2) values and the available experimental
data are listed in Table III, from which one can see that
for B(E2; 0+

1 → 2+
1 ), the calculated results are close to the

experimental data for 144Nd and 146Nd. From 148Nd on, the
difference between the experiments and the calculations in-
creases with Nν . For example, the experimental value for
148Nd is 1.37(2) (eb)2, while the SDPSM result is 0.912 (eb)2,
and for 152Nd the experimental value and calculated result are
4.20(28) (eb)2 and 1.850 (eb)2, respectively. Table III also
shows that the calculated results of B(E2; 0+

1 → 2+
2 ) are close

to those of the available experimental data.
It is known that B(E2; 2+

1 → 0+
1 ) = 1

5 B(E2; 0+
1 → 2+

1 ),
since some available experimental data for B(E2; 2+

1 → 0+
1 )

are inconsistent with 1
5 B(E2; 0+

1 → 2+
1 ) within the errors,

B(E2; 2+
1 → 0+

1 ) are also listed in Table III. It is seen that,
for 144Nd, the experimental value of B(E2; 2+

1 → 0+
1 ) is

smaller than 1
5 B(E2; 0+

1 → 2+
1 ) and also smaller than the cal-

culated value. For the other nuclei, B(E2; 2+
1 → 0+

1 ) is about
1
5 B(E2; 0+

1 → 2+
1 ) for both experiments and the calculations,

and the calculated results are all smaller than those of the
experimental data. For B(E2; 4+

1 → 2+
1 ), except for 146Nd, for

which the calculated result is larger than that of the experi-
mental value, they are about half of the experimental values.
Especially for 150Nd, the experimental data are 0.857(8) (eb)2,
while the SDPSM result is 0.412 (eb)2. For B(E2; 0+

2 → 2+
1 ),

two experimental data are available, but only one can be well
reproduced. Specially, the experimental data are 0.145(10)
(eb)2 and 0.204(11) (eb)2 for 148Nd and 150Nd, respectively,
and the calculated results for the two nuclei are 0.152 (eb)2

and 0.104 (eb)2. For B(E2; 2+
2 → 2+

1 ), one can see that the
SDPSM results are all smaller than the experimental data, and
the larger the number of the neutron pairs, the smaller the rel-

ative difference. For example, B(E2;2+
2 →2+

1 )expt−B(E2;2+
2 →2+

1 )theor

B(E2;2+
2 →2+

1 )expt
=

0.98 is given for 144Nd, while it is 0.6 for 150Nd.
To study the E2 transition further, the relative B(E2) ra-

tios are also studied with the results listed in Table IV. It is
seen that for B(E2;4+

1 →2+
1 )

B(E2;2+
1 →0+

1 )
, except for 144Nd, which is smaller

than the experimental value, the calculated results are close

to the experimental data. For B(E2;0+
1 →2+

1 )
B(E2;2+

1 →0+
1 )

, B(E2;0+
2 →2+

1 )
B(E2;2+

1 →0+
1 )

, and
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TABLE IV. The relative B(E2) values of 144–156Nd.

144Nd 146Nd 148Nd 150Nd 152Nd 154Nd 156Nd

Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor.

B(E2;4+
1 →2+

1 )

B(E2;2+
1 →0+

1 )
1.11 0.33 1.35 1.48 1.62 1.47 1.56 1.42 1.31 1.41 1.47 1.45

B(E2;0+
1 →2+

1 )

B(E2;2+
1 →0+

1 )
6.46 4.99 5.21 4.99 5.07 5.01 4.95 5.01 5.03 5.00 5.00 5.00

B(E2;0+
2 →2+

1 )

B(E2;2+
1 →0+

1 )
0.43 1.57 0.54 0.84 0.37 0.36 0.06 0.01 0

B(E2;2+
2 →2+

1 )

B(E2;2+
1 →0+

1 )
1.25 0.02 0.62 0.05 0.44 0.25 0.06 0.05 0 0.01 0

B(E2;0+
1 →2+

2 )

B(E2;2+
1 →0+

1 )
0.04 0.74 0.50 0.36 0.07 0.20 0.02 0.06 0.01 0.02 0.01

B(E2;0+
1 →2+

2 )
B(E2;2+

1 →0+
1 )

, the available experimental data can be repro-
duced approximately. For example, the available experimental

value of B(E2;0+
1 →2+

1 )
B(E2;2+

1 →0+
1 )

is 5.07 for 148Nd, and the calculated value

is 5.01. The calculated B(E2;2+
2 →2+

1 )
B(E2;2+

1 →0+
1 )

are much smaller than the

experiments for 144Nd and 146Nd. The results for the other nu-
clei are reasonable. From above analysis one can see that the
experimental B(E2) ratios can be reproduced approximately
for even-even Nd isotopes.

It is known that in addition to the energy ratios, B(E2)
ratios K1 = B(E2; 4+

1 → 2+
1 )/B(E2; 2+

1 → 0+
1 ) and K2 =

B(E2; 0+
2 → 2+

1 )/B(E2; 2+
1 → 0+

1 ) [55] can also be used to
characterize the QPTs. Therefore, to study the QPTs of the
Nd isotopes in the SDPSM, K1 and K2 are shown in Fig. 5.
It is seen that, although K1 for 144Nd is smaller than the
experiment, the general behavior of K1 can be reproduced in
the SDPSM, i.e., both the calculated results and the experi-
mental data increase with Nν first, and then decrease with Nν .
There are only two available experimental data for K2. From
Fig. 5 one can see that, although the calculated results for
the two nuclei are smaller than the experimental values, their
evolutional behavior of ν is similar to that of the experiments:
both of them decrease with Nν .

To see the QPTs clearly, as in Sec. III B, K1 and K2 against
κ are also studied for the system with Nπ = 5 and Nν = 3.
The parameters are still fixed as G0π = 0.14 MeV, G0ν =
0.12 MeV, G2π = G2ν = 0, κπ = κν = 0, and κ changes from
0 to 0.3 MeV/r4

0 . The calculated results are inserted in Fig. 5.
One can clearly see that K1 and K2 are consistent with our
previous study of the first-order QPTs in the SDPSM [22]
and the IBM [43], and the general behavior of K1 and K2

against κ are similar to the results calculated for the even-even
Nd isotopes. Namely, the QPTs from spherical to rotational
pattern can be approximately reproduced, indicating that the
even-even 144−156Nd isotopes may be a good candidate for the
first-order QPTs.

IV. SUMMARY AND DISCUSSION

In this work, the even-even 144–156Nd isotopes have been
studied in the SDPSM. By studying the spectra and E2
transitions between some low-lying states, it was found that
the properties of the low-lying states for the even-even Nd
isotopes can be reproduced approximately. The QPTs from
spherical to rotational pattern can also be reproduced ap-
proximately, which may imply that the even-even 144−156Nd
isotopes may be a good candidate for the first order QPTs.

FIG. 5. The experimental and calculated B(E2) ratios K1 and K2 of even-even 144–156Nd isotopes are shown in panels (a) and (b),
respectively. K1 and K2 vs κ for the system with Nπ = 5 and Nν = 3 are shown in the inset, where the parameters are fixed as G0π = 0.14
MeV, G0ν = 0.12 MeV, G2π = G2ν = 0, κπ = κν = 0, and κ changes from 0 to 0.3 MeV/r4

0 .
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It is known that the effective residual interactions increase
with the number of valence nucleons linearly or quadratically
for the short- and long-range forces, respectively, one expects
that the S-pair and D-pair truncation is better for the system
with larger number of valence particles or holes in repro-
ducing the collectivity of the low-lying states. From above
analysis one can notice that for the spectra, the larger the
number of the valence nucleon-pairs, the better the agreement
between experiments and calculations. Although the calcu-
lated B(E2) values increase with Nν , they are not as strong as
those of the experiments. The larger the number of the valence
neutrons, the larger the difference between the experiments
and calculations. The effect of the s.p. energies is opposite
to those of the residual interactions. In our calculation, the
s.p. energies are fixed for all the Nd isotopes. The s.p. energy
levels may depend on the number of valence nucleons. From
the IBM microscopic calculation [68], it was found that, in
order to account for the properties of Te, Xe, and Ba iso-
topes, the s.p. energies should be taken as more compressed
as number of valence nucleons or holes increases. As we
know that the s.p. energy term has important influence on the
nuclear collectivity [11], a compressing of the s.p. spectrum
maybe enhance the collectivity considerably and thus improve
the behavior of the B(E2) value versus the number of the
valence nucleons. What is more, the model space is limited
to 50–82 and 82–126 major shells for protons and neutrons,
respectively, because of the limited model space, the Pauli

blocking effect increases with Nν , and thus the collectivity of
low-lying states decreases with Nν .

In summary, due to the CPU time in calculating the matrix
elements increases with Nν dramatically, our previous work
in the SDPSM was limited to the cases with Nν � 5 and
(Nπ ) < 5 [12], whereas this time we study the systems with
Nν � 5 and (Nπ � 5) in the SDPSM. The results indicate that
the SDPSM can reproduce the properties of low-lying states
of the even-even Nd isotopes, which in turn suggests that it is
possible to use the SDPSM to describe the properties of low-
lying states of nuclei from closed-shell to neutron-rich nuclei.
More work of the validity of the SDPSM for well-deformed
nuclei and QPTs will be reported elsewhere.
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