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Single-state or low-lying-states dominance mechanism of 2νββ-decay nuclear matrix elements
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The 2νββ-decay nuclear matrix elements (NMEs) for 11 nuclei are studied with the self-consistent quasi-
particle random phase approximation (QRPA) based on the Skyrme Hartree-Fock-Bogoliubov (Skyrme HFB)
model. As a common feature pointed out by Šimkovic, Smetana, and Vogel [Phys. Rev. C 98, 064325 (2018)],
negative contributions in the running sums of NMEs are found, and play important roles in the fulfillment of the
single-state dominance or low-lying-states dominance hypothesis. By comparing the results of the QRPA model
and the quasiparticle Tamm-Dancoff approximation (QTDA) model, we find that the negative contributions are
due to the enhanced ground-state correlations, which are brought by the backward amplitude in the QRPA model
and tuned by strong isoscalar pairing interaction. The enhancement of ground-state correlations will change the
signs of GT+ (Gamow-Teller) transition amplitudes of higher-lying states and leads to the negative contributions
in the running sum.
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I. INTRODUCTION

Double-β (ββ) decay is a rare transition process between
nuclei (A, Z ) and (A, Z + 2). There may exist two modes of
this decay. One is the two-neutrino ββ (2νββ) decay with
the emission of two antineutrinos. As a second-order weak
process, it was first suggested by Mayer [1] and was first
observed for 82Se [2] in the 1980s and for another ten different
nuclei later [3]. The other mode is the so-called neutrinoless
ββ (0νββ) decay, which is a lepton-number-violating nuclear
process and occurs only if neutrinos are their own antiparti-
cles, i.e., the Majorana particles [4,5]. 0νββ decay is the only
practical way to determine whether neutrinos are Majorana
particles and is helpful to address the questions of the absolute
neutrino mass scale and the neutrino mass hierarchy, provided
that the corresponding nuclear matrix elements (NMEs) M0ν

are calculated exactly [6–10]. However, the deviations of M0ν

from different nuclear models vary up to a factor of around 3
(cf. Fig. 26 in Ref. [10]). The main reason of such a divergence
stems from the difference of nuclear many-body wave func-
tions obtained from different nuclear models. While 0νββ

decay is related to the underlying new physics, 2νββ decay
is free from the unknown neutrino properties. Also the corre-
sponding lepton phase-space factor has been calculated with
high precision [11,12]. Therefore, the NME of 2νββ decay,
M2ν , provides a test ground for nuclear structure calculations.

As a second-order weak process, the M2ν of 2νββ decay
involves a summation over all the virtual intermediate states
of the nucleus (A, Z + 1), which connects the initial nucleus

*niuyf@lzu.edu.cn

(A, Z ) and final nucleus (A, Z + 2) by the β-decay like transi-
tions. Because of isospin symmetry, the Fermi transition is
highly suppressed so that only the NME of Gamow-Teller
(GT) transition M2ν

GT is considered in the calculations. In 1984,
Abad proposed the single-state dominance (SSD) hypothe-
sis, which states that the M2ν

GT is dominated by the virtual
transitions through the first 1+ state of the intermediate nu-
cleus (A, Z + 1) [13]. It can be extended to the more relaxed
low-lying-states dominance (LLD) hypothesis [14]. By an-
alyzing the energy distribution of the emitted electrons, the
evidence of SSD for 82Se and 100Mo has been found in CU-
PID [15,16] and NEMO-3 [17] experiments. The mechanism
of SSD (LLD) could be either no contributions from highly
lying 1+ states or the cancellations among them [18–23]. The
running sum, namely, the cumulative contribution from the
intermediate states, of M2ν

GT is a useful tool in the study of
SSD and LLD hypotheses [24]. It has been found that in the
running sums, calculated by the quasiparticle random phase
approximation (QRPA) [23] or the nuclear shell model with
a spin-orbit complete model space [25], the contributions are
positive at first and then become negative from states lying
around 6–10 MeV. Thus, the appearance of the negative con-
tributions seems to be a universal phenomenon [23]. And such
negative contributions could lead to the cancellations among
the higher-lying 1+ states and consequently the fulfillment of
the SSD or LLD hypothesis. However, the underlying reason
for the emergence of such negative contributions still needs
investigation.

In the QRPA model, the suppression of M2ν
GT is closely

related to the isoscalar (IS) pairing, as first identified by
Vogel and Zirnbauer in 1986 [26]. By considering the particle-
particle interaction, mostly the IS pairing [27], in the QRPA
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treatment of 2νββ decay, the highly suppressed M2ν
GT of 130Te

was successfully reproduced [26]. They also found that, as a
function of the strength of IS pairing, the M2ν

GT of 130Te mono-
tonically decreases and passes through zero, which was later
found to be a common feature in many nuclei in subsequent
studies [6,27–32]. Such a suppression of M2ν

GT when increasing
IS pairing strength is found to be related to the restoration of
the Wigner’s spin-isospin SU(4) symmetry [26,27,30,33,34].
On the other hand, the ground-state correlations introduced
by the backward amplitude in QRPA calculations compared
to those of the quasiparticle-Tamm-Dancoff approximation
(QTDA) model were also shown to have the suppression ef-
fects on the NME [28].

The aim of this paper is to understand the mechanism of
cancellation among higher-lying 1+ states that makes SSD
and LLD hypotheses valid. Inspired by the previous works on
the suppression of the NME, particular attention will be paid
to the effects of IS pairing as well as ground-state correlations
on the negative contributions in the running sums of M2ν

GT.
During the past few decades, different nuclear models have
been used in the study of M2ν

GT (see Refs. [6–10] for a review),
such as the nuclear shell model [25,35–39], QRPA model
[23,24,26–32,37,40–46], projected Hartree-Fock-Bogoliubov
model [47–51], and interacting boson model [52,53]. One of
the models which can avoid the closure approximation is the
QRPA. The closure approximation is not appropriate for 2νββ

decay [7]. To study the running sum of the NME, one must go
beyond this approximation.

In this work, we adopt the spherical QRPA approach based
on the Skyrme Hartree-Fock-Bogoliubov model (Skyrme
HFB + QRPA) to systematically study the M2ν

GT of 11 nu-
clei with experimental NMEs. We focus on the cancellation
among higher-lying 1+ states in the running sum of M2ν

GT
that leads to the fulfillment of SSD or LLD hypothesis.
Compared to the QTDA model, the QRPA model introduces
more ground-state correlations through the backward ampli-
tude Yπν . We will study the importance of these ground-state
correlations. Their effects, entangled with the IS pairing, on
the negative contributions of the running sums for M2ν

GT are
analyzed in detail. The QRPA model as well as the formalism
for calculating the M2ν

GT are presented in Sec. II. Numerical de-
tails of our Skyrme HFB + QPRA calculations are presented
in Sec. III. Section IV contains the results and discussions.
The summary is given in Sec. V.

II. FORMALISM

A. Quasiparticle random phase approximation

We first perform the Skyrme HFB calculation, the formal-
ism of which can be found in Refs. [54–56]. Then with the
obtained canonical single-particle wave functions and occupa-
tion amplitudes, the QRPA equations for the state |nJP〉 with
angular momentum J and parity P can be constructed in the
angular momentum coupled form

(
A B

−B −A

)(
X nJP

Y nJP

)
= �nJP

(
X nJP

Y nJP

)
, (1)

where X nJP
and Y nJP

are respectively the forward and back-
ward amplitudes, and �nJP

are the energy eigenvalues. In the
charge-exchange case, using the canonical basis the matrices
A and B can be expressed as

Aπν,π ′ν ′ = (
uπuπ ′hππ ′ − vπvπ ′hT

π̄ π̄ ′

− uπvπ ′�ππ̄ ′ + vπuπ ′�∗
π̄π ′

)
δνν ′

+ (
uνuν ′hνν ′ − vνvν ′hT

ν̄ν̄ ′

− uνvν ′�νν̄ ′ + vνuν ′�∗
ν̄ν ′

)
δππ ′

+ (uπvνuπ ′vν ′ + vπuνvπ ′uν ′ )〈πν ′|V |νπ ′〉ph
J

+ (uπuνuπ ′uν ′ + vπvνvπ ′vν ′ )〈πν|V |π ′ν ′〉pp
J ,

(2a)

Bπν,π ′ν ′ = (vπuνuπ ′vν ′ + uπvνvπ ′uν ′ )〈πν ′|V |νπ ′〉ph
J

− (vπvνuπ ′uν ′ + uπuνvπ ′vν ′ )〈πν|V |π ′ν ′〉pp
J ,

(2b)

where u and v are the occupation amplitudes. h and � are
respectively the single-particle Hamiltonian and pairing field.
|π〉 and |ν〉 represent respectively the proton and neutron
canonical states. Their time reversal states are denoted as
|π̄〉 and |ν̄〉. The residual interactions V are divided into
the particle-hole (ph) channel and the particle-particle (pp)
channel respectively. For the ph channel, the same Skyrme
interaction used in the HFB calculation is adopted. For the
pp channel, namely the proton-neutron paring, the density-
dependent δ force is used, which can be further divided into
the isovector (IV) part

VT =1(r1, r2) = fIV

(
t ′
0πν + t ′

3πν

6
ρ(r)

)
δ(r1 − r2)

1 − P̂σ

2
(3)

and the isoscalar (IS) part

VT =0(r1, r2) = fIS

(
t ′
0πν + t ′

3πν

6
ρ(r)

)
δ(r1 − r2)

1 + P̂σ

2
, (4)

where r = (r1 + r2)/2, and P̂σ is the spin-exchange opera-
tor. Parameters t ′

0πν and t ′
3πν are set as the average of the

proton-proton and neutron-neutron pairing strengths, which
are determined from the Skyrme HFB calculations to repro-
duce the proton and neutron pairing gaps from the five-point
formula of experimental binding energies respectively. Then
in QRPA calculations, fIV is fixed to make the Fermi 2νββ

matrix element vanish as it should, due to the different isospin
quantum numbers of the mother nucleus (T ) and daughter nu-
cleus (T − 2). The strength of isoscalar proton-neutron paring
fIS is not well constrained [57]; it is usually fixed through
fitting the experimental NME. We note that the isovector
proton-neutron pairing VT =1 does not affect the Gamow-Teller
2νββ matrix element M2ν

GT [32].

B. 2νββ-decay nuclear matrix element

For the 2νββ decay, due to isospin symmetry, the NME is
dominated by GT transitions, M2ν

GT. For the ground-state-to-
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ground-state 2νββ decay, M2ν
GT can be expressed as

M2ν
GT =

∑
nin f

〈
0+( f )

g.s.

∣∣∣∣Ô−
GT

∣∣∣∣1+
n f

〉〈
1+

n f

∣∣1+
ni

〉〈
1+

ni

∣∣∣∣Ô−
GT

∣∣∣∣0+(i)
g.s.

〉
Eint.(ni, n f ) + Mint. − (M f + Mi )/2

, (5)

where 〈1+
ni
||Ô−

GT||0+(i)
g.s. 〉 is the GT− transition amplitude of the

initial nucleus to the intermediate nucleus. It can be obtained
from the QRPA model as〈

1+
ni

∣∣∣∣Ô−
GT

∣∣∣∣0+(i)
g.s.

〉 =
∑
πiνi

−〈
jπi

∣∣∣∣Ô−
GT

∣∣∣∣ jνi

〉

× (
X ni

πiνi
uπivνi + Y ni

πiνi
vπi uνi

)
. (6)

And the transtion from the intermediate states to the final
nucleus 〈0+( f )

g.s. ||Ô−
GT||1+

n f
〉 can be expressed as

〈
0+( f )

g.s.

∣∣∣∣Ô−
GT

∣∣∣∣1+
n f

〉 = −〈
1+

n f

∣∣∣∣Ô+
GT

∣∣∣∣0+( f )
g.s.

〉
=

∑
π f ν f

−〈
jπ f

∣∣∣∣Ô+
GT

∣∣∣∣ jν f

〉

× (
X

n f
π f ν f vπ f uν f + Y

n f
π f ν f uπ f vν f

)
. (7)

The overlap factor between the intermediate states constructed
from the initial and final nuclei 〈1+

n f
|1+

ni
〉 is [58]

〈1+
n f

|1+
ni
〉 =

∑
πiνi

∑
π f ν f

Cπiπ f Cνiν f

(
X ni

πiνi
X

n f
π f ν f − Y ni

πiνi
Y

n f
π f ν f

)

× (
uπi uπ f + vπivπ f

)(
uνi uν f + vνivν f

)
× 〈HFB( f )|HFB(i)〉, (8)

where Cπiπ f = 〈πi|π f 〉 and Cνiν f = 〈νi|ν f 〉 are the overlaps of
the canonical single-particle wave functions. In the canonical
basis, the overlap of the HFB ground states of initial and final
nuclei reads

〈HFB( f )|HFB(i)〉 =
∏

πiπ f νiν f

(
uπi uπ f + vπivπ f

)

× (
uνi uν f + vνivν f

)
. (9)

The excitation energy of the intermediate nucleus in the de-
nominator is

Eint.(ni, n f ) = 1
2

(
Eni

int. + E
n f

int.

)
= 1

2

[
(�ni + λ(i)

π − λ(i)
ν ) − (Mint. − Mi ) − �mνπ

+ (
�n f − λ( f )

π + λ( f )
ν

) − (Mint. − M f ) + �mνπ

]
= 1

2

[(
�ni + λ(i)

π − λ(i)
ν

) + (
�n f − λ( f )

π + λ( f )
ν

)
− (2Mint. − Mi − M f )

]
, (10)

where λ denotes the Fermi surface and �mνπ is the mass
difference between the neutron and the proton, i.e., mν − mπ .
�ni and �n f are the eigenvalues of QRPA equations for mother
and daughter nuclei, respectively. With the use of Eq. (10),
nuclear masses are eventually not needed in the calculation
of the NME in Eq. (5); only the energy with respect to the
mother nucleus (�ni + λ(i)

π − λ(i)
ν ) and the energy with respect

to the daughter nucleus (�n f − λ
( f )
π + λ

( f )
ν ) are needed, and

are obtained from QRPA calculations. However, to calculate

the energy of intermediate nucleus Eint.(ni, n f ) the experimen-
tal mass values from AME2020 [59] are used for the masses
of the initial nucleus Mi, the intermediate nucleus Mint., and
the final nucleus M f .

III. NUMERICAL DETAILS

For the Skyrme HFB calculations, the SkO′ interaction
[60] is used for the mean-field calculation. For the pairing
interaction, we adopt the surface density-dependent δ force,
whose strength is fixed to reproduce the experimental pairing
gap obtained from the five-point formula of binding energies
as stated above. We use different cutoffs to reduce the com-
putation burden and obtain required accuracy. For the mean
field, we use a smooth cutoff for the pairing window with
a diffuseness parameter μ of 0.1 MeV, and the cutoff on
equivalent Hartree-Fock energy εHF is set to be 80.0 MeV. For
the QRPA calculation, we use the canonical basis (|π〉 and
|ν〉) with occupation amplitudes (u and v), which are obtained
by performing canonical transformation on the quasiparticle
states in HFB calculations. The π -ν configurations are se-
lected under the criterion |uπvν | > 10−4 or |uνvπ | > 10−4,
with the single-particle energies in canonical basis επ (ν) <

60.0 MeV. For the calculations of M2ν
GT of specific intermediate

states, only the π -ν configurations with |X 2
πν − Y 2

πν | > 10−6

are taken. The strengths of isovector proton-neutron paring
fIV are fixed by tuning M2ν

F to vanish. But since it does not
affect the Gamow-Teller 2νββ matrix element M2ν

GT, we will
not discuss it in present work.

IV. RESULTS AND DISCUSSIONS

A. Systematic study on M2ν
GT

We start with systematic study of the evolution of 2νββ-
decay NMEs (M2ν

GT) on the IS pairing strength for 11 nuclei
which have been measured. Results are depicted in Fig. 1
and compared with compiled data from Ref. [3]. From the
figure, all these M2ν

GT decrease when IS pairing strength is large
enough. This suppression effect of IS pairing, as a common
feature found in QRPA calculations, has been well analyzed
in Refs. [26,61]. The decreasing behavior of the M2ν

GT with
increasing IS paring strength enables us to find the appropriate
strength parameter fIS to reproduce the experimental values,
as listed in Table I. If one further increases the IS pairing
strength, the M2ν

GT passes through zero and changes its sign.
It has been found that the broken Wigner spin-isospin SU(4)
symmetry is restored when the 2νββ closure matrix element
M2ν

GTcl = 〈 f | ∑mn �σm · �σnτ
+
m τ+

n |i〉 = 0 [27,30,33,34]. We note
that besides the IS pairing the nuclear deformation also leads
to the suppression of the M2ν

GT [29,58], mostly due to the
difference between the shapes of initial and final nuclei, which
will not be discussed in present work.

In Table I, we list the experimental and theoretical values
of M2ν

GT for these 11 nuclei. The isoscalar pairing strength
parameters fIS used in QRPA calculations are listed in the
last column. We observe that most of the determined fIS are
around 1.2, which means the ground-state correlation should
be large enough to suppress the M2ν

GT. For the nuclei with
magic numbers, 48Ca, 116Cd, and 136Xe, their fIS values are
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FIG. 1. The 2νββ nuclear matrix elements M2ν
GT for 11 nuclei

as a function of isocalar pairing strength parameter (black square).
The horizontal lines represent the experimental values extracted from
Ref. [3] with gA = 1.00 (red dotted) and gA = 1.27 (black dashed)

relatively small. This is probably caused by the overestimated
small ground-state overlap factor due to the violation of par-
ticle number in the QRPA model [62], and this needs further
investigation. We further examine the SSD and the extended
LLD hypotheses, so the M2ν

GT obtained from the SSD or LLD
hypothesis M2ν

GT(SSD or LLD) are also listed in Table I. When
gA = 1.27 (bare value), for 48Ca, 82Se, 116Cd, 128Te, and 238U,
the first 1+ states of the intermediate nuclei contribute more
than 75% to the total NMEs. In this sense, the SSD hypothesis
is fulfilled for these nuclei. On the other hand, when gA =
1.00 (quenched value), only 238U still fulfills the SSD hy-
pothesis. The inconsistency on the evidence of SSD in 100Mo

TABLE I. Experimental and theoretical 2νββ nuclear matrix
elements M2ν

GT for 11 nuclei in units of MeV−1, when gA = 1.27 and
gA = 1.00. M2ν

GT obtained by the single-state dominance (SSD) and
low-lying-states dominance (LLD) hypotheses are also listed. The
upper limit of the energy for low-lying states Eint. in LLD is set
as 5 MeV. The isocalar pairing strength parameters used in QRPA
calculations are listed in the last column. The experimental values
of M2ν

GT are taken from Ref. [3]. The results of 48Ca and 116Cd when
gA = 1.00 are not listed, because the experimental NMEs are always
larger than the theoretical ones with this value of gA.

Expt. Theor. Theor. Theor.
Nucleus gA M2ν

GT M2ν
GT M2ν

GT(SSD) M2ν
GT(LLD) fIS

48Ca 1.27 0.046 ± 0.004 0.046 0.036 0.036 0.7570
76Ge 1.27 0.137 ± 0.007 0.136 0.071 0.188 1.1852

1.00 0.221 ± 0.012 0.221 0.082 0.256 1.1612
82Se 1.27 0.101 ± 0.005 0.100 0.104 0.161 1.1886

1.00 0.162 ± 0.008 0.162 0.095 0.191 1.1594
96Zr 1.27 0.097 ± 0.005 0.099 0.351 0.252 1.3411

1.00 0.157 ± 0.008 0.158 0.405 0.309 1.3399
100Mo 1.27 0.224 ± 0.006 0.224 0.515 0.346 1.2824

1.00 0.362 ± 0.010 0.361 0.631 0.478 1.2768
116Cd 1.27 0.127 ± 0.004 0.127 0.112 0.124 1.0350
128Te 1.27 0.056 ± 0.007 0.057 0.043 0.113 1.1928

1.00 0.090 ± 0.012 0.091 0.047 0.130 1.1788
130Te 1.27 0.038 ± 0.005 0.037 0.020 0.087 1.1912

1.00 0.061 ± 0.008 0.062 0.022 0.095 1.1776
136Xe 1.27 0.022 ± 0.001 0.022 0.003 0.007 0.9968

1.00 0.035 ± 0.001 0.035 0.004 0.011 0.8820
150Nd 1.27 0.070 ± 0.005 0.070 0.240 0.257 1.2503

1.00 0.114 ± 0.008 0.116 0.246 0.289 1.2360
238U 1.27 0.158+0.109

−0.085 0.157 0.185 0.185 1.1787
1.00 0.254+0.176

−0.137 0.254 0.230 0.230 1.0251

reported in Refs. [16,17] could be the nuclear deformation that
is not included in our model [14]. We further test the LLD
hypothesis for the nuclei whose NMEs do not fulfill the SSD
hypothesis. Because there is not a definite upper limit of the
energy for low-lying states in intermediate nuclei, we set it
as 5 MeV. When gA = 1.00, these low-lying states contribute
almost the full NMEs for 76Ge and 82Se. In this sense, the
NMEs for these nuclei fulfill the LLD hypothesis.

In Fig. 2, with the determined fIS in Table I, the running
sums of M2ν

GT for these 11 nuclei are depicted. The results of
gA = 0.80 are also shown, since this value of gA has been
used in Ref. [63]. Generally, the behaviors of running sums
can be divided into three types when gA = 1.27. The first one
is steadily increasing accompanied with small fluctuations,
as shown in 48Ca and 116Cd. The second type is that the
contributions from first few lowest states are large enough
but then the following excited states give continuous negative
contributions, and hence provide a suppression due to the
cancellation between lowest states and higher-lying states,
as in 96Zr, 100Mo, or 150Nd. The last type is the most com-
mon one, observed in 6 of total 11 nuclei, i.e., 76Ge, 82Se,
128Te, 130Te, 136Xe, and 238U. The cumulative contributions
continuously increase up to the excitation energy of the in-
termediate nucleus Eint. around 10 MeV (for 136Xe and 238U,
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FIG. 2. Running sums of M2ν
GT for 11 nuclei as a function of the

excitation energy of the intermediate nucleus with gA = 0.80 (blue),
gA = 1.00 (red), and gA = 1.27 (black). The IS pairing strength pa-
rameters fIS used for the corresponding calculations are also shown
in the figure.

it is 15 MeV), then a remarkable cancellation appears due
to the negative contributions of higher-lying states, similarly
to the case of the second type. The difference between the
second and third types is how the medium energy states with
5–10 MeV contribute. The cancellation between positive con-
tributions from the low-lying states and negative contributions
from the higher-lying states leads to the realization of SSD for
82Se and 128Te when gA = 1.27, and LLD for 76Ge and 82Se
when gA = 1.00. The negative contributions in the running
sums seem to be universal, and also appear in the results
calculated by the shell model with complete spin-orbit partner
model space [25,64] and QRPA models [23,24,42,43]. Com-
pared to the nuclei of the second and third types, it is noticed

FIG. 3. The 2νββ nuclear matrix elements M2ν
GT for 128Te as a

function of isocalar pairing strength parameter calculated by QRPA
(black square) and QTDA (red circle). The horizontal lines repre-
sent the experimental values with gA = 1.27 (solid) and gA = 1.00
(dashed).

that the IS pairing strength parameters fIS are smaller for the
nuclei of the first type. On the other hand, from Fig. 1, when
increasing gA, the strength of proton-neutron isoscalar pairing
fIS should also be increased to reproduce the experimental
NME. By comparing the running sums of gA = 0.80, 1.00 and
1.27, one can find that when gA is increasing the negative con-
tributions can either be induced, e.g., in 136Xe and 238U, or be
enlarged, e.g., in 82Se, 128Te, and 130Te. Therefore, these two
aspects indicate that the appearance of negative contributions
in the running sums are closely related to the magnitude of
fIS, which controls the amount of ground-state correlations
introduced in QRPA [24]. So, without losing generality, we
will pick 128Te as an example and analyze the mechanism for
the negative contributions of high-lying states at large fIS in
the next subsections.

B. Ground-state correlations: QRPA versus QTDA

As stated above, the negative contributions in the run-
ning sums are related to the ground-state correlations in the
QRPA model. In this subsection, to analyze the effects of
the ground-state correlations, as an example, we compare
the QRPA model and the QTDA (quasiprticle Tamm-Dancoff
approximation) model calculations of the M2ν

GT for 128Te.
Unlike the QRPA model, the ground state of the QTDA model
is the quasiparticle vacuum with no ground-state correlation,
that is without the backward amplitude Yπν term. In Fig. 3,
the evolutions of M2ν

GT as a function of IS pairing strength
fIS from QRPA and QTDA models are shown. These two
results are different from each other. The M2ν

GT calculated by
QTDA model monotonically increases with increasing fIS and
is systematically larger than that from the QRPA model. The
latter shows explicitly the suppression effect from the ground-
state correlations. This is consistent with the conclusion of
Ref. [28].
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FIG. 4. Running sums of the M2ν
GT for 128Te as a function of the

excitation energy of the intermediate nucleus calculated by QRPA
(black solid line) and QTDA (red dashed line) with the isoscalar
pairing strength parameter fIS = 1.1928.

In Fig. 4 we show the running sums of M2ν
GT calculated by

the QTDA model and the QRPA model with fIS = 1.1928,
with which value of fIS the experimental NME of 128Te can be
reproduced by the QRPA model. One finds that in the region
of Eint. < 9.0 MeV the running sums of these two models
are different in magnitude but evolve similarly. However, in
the region of 9.0 < Eint. < 12.0 MeV, the running sum of the
QTDA model keeps increasing, while that of the QRPA model
starts to decrease. Therefore, the negative contributions of
high-lying states are related to the ground-state correlations
introduced in the QRPA model. Finally, running sum curves
of both models become flat after Eint. equals about 12.0 MeV
around the GT resonance (GTR) region, because of large
energy denominators and small transition amplitudes for these
very highly excited states beyond GTR.

To understand the large difference between the M2ν
GT cal-

culated by QRPA and QTDA models, we further investigate
GT− and GT+ transition branches involved in the calculation
of M2ν

GT as shown in Eq. (5). The corresponding transition
strengths S(GT−) and S(GT+) are shown in Fig. 5. Since
128Te has excess neutrons, its GT− transition strength is large,
so the inclusion of Yπν amplitude in the QRPA calculation
does not make it different from the QTDA calculation without
the Yπν term. However, the GT+ transition strength of 128Xe
is small, due to the blocking effects of the Pauli principle with
large neutron excess. The inclusion of ground-state isovector
pairing correlations could unblock some transition channels
and increase the GT+ transition strength. The inclusion of
the backward amplitude Yπν , the ground-state correlations
introduced in the QRPA model, have also significant influence
on the GT+ transition strength through the relatively big uπvν

factor in front of Yπν . Due to the opposite signs of Xπν and Yπν ,
for 128Xe the GT+ transition strength becomes smaller in the
QRPA calculation compared to that of the QTDA calculation.
Through the above comparison, it is clear that the ground-state
correlations, namely the large backward amplitudes Yπν in

FIG. 5. The GT− transition strength function of 128Te → 128I
whose excitation energies E (i)

int. are with respect to 128I (a) and GT+

transition strength function of 128Xe → 128I whose excitation en-
ergies E ( f )

int. are with respect to 128I (b). The black solid lines and
red dashed lines are the results calculated by QRPA and QTDA,
respectively.

QRPA induced by strong IS pairing, play crucial roles in the
calculation of M2ν

GT through their effects on the GT+ transition
of the daughter nucleus.

C. Negative contributions in running sum

By comparing running sums of the QRPA model and the
QTDA model in Sec. IV B, we come to the conclusion that the
negative contributions are related to ground-state correlations
introduced by the Yπν term which can be enhanced by large IS
pairing. Actually, there is a close relation between IS pairing
and ground-state correlations introduced by the Yπν term. With
the increase of IS pairing strength, the magnitude of B matrix
elements in QRPA equation (2b) increases as well due to the
attractive nature of IS pairing residual interaction. As a result,
the Yπν amplitude will increase, as also explained in Ref. [26].
We depict the running sums of the M2ν

GT for 128Te with different
fIS and ηY in Fig. 6. From the figure, the behaviors of the
running sum curves are very similar when increasing fIS and
ηY . Especially, in both cases the negative contributions will
be induced and further be enlarged in the 9–15 MeV region
(around the GTR). Based on such a relation, to simulate the
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FIG. 6. Running sums of the M2ν
GT for 128Te with different fIS

(a) and ηY (b) as a function of the excitation energy of the inter-
mediate nucleus.

increase of the IS pairing strength, we change the magnitude
of Yπν by replacing it with ηY Yπν in the calculation of tran-
sition amplitudes, where the factor ηY varies from 0.0 to 1.0.
The purpose of this study is to understand how negative con-
tributions to M2ν

GT happen at large IS pairing strength. One of
the advantages of such a simulation, instead of varying the IS
pairing strength directly, is that one can avoid the complicated
splittings and degeneracy in the excited spectra caused by the
variation of the IS pairing.

The trend of the results with ηY = 0.0 is very similar to
that of the QTDA model in Fig. 4. With the increasing ηY ,
two features of the running sum curves are emerging. The first
one is that the contributions from the region Eint. < 9.0 MeV
decrease significantly. The second one is that the majority of
these contributions in the region of 9.0 < Eint. < 15.0 MeV
change their signs from positive to negative values. It can be
seen that negative contributions do appear with large enough
Yπν amplitudes in our simulation. Then what is the origin
of these negative contributions? To answer this question, in
Fig. 7, we explicitly show the contributions to M2ν

GT of in-
termediate states with excitation energy ranging from 9.0 to
15.0 MeV as a function of ηY . The total contribution (black
square) decreases monotonically from positive to negative val-
ues. Then we separate the contributions which have changes in
sign for the increasing ηY , denoted as M ′2ν

GT (red circle). From

FIG. 7. Contributions to M2ν
GT for 128Te from excitation energies

of the intermediate nucleus ranging 9.0–15.0 MeV. Black square:
the total contribution of all intermediate states in the 9.0–15.0 MeV
excitation energy region. Red circle: sum of the contributions whose
signs have changed relative to ηY = 0.0 during increase of ηY . Blue
up triangle: sum of the contributions of those intermediate states with
one coming from GT+ transition of the daughter nucleus with an
excitation energy of E ( f )

int. = 9.15 MeV. Green down triangle: sum of
the contributions with E ( f )

int. = 9.15 MeV whose signs have changed
relative to ηY = 0.0 during increase of ηY .

the figure, we observe that the M ′2ν
GT contributes remarkably

more than 50% to the M2ν
GT at ηY = 1.0. So a main reason

that the negative contributions appear is the change of signs
of M2ν

GT contributed by some intermediate states. Among these
intermediate states, one non-negligible contribution comes
from those with an excitation energy of E ( f )

int. = 9.15 MeV
from the GT+ transition side of the daughter nucleus. We note
that the rest of the negative contributions do not change their
signs with increasing ηY , but they are small at ηY = 0.0 and
become large at ηY = 1.0.

To get a deeper insight for these sign changes, we inves-
tigate the GT− and GT+ transitions. From Eq. (5), the M2ν

GT
for a specific intermediate state is proportional to the GT−

transition amplitude 〈1+
int.||GT−||0+(i)

g.s. 〉 and the GT+ transi-

tion amplitude 〈1+
int.||GT+||0+( f )

g.s. 〉. So we pick several typical
GT− and GT+ states with excitation energies in the range of
Eint. < 9.0 MeV and in the range of 9.0 < Eint. < 15.0 MeV,
and plot their transition amplitudes as a function of ηY in
Fig. 8. These six typical states are chosen for the follow-
ing reasons: The states at E (i)

int. = 2.25 MeV and E ( f )
int. = 0.21

MeV are the first 1+ states calculated from 128Te and 128Xe,
respectively. The state at E ( f )

int. = 5.14 MeV has the largest
GT+ transition amplitude in the 0–9.0 MeV region. For this
state, the largest overlap factor 〈1+

n f
|1+

ni
〉 is produced by the

state at E (i)
int. = 6.17 MeV. The state at E ( f )

int. = 9.15 MeV has
the largest GT+ transition amplitude (absolute value) among
the states whose GT+ transition amplitudes have changed
their signs in the 9.0–15.0 MeV region. For this state, the
largest overlap factor 〈1+

n f
|1+

ni
〉 produced by the state lying in
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FIG. 8. The GT− transition amplitudes for three excited states
in 128Te (a) and GT+ transition amplitudes for three excited states
in 128Xe (b) as a function of ηY . The values of excitation energies
relative to 128I are shown in the figure.

9.0–15.0 MeV is the state at E (i)
int. = 10.39 MeV. From

Fig. 8(a), we find that the GT− transition amplitudes are
almost independent of ηY , which is consistent with B(GT−)
being little influenced by the IS pairing. On the other hand,
the GT+ transition amplitudes, in panel (b), show a strong
dependence on ηY , and even change their signs for the higher
excited states with E ( f )

int. = 9.15 MeV. Such a strong depen-
dence comes from the large magnitude of the uπvν factor
in front of Yπν for neutron-rich nuclei. For the GT+ state
of E ( f )

int. = 9.15 MeV, one can observe that after ηY = 0.4
the GT+ transition amplitude crosses zero. Therefore, the
summed contribution, coming from the (ni, n f ) intermediate
states with GT+ state of E ( f )

int. = 9.15 MeV, change their signs
and become negative, as shown by the blue up triangle in
Fig. 7. On the other hand, for the GT+ states with energies
smaller than 9.0 MeV, such as those with E ( f )

int. = 0.21 or 5.14
MeV shown in the figure, the absolute values of their tran-
sition amplitudes keep decreasing with increasing ηY , which
causes the first feature observed in Fig. 6. Therefore, the vari-
ation of the GT+ transition amplitudes with ηY for different
energy regions of Eint. gives rise to the two features in Fig. 6

mentioned above. These two features are different because
the GT+ transitions are unblocked by pairing correlation for
low-lying states with energies smaller than 9.0 MeV, and
hence there are non-negligible transition strengths in the case
of ηY = 0.0. The increase of ηY can greatly reduce the GT+

transition amplitudes in this energy region, but is not enough
to change their signs. On the other hand, for high-lying states
with energies larger than 9.0 MeV, the GT+ transitions are
almost blocked and have small strengths at ηY = 0.0. In this
case, the sign of GT+ transition amplitude can be changed
easily due to the increase of Yπν amplitude. At the end, we
conclude that it is the enhanced ground-state correlations
tuned by strong IS pairing interaction that cause the negative
contributions to M2ν

GT in the energy range of 9.0–15.0 MeV,
through their influence on the GT+ transition amplitudes.

V. SUMMARY

In summary, we study the 2νββ-decay nuclear matrix el-
ements M2ν

GT based on the spherical Skyrme HFB + QRPA
model, for 11 nuclei with experimental data, and the un-
derlying mechanism for the fulfillment of the SSD or LLD
hypothesis is revealed.

In our systematic investigation of M2ν
GT, the suppression ef-

fect of the IS pairing is found. By using the IS pairing strength
determined through reproducing the experimental data with
different axial-vector coupling constants gA, we investigate
the SSD and LLD hypotheses. When gA = 1.27, the SSD hy-
pothesis is fulfilled by the NMEs of 48Ca, 82Se, 116Cd, 128Te,
and 238U. When gA = 1.00, the SSD hypothesis is fulfilled
by the NMEs of 238U, while the LLD hypothesis is fulfilled
by the NMEs of 76Ge, and 82Se. The realization of SSD and
LLD hypotheses for 76Ge, 82Se and 128Te are to a large extent
caused by the negative contributions in the running sums of
the NMEs. Through the comparison of the running sums of
different gA, we find that by increasing gA, or alternatively
fIS, the negative contributions can either be induced or en-
larged.

We pick 128Te as an example to further study the rea-
son for these negative contributions in the running sum. By
comparing the running sums of QRPA and QTDA models,
the negative contributions are found to be related to the
strong ground-state correlations induced by large IS pairing
strength, which shows the importance of QRPA calculations
over the simpler QTDA calculations for NME of 2νββ de-
cay. Through the study of GT− and GT+ transition strength
functions, it is shown that the ground-state correlations influ-
ence the NME through its crucial role in GT+ transitions for
these double-β decay nuclei with neutron excess, where many
GT+ transition channels are blocked because of the Pauli
principle.

With the inclusion of ground-state correlations in QRPA
calculations, the increase of IS pairing strength will make
their contributions larger so that they lead to the suppression
of NME contributed from the energy region of intermediate
states Eint. < 9.0 MeV as well as negative contributions from
9.0 < Eint. < 15.0 MeV. Ground-state correlations play their
roles on the above two features by suppressing GT+ transition
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amplitudes of low-lying states and changing the signs of GT+

transition amplitudes of higher-lying states.
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