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Background: The Gorkov approach to self-consistent Green’s function theory has been formulated by Somà,
Duguet, and Barbieri in [Phys. Rev. C 84, 064317 (2011)]. Over the past decade, it has become a method of refer-
ence for first-principles computations of semimagic nuclear isotopes. The currently available implementation is
limited to a second-order self-energy and neglects particle-number nonconserving terms arising from contracting
three-particle forces with anomalous propagators. For nuclear physics applications, this is sufficient to address
first-order energy differences (i.e., two neutron separation energies, excitation energies of states dominating
the one-nucleon spectral function), ground-state radii and moments on an accurate enough basis. However,
addressing absolute binding energies, fine spectroscopic details of N ± 1 particle systems or delicate quantities
such as second-order energy differences associated with pairing gaps, requires going to higher truncation orders.
Purpose: The formalism is extended to third order in the algebraic diagrammatic construction (ADC) expansion
with two-body Hamiltonians.
Methods: The expansion of Gorkov propagators in Feynman diagrams is combined with the algebraic diagram-
matic construction up to the third order as an organization scheme to generate the Gorkov self-energy.
Results: Algebraic expressions for the static and dynamic contributions to the self-energy, along with equa-
tions for the matrix elements of the Gorkov eigenvalue problem, are derived. It is first done for a general basis
before specifying the set of equations to the case of spherical systems displaying rotational symmetry. Workable
approximations to the full self-consistency problem are also elaborated on. The formalism at third order it thus
complete for a general two-body Hamiltonian.
Conclusions: Working equations for the full Gorkov-ADC(3) are now available for numerical implementation.

DOI: 10.1103/PhysRevC.105.044330

I. INTRODUCTION

Ab initio quantum many-body computations are crucial to
high-precision investigations in several fields of physics. Most
applications to finite-size fermion systems concern nuclear
physics and quantum chemistry to the point that these dis-
ciplines often share the same computational techniques and
cross fertilization among the two has led to advancements
of ab initio theories over the years. For nuclear physics, the
past two decades have witnessed remarkable breakthroughs
in first-principles computations of nuclear structure that ex-
ploit soft nuclear interactions based on chiral effective-field
theory [1]. The availability of many-body methods that scale
favorably with particle number has enabled precision predic-
tions of medium-mass isotopes and the possibility to confront
experimental information of exotic isotopes at the limits of
stability (see Refs. [2,3] for a review).

Many successful approaches, such as many-body pertur-
bation theory (MBPT) [4], self-consistent Green’s function
(SCGF) [5], coupled cluster (CC) [6], and in-medium simi-
larity renormalization group [7] can reach sizable systems by
restricting the Fock space to selected excited configurations
for which it is possible to resum infinite series of diagrams.
However, in their basic formalism, they are limited to closed-
shell systems. For open-shell cases, near-degeneracies in the
single-particle spectrum often prevent the use of any perturba-
tion expansion. The possible ways around this issue are either
multireference approaches or the use of symmetry-breaking
reference states. In the first case, all degenerate configurations
are diagonalized explicitly, which, however, adds a costly
step to the calculation that scales exponentially with system
size [8], with the notable exception of a recently proposed
multireference many-body perturbation theory [9–11]. The
second path relies on using a reference state that explicitly
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breaks some symmetries of the Hamiltonian in exchange for
lifting the energy degeneracy. One is left with similar com-
putational requirements as the original approach but needs
to worry about projecting the final wave function, when
possible [12–15], or addressing the uncertainties due to an
only-partially restored symmetry.

Besides ground-state properties, the SCGF approach is
particularly suited to inform on the spectroscopic response
to the addition and removal of a nucleon to the sys-
tem [16,17], on the shell structure [18,19], and on elastic
nucleon scattering [20]. State-of-the-art SCGF calculations
exploit the algebraic diagrammatic construction (ADC) trun-
cation scheme that provides a hierarchy for systematic
improvements of the method, i.e., of the computation of the
self-energy [21–23]. The third-order truncation, or ADC(3),
resums full Tamm-Dancoff series of ladder and ring diagrams,
among other terms, and has become a method of reference
for closed-shell nuclei and molecules, providing chemical
accuracy predictions for binding energies and ionization po-
tentials [24].

In Refs. [25,26], the standard SCGF formalism was
extended to the Gorkov formulation to handle open-shell
systems. In this formulation, the reference state is al-
lowed to break U (1) global-gauge symmetry associated
with particle-number conservation, thus accounting for pair-
ing correlations and lifting the problematic degeneracy of
symmetry-conserving reference states with respect to elemen-
tary excitations. Doing so, the reach of SCGF calculations
was enlarged from the small set of doubly closed-shell nu-
clei to the much larger set of semimagic nuclei. Applications
have covered complete isotopic and isotonic chains around
O, Ca, and Ni [27–32], eventually stretching to heavier iso-
topes up to A = 140 [33]. The Gorkov SCGF formalism
has so far been been devised only for a second-order self-
energy, i.e., at the ADC(2) truncation level, which can grasp
around 90% of correlation energy and predict accurate trends
of nuclear binding energies and radii with varying proton-
neutron asymmetry. Nevertheless, confronting the predictive
power of chiral Hamiltonians on absolute nuclear masses and
spectroscopic data requires more accurate computations by
going to ADC(3) or higher orders. At the same time, sim-
ple truncations such as ADC(2) remain significantly affected
by the violation of global-gauge symmetry. While this issue
is expected to be resolved when going to higher truncation
levels, it is not possible to assess the rate at which good
particle number is restored without computing a proper se-
quence of ADC(n) results with increasing orders n = 1, 2, 3
and so on. In this work we pave the way to addressing
these open questions by deriving the Gorkov ADC(3) ap-
proximation in full for a Hamiltonian with up to two-body
forces.

Section II A reviews key concepts of the Gorkov Green’s
function formalism and sets out the details needed for its
implementation. In particular, the analytical form of the
self-energy and the Gorkov eigenmatrix problem, which are
central to the following developments, are discussed. Work-
ing ADC(2) and ADC(3) equations are presented in full in
Sec. III. While the focus is eventually on a self-consistent
implementation, Sec. III C provides a detailed overview of

the composite diagrams required in a standard (non-self-
consistent) theory. Section IV deals with practical limitations
in the application of SCGF theory and sets out a systematic
way to implement partial self-consistency without introduc-
ing uncontrolled uncertainties. The main results of this work
are then collected in Sec. V, which summarizes the specific
terms and working equations at each level of ADC(n) trun-
cation. A number of further technical details are relegated
to the Appendixes, in decreasing order of importance. Ap-
pendix A discusses the angular-momentum coupling of the
ADC(n) equations applicable to spherical bases. While these
are conceptually the same formulas as those discussed in
the main text, they provide implementation-ready working
equations for applications to semimagic nuclei. The contribu-
tions of composite diagrams to the static self-energy are not
needed in most applications but are derived in Appendix B
for completeness. Appendix C demonstrates some (somewhat
pedagogical) details regarding how the final ADC(3) equa-
tions discussed in this paper are derived. Conclusions are
drawn in Sec. VI.

II. GORKOV GREEN’S FUNCTION FORMALISM

We are interested in solving for a general many-fermion
system described by an energy-independent Hamiltonian with
up to two-body interactions:

H = T + V =
∑
αβ

tαβc†
αcβ + 1

4

∑
αβγ δ

vαβ,γ δc†
αc†

βcδcγ , (1)

where α, β, γ , . . . label a complete orthonormal one-body
basis whereas c†

α (cα) denote associate creation (annihilation)
operators.1 In Eq. (1), T captures the complete one-body
sector of the Hamiltonian: it typically reduces to the kinetic
energy for self-bound systems, such as atomic nuclei, but it
may include an external potential in the general case. The two-
body matrix elements, vαβ,γ δ , are intended as being properly
antisymmetrized.

In this work we follow Ref. [25] and associate to a given
basis {|α〉} of the one-body Hilbert space H1 a dual basis
{|ᾱ〉} that is related to the former through an antiunitary
transformation T . Specifically, one starts with the set of quan-
tum numbers α specifying a state of the original basis and
associate a new set α̃ that is in a self-inverse one-to-one corre-
spondence with the former, i.e., ˜̃α = α. The dual basis state is
defined by adding the antiunitary real phase ηα (ηαηα̃ = −1),

|ᾱ〉 =T |α〉 ≡ ηα |̃α〉, (2)

such that dual creation and annihilation operators are related
to the original ones through

c̄†
α ≡ ηαc†

α̃, (3a)

c̄α ≡ ηαcα̃, (3b)

1Note that Greek letters refer to a general single-particle basis
throughout this work, while latin letters are reserved for j-coupled
bases, as discussed in Appendix A. This choice differs from the ini-
tial Gorkov work of Ref. [25] but maintains a continuity of notation
with our other SCGF developments [16,23,34–41].
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while the matrix elements of the operators entering the Hamil-
tonian can be expressed completely in the dual basis or in a
mixed representation

tᾱβ̄ = ηαηβ t̃αβ̃ , (4a)

vᾱβ̄,γ̄ δ̄ = ηαηβηγ ηδvα̃β̃,γ̃ δ̃ , (4b)

vᾱβ,γ δ̄ = ηαηδvα̃β,γ δ̃, (4c)

and so on. The advantage of the above relations is that many-
body operators are invariant with respect to (partial) changes
of the single-particle basis as long as barred quantities are
transformed consistently for each separate index. For exam-
ple, ∑

αβ

tαβc†
αcβ =

∑
ᾱβ

tᾱβ c̄†
αcβ =

∑
ᾱβ̄

tᾱβ̄ c̄†
α c̄β, (5)

and similarly for all other components of Eq. (1). This prop-
erty facilitates the definition of the Gorkov propagators in
Sec. II A and propagates to all tensor products of propaga-
tors and operators arising in the diagrammatic expansion of
perturbation and SCGF theories.

The introduction of the dual basis is not strictly mandatory
such that the Gorkov formalism presented in this work could
be derived without making use of barred indices. However,
definition (2) makes it easier to elegantly handle Nambu in-
dices for normal and anomalous propagators and accounts
automatically for the phases that are related to broken sym-
metries in the formalism. Only in the last step of deriving
working Gorkov-ADC(3) equations the transformation T is
identified with the time-reversal operator and the phases ηα

explicitly stated (see also Appendix A). More importantly, the
combined use of Nambu indices and an appropriate dual basis
can be extended into a generalized Nambu-covariant formal-
ism as discussed in Refs. [40,41]. In Nambu-covariant Green’s
function theory, all normal and anomalous propagators appear
as specific elements of a unique propagator carrying the com-
mon features in their spectral representations.

A. Gorkov propagators

The Gorkov-SCGF approach builds on relaxing the re-
quirement that the unperturbed state is an eigenstate of the
particle-number operator and seeking the solution of the
grand-canonical-like Hamiltonian2

� ≡ H − μN, (6)

where μ denotes the chemical potential and N is the particle
number operator. The Hamiltonian is partitioned into a un-
perturbed term �U containing only one-body vertices and an
interacting part as follows:

� ≡ �U + �I = (T + U − μN ) + (−U + V ), (7)

where U denotes an external mean-field-like potential.

2Being presently interested in a zero-temperature formalism, the
T -dependent term of the grand-canonical potential drops out. More-
over, it is understood that a separate chemical potential for each
different fermion is to be considered when the system consists of
more than one type of particle.

We consider eigenstates of the Hamiltonian conserving
even- (e) or odd- (o) number parity

�
∣∣�e(o)

k

〉 = �k

∣∣�e(o)
k

〉
, (8)

where

|�e(o)〉 =
∞∑

n=0

c2n(2n+1)|ψ2n(2n+1)〉 (9)

is a superposition of states |ψ l〉 that are eigenstates of N with
eigenvalue l . Rather than the ground state of H , Gorkov SCGF
formalism targets the state |�0〉 minimizing

�0 = min
|�0〉

{〈�0|�|�0〉} (10)

under the constraint

N = 〈�0|N |�0〉, (11)

where N denotes the number of particles for the system under
consideration. While the exact |�0〉 associated with a finite
system is indeed an eigenstate of N , it is not enforced to do so
in the thermodynamic limit or when being approximated. In
such cases, it is only constrained to carry the particle number
N on average.

For a typical superfluid system approaching the thermody-
namic limit, the ground-state energies of Eq. (1) associated
with N particles, H |ψN

0 〉 = EN
0 |ψN

0 〉, will differ from each
other only by multiples of the chemical potential

EN±2n
0 ≈ EN

0 ± 2nμ ± n
εP for n = 1, 2, 3, . . . , (12)

since μ is substantially independent of N at large particle
number and, likewise, the average cost for the possible cre-
ation of Cooper pairs, 
εP, will be the same every time two
particles are added. Equations (10) and (11) naturally allow
us to interpret state |�0〉 as the fermionic part of a ground-
state wave function in equilibrium with a reservoir of Cooper
pairs. Hence, defining Gorkov propagators with respect to
|�0〉 directly provides a theory for superconductivity and
superfluidity. For finite-size systems, such as atomic nuclei
or molecules, Eq. (12) may hold only in a very approximate
way. Because both Hamiltonians H and � preserve particle
number, the requirements (10) and (11) will force |�0〉 to be
the true ground state |ψN

0 〉, with an exact number of particles.
The breaking of particle-number symmetry arises natu-

rally, in most cases, whenever approximations have to be
made, typically in computing the self-energy. This is true
for both Dyson and Gorkov formulations of Green’s function
theory since they equally rely on an open Fock space, where
mixing of particle number as in Eq. (9) is fully allowed. In
fact both, formulations can be seen as just one theory where
in the first case the reference state preserves the symmetries
of the Hamiltonian from the start, whereas in the second case
one begins with a symmetry-broken reference but with the
advantage of a better radius of convergence for the perturba-
tive expansion. Clearly, whenever the approximate treatment
approaches the exact solution, the exact particle number shall
be restored.

For Gorkov theory, the symmetry breaking is more sub-
stantial because it is imposed into the formalism from the start
through �U . Hence, one may wish to eventually restore the

044330-3



BARBIERI, DUGUET, AND SOMÀ PHYSICAL REVIEW C 105, 044330 (2022)

exact symmetries of the Hamiltonian. Several works for the
standard Dyson theory have investigated how approximations
based on the self-consistency principle can guarantee the con-
servation of particle number and other symmetries associated
with H [42–46]. Two obvious questions of present interest
are whether a truly self-consistency computation could have
implications on particle-number conservation also for Gorkov
and, otherwise, understanding to which extent going from the
ADC(2) to the ADC(3) truncation level can do so to a good
enough accuracy. Alternatively, one will need to seek formu-
lations for exact symmetry restoration at the final stage of each
computation, in a similar way to what has recently been done
within the frame of MBPT and CC formalisms [12–15].

The crucial feature of the Gorkov SCGF formulation is
that the unperturbed Hamiltonian �U breaks particle number
explicitly. Open-shell systems are characterized by partially
filled orbitals at the level of mean-field theory. This causes
degeneracies between the energies of particle and hole states
which are sufficient to invalidate any perturbation expansion
(or even partial resummations of it) if not dealt with in ad-
vance, as is the case of the Dyson SCGF formulation. In this
context, a superposition of states of the type (9) provides a
better approximation to the ground-state wave function. Fol-
lowing this consideration, we exploit an auxiliary interaction
U to break particle number symmetry explicitly:

U =
∑
αβ

[
uαβc†

αcβ + 1

2
uan.

αβ c†
αc†

β + 1

2

(
uan.

αβ

)∗
cαcβ

]
, (13)

where uαβ = u∗
βα and uan.

αβ = −uan.
βα without loss of generality.

Following the above considerations we formulate Gorkov
SCGF theory with respect to the ground state of � as defined
by Eqs. (10) and (11). Since |�0〉 breaks particle number
symmetry, it is possible to define four Gorkov propagators,

G11
αβ (t − t ′) ≡ −i〈�0|T [cα (t )c†

β (t ′)]|�0〉, (14a)

G12
αβ (t − t ′) ≡ −i〈�0|T [cα (t )c̄β (t ′)]|�0〉, (14b)

G21
αβ (t − t ′) ≡ −i〈�0|T [c̄†

α (t )c†
β (t ′)]|�0〉, (14c)

G22
αβ (t − t ′) ≡ −i〈�0|T [c̄†

α (t )c̄β (t ′)]|�0〉, (14d)

where T [· · · ] denotes the usual time-ordering operator and the
superscripts 1 (2) are the Nambu indices referring to creation
and annihilation of normal (anomalous) single-particle excita-
tions. In Eqs. (14), creation and annihilation operators depend
on time3 according to the Heisenberg picture with respect to
�:

c(†)
α (t ) = ei�t c(†)

α e−i�t . (15)

It is useful to collect the four propagators in a 2 × 2 matrix
according to their Nambu indices and whose elements are
tensors in the single-particle basis indices

Gαβ (t − t ′) ≡
(

G11
αβ (t − t ′) G12

αβ (t − t ′)

G21
αβ (t − t ′) G22

αβ (t − t ′)

)
. (16)

3We use natural units with dimensionless h̄ = 1 throughout this
work.

Rather that the time representation, the frequency rep-
resentation is presently used and is obtained via Fourier
transformation

Gαβ (ω) =
∫ ∞

−∞
eiωτ Gαβ (τ )dτ. (17)

Exploiting the completeness of Eq. (8), the spectral represen-
tation of the propagators can be obtained as

G11
αβ (ω) =

∑
k

{
U k

αU k
β

∗

ω − ωk + iη
+ V̄k

α
∗V̄k

β

ω + ωk − iη

}
, (18a)

G12
αβ (ω) =

∑
k

{
U k

αVk
β

∗

ω − ωk + iη
+ V̄k

α
∗Ū k

β

ω + ωk − iη

}
, (18b)

G21
αβ (ω) =

∑
k

{
Vk

αU k
β

∗

ω − ωk + iη
+ Ū k

α
∗V̄k

β

ω + ωk − iη

}
, (18c)

G22
αβ (ω) =

∑
k

{
Vk

αVk
β

∗

ω − ωk + iη
+ Ū k

α
∗Ū k

β

ω + ωk − iη

}
, (18d)

where the spectroscopic amplitudes for the addition and re-
moval of a particle are defined as

U k
α ≡ 〈�0|cα|�k〉, (19a)

Vk
α ≡ 〈�0|c̄†

α|�k〉, (19b)

so that

Ū k
α ≡ 〈�0|c̄α|�k〉 = ηαU k

α̃ , (20a)

V̄k
α ≡ 〈�0|c†

α|�k〉 = −ηαVk
α̃ . (20b)

The index k in Eqs. (18) labels all possible excitations from
Eq. (8), which combine both the Landau and Bogoliubov
meanings of quasiparticle. The respective poles are given by

ωk ≡ �k − �0. (21)

Whenever the targeted ground state |�e
0〉 belongs to a sys-

tem carrying an even particle number, the completeness set
{|�o

k 〉} runs over odd particle numbers states only. And vice
versa for an odd-N ground state. While the ADC(n) equa-
tions derived in Secs. III A and III B are general and apply to
both cases indistinctly, Appendix A discusses their j-coupling
reduction for J = 0 ground states, i.e., for even-N systems.

Once the spectral representation (18) is known, it is pos-
sible to extract normal and anomalous one-body density
matrices according to

ραβ ≡ 〈�0|c†
βcα|�0〉

= 1

π

∫ 0

−∞
ImG11

αβ (ω)dω =
∑

k

V̄k
α

∗V̄k
β, (22a)

ρ̃αβ ≡ 〈�0|c̄βcα|�0〉

= 1

π

∫ 0

−∞
ImG12

αβ (ω)dω =
∑

k

V̄k
α

∗Ū k
β. (22b)
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The expectation value of any one-body operator O is given by

〈�0|O|�0〉 =
∑
αβ

oαβρβα, (23)

whereas the Migdal-Galitski-Koltun energy sum rule deliver-
ing the ground-state energy

�0 = 1

2π

∫ 0

−∞
[tαβ − μδαβ + ωδαβ]ImG11

βα (ω)dω (24)

is exact for a Hamiltonian with up to two-particle interactions.

B. Gorkov equations

The perturbative expansion of Gorkov propagators is
devised following the standard approach of defining an unper-
turbed propagator, G(0)(t − t ′), according to definitions (14)
and (15) but with � replaced by the one-body grand potential
�U . After Fourier transform to frequency domain, one finds

G(0)(ω) = [ωI − �U ]−1, (25)

where model space and Nambu indices are implicit and the
matrix inversion is performed with respect to both. One then
exploits the interaction picture to devise a perturbative expan-
sion of the full propagator of Eq. (16) that can be represented
as a series of Feynman diagrams in powers of the perturbation
�I [25].

Doing so, the standard Dyson equation for the interacting
propagator G(ω) is generalized to the set of coupled Gorkov
equations for the four propagators (18). Using Nambu’s ma-
trix notation, they read as

Gαβ (ω) = G(0)
αβ

(ω) +
∑
γ δ

G(0)
αγ (ω)��

γ δ (ω)Gδβ (ω), (26)

where the four self-energies

��
αβ (ω) ≡

(
��11

αβ (ω) ��12
αβ (ω)

��21
αβ (ω) ��22

αβ (ω)

)
(27)

include all possible one-particle irreducible diagrams stripped
of their external legs. The remaining reducible diagrams are
then generated in a nonperturbative way through the all-orders

resummation generated by Eq. (26). In standard perturbation
theory, a given approximation to ��(ω) is a functional of the
unperturbed propagators G(0)(ω) and hence depends directly
on the choice of the reference state associated with �U . In
SCGF theory, the series of diagrams to be resummed is fur-
ther restricted to skeleton diagrams displaying no self-energy
insertion, provided that all propagator lines are replaced by
the interacting propagator G(ω). Since the full Dyson-Gorkov
series is included in such a propagator, the SCGF procedure
not only reduces the number of Feynman diagrams that need
to be dealt with but it implicitly accounts for higher-order
terms that are beyond the perturbative truncation chosen for
the self-energy. The self-energy becomes a functional of the
interacting propagator, ��[G; T,V ] and is no longer affected
by the choice of the unperturbed state. The price to pay for
such improvements is that diagrams expressed in terms of
G(ω) are more demanding to deal with, due to the rich pole
structure of Eqs. (18). Furthermore, ��(ω) and the Gorkov
equations (26) have respectively to be computed and solved
repeatedly through an iterative procedure.

The most general structure of the Gorkov self-energy can
be written as

��
αβ (ω) = −U + �

(∞)
αβ + �̃αβ (ω), (28)

where the auxiliary potential term U arising from �I at
first order is separated from the proper part of the self-
energy. The term �(∞) embodies the limit of the proper
self-energy to ω → ±∞ and represents the mean field
experienced by a particle in the correlated medium. It re-
duces to the Hartree-Fock-Bogoliubov (HFB) potential for a
self-consistent first-order truncation of ��(ω) but otherwise
includes additional in-medium corrections at higher orders.
Hence, it is referred to as the correlated HFB (cHFB) poten-
tial.

The components of the dynamic self-energy �̃(ω) also
have a spectral representation analogous to Eqs. (18). In this
case, the poles of the Lehmann representation are associated
with intermediate-state configurations (ISCs) combining dif-
ferent quasiparticle excitations {|�k〉; ωk}. To write the most
general form of the dynamic self-energy, a generic index r is
employed to label all possible ISCs that are eventually made
explicit in Sec. III. Thus, the general form writes

�̃11
αβ (ω) =

∑
rr′

{
Cα,r

[
1

ωI − E + iη

]
r,r′

C†
r′,β + D̄†

α,r

[
1

ωI + ET − iη

]
r,r′

D̄r′,β

}
, (29a)

�̃12
αβ (ω) =

∑
rr′

{
Cα,r

[
1

ωI − E + iη

]
r,r′

D∗
r′,β + D̄†

α,r

[
1

ωI + ET − iη

]
r,r′

C̄T
r′,β

}
, (29b)

�̃21
αβ (ω) =

∑
rr′

{
DT

α,r

[
1

ωI − E + iη

]
r,r′

C†
r′,β + C̄∗

α,r

[
1

ωI + ET − iη

]
r,r′

D̄r′,β

}
, (29c)

�̃22
αβ (ω) =

∑
r‘r′

{
DT

α,r

[
1

ωI − E + iη

]
r,r′

D∗
r′,β + C̄∗

α,r

[
1

ωI + ET − iη

]
r,r′

C̄T
r′,β

}
, (29d)

where Er,r′ denotes the elements of an energy matrix associated with an interaction among ISCs r and r′. Matrix E is Hermitian,
so that ET = E∗. The coupling matrices C and D couple single-particle and ISC spaces, with the elements of the barred matrices
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defined as

C̄α,r = ηαCα̃,r, (30a)

D̄r,α = −ηαDr,̃α. (30b)

By exploiting the spectral representation of G(ω) in Eq. (26) and extracting each pole ωk separately, Gorkov’s equations can be
transformed into a set of energy-dependent eigenvalue equations for vectors (U k,Vk ) of the form

ωk

(U k
α

Vk
α

)
=
∑

β

(
tαβ − μδαβ + �

(∞)11
αβ + �̃11

αβ (ω) �
(∞)12
αβ + �̃12

αβ (ω)

�
(∞)21
αβ + �̃21

αβ (ω) −tαβ + μδαβ + �
(∞)22
αβ + �̃22

αβ (ω)

)(U k
β

Vk
β

)
. (31)

The eigenvalue problem of Eq. (31) can be further optimized by introducing two new vectors Wk and Z̄k that belong to ISC
space:

Wk
r ≡

∑
r′

[
1

ωI − E

]
r,r′

[∑
α

(
C∗

α,r′U k
α + D∗

r′,αVk
α

)]
, (32a)

Z̄k
r ≡

∑
r′

[
1

ωI + ET

]
r,r′

[∑
α

(
D̄r′,αU k

α + C̄α,r′Vk
α

)]
. (32b)

Note that there will be a pair of such vectors for any quasiparticle solution ωk from Eq. (31). In fact they can be interpreted as
projections of a quasiparticle wave function onto the subspace of ISCs. Definitions (29) and (32) allow us to eventually reexpress
Gorkov’s equations as a single (energy-independent) matrix diagonalization

ωk

⎛⎜⎜⎝
U k

Vk

Wk

Z̄k

⎞⎟⎟⎠ =

⎛⎜⎜⎝
T − μI + �(∞)11 �(∞)12 C D̄†

�(∞)21 −T + μI + �(∞)22 DT C̄∗

C† D∗ E
D̄ C̄T −ET

⎞⎟⎟⎠
⎛⎜⎜⎝
U k

Vk

Wk

Z̄k

⎞⎟⎟⎠, (33)

with the normalization condition∑
α

∣∣U k
α

∣∣2 +
∑

α

∣∣Vk
α

∣∣2 +
∑

r

∣∣Wk
r

∣∣2 +
∑

r

∣∣Z̄k
r

∣∣2 = 1. (34)

Although the Gorkov matrix in Eq. (33) can have large dimen-
sionality, the latter approach provides the entire quasiparticle
spectrum in one single diagonalization. Often, this is by far
the most efficient way to solve Dyson or Gorkov equations of
many-body Green’s function theory. In practical applications,
the computing time can be highly reduced by performing
Krylov subspace projections without loosing details of the full
spectral distribution [23,26].

III. GORKOV ADC(n)

The algebraic diagrammatic construction method is a sys-
tematic approach to construct accurate approximations to the
self-energy. It is based on two fundamental requirements.

First, the correct analytic form of the self-energy given
by Eqs. (28) and (29) must be preserved. In particular, the
Lehmann representation is pivotal because it follows from
the causality principle, while the relations between poles and
residues among different Nambu components are dictated by
the Gorkov superfluid assumptions. Thus, the ADC(n) scheme
aims at directly formulating approximations to the energy-
independent self-energy �(∞), as well as to the interaction and
coupling matrices E , C, and D.

Second, given the chosen truncation order n, all Feynman
diagrams up to nth order in the interaction �I are required to
be included.

Thus, the general procedure to work out the Gorkov
ADC(n) approximation to the self-energy results from the
following steps

(1) Formally expand coupling and interaction matrices in
powers of �I and generate the associated expansion of
the self-energy starting from Eq. (29).

(2) Produce and evaluate algebraically all Feynman self-
energy diagrams up to order n in powers of �I .

(3) Extract the algebraic expressions of the perturbative
contributions to coupling and interaction matrices up
to order n by matching the form obtained in step 1 onto
the explicit expressions of the diagrams generated in
step 2.

Such a procedure is explicated in Ref. [23] and it has
been applied to the standard SCGF theory up to the ADC(3)
level [39]. The very same steps are followed here to develop
the ADC(3) approximation within the generalized frame of
Gorkov SCGF theory. Below, the results obtained in step 3 are
directly provided without making steps 1 and 2 explicit. While
step 1 is easily adapted from Ref. [23], an example of step 2 is
outlined in Appendix C and results from a direct application
of the topological and algebraic Feynman diagrammatic rules
laid out in Ref. [25].

It is interesting to note that the straight summation
of Feynman diagrams up to nth order in �I —used to
match the perturbative corrections to coupling and interaction
matrices—does not satisfy the spectral representation (29) in
general. The ADC approach corrects this defect by implicitly
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including additional terms beyond order n. Moreover, it gen-
erates all-order resummations of infinite subsets of diagrams,
starting with ladders and rings topologies at orders n � 3. All
together, the ADC(n) expansion scheme provides a sequence
of systematically improvable many-body approximations that
is expected to converge toward the exact resummation of the
full diagrammatic series.

In this work, the ADC(3) truncation scheme with at most
two-particle interactions is investigated within the Gorkov
framework. Since Feynman diagrams of interest involve poles
including at most three lines, the ISC space at play spans all
quasiparticle triplets. Thus, the relevant collective ISC indices
r and r′ denote in the present case

r ≡ (k1, k2, k3), (35a)
r′ ≡ (k4, k5, k6). (35b)

The interaction matrix E splits into the energy E (0) of un-
correlated excitations plus correction terms to first order in
�I . Contrarily, C and D are interaction matrices between
single quasiparticles and ISCs and do not carry zeroth-order
contributions. Only contributions at first (I) and second (II)
order are needed to build all third-order self-energy diagrams.
Hence, for n � 3, the expansion reads

E ≡ E (0) + E (I), (36a)
C ≡ C (I) + D(II), (36b)
D ≡ D(I) + D(II). (36c)

The corresponding barred quantities are obtained from these
amplitudes through Eqs. (30). While the Gorkov approach
can be equivalently formulated without the aid of the dual
basis {|ᾱ〉} (2), our formalism takes explicit advantage of it
to handle time-reversal phases automatically.

Because Gorkov objects with all normal Nambu indices,
e.g., G11

αβ (ω) or �̃11
αβ (ω), are not affected by time reversal,

they remain unchanged in the two approaches. Contrarily, the
presence of any anomalous index as in ��12

αβ (ω) or ��22
αβ (ω)

implies differences due to the phases entering Eqs. (3). In the
following, results are presented in terms of the amplitudes U ,
V̄ , C, and D̄ entering the normal self-energy and propagators
of the first group. Thus, the displayed equations can be used
unchanged in a formulation that does not make distinction
between barred and nonbarred basis states.

A. First- and second-order diagrams

The Gorkov SCGF expressions for ADC(1) and ADC(2)
provided in Ref. [25] are presently recalled for completeness.

Only the four self-energy diagrams depicted in Fig. 1
contribute at first order. They are depicted in terms of
self-consistent interacting propagators (double lines) and con-
tribute each to one of the four Nambu components of �(∞).
The corresponding algebraic expressions are

�
(∞)11
αβ =

∑
kγ δ

vαγ ,βδV̄k
δ

∗V̄k
γ =

∑
γ δ

vαγ ,βδρδγ ≡ �αβ, (37a)

�
(∞)12
αβ = 1

2

∑
kγ δ

vαβ̄,γ δ̄V̄k
γ

∗Ū k
δ = 1

2

∑
γ δ

vαβ̄,γ δ̄ ρ̃γ δ ≡ h̃αβ,

(37b)

(a) (b)

(c) (d)

FIG. 1. Energy-independent skeleton diagrams defining the self-
consistent contributions to the static self-energy �(∞), Eqs. (37).
Dashed lines represent matrix elements of the two-particle interac-
tion V , while double lines are correlated propagators from Eqs. (18).

�
(∞)21
αβ = 1

2

∑
γ δ

ρ̃∗
γ δvγ δ̄,βᾱ = h̃∗

βα, (37c)

�
(∞)22
αβ = −

∑
γ δ

vβ̄γ ,ᾱδρδγ = −�
(∞),11
β̄ᾱ

= −�β̄ᾱ, (37d)

where matrices � and h̃ denote normal and anomalous cHFB
potentials. Additional first-order diagrams arising from the
−U term in �I cancel in the Gorkov Eqs. (31) or (33), as
already discussed above, and do not need to be considered at
any level. Any higher-order contribution to �(∞) relates to a
composite, i.e., nonskeleton, diagram. Thus, Eqs. (37) com-
pletely defines the energy-independent self-energy of Gorkov
SCGF theory.

Figure 2 displays all second-order diagrams associated
with �̃11(ω) and �̃12(ω). The corresponding diagrams for

(a) (b)

(c) (d)

FIG. 2. (a), (b) Second-order skeleton diagrams contributing to
the normal �̃11(ω) and (c), (d) anomalous �̃21(ω) self-energies. Sim-
ilar diagrams apply to the remaining Nambu components, �̃12(ω)
and �̃22(ω).
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β

α

=k1 k2 k3

α

β

k1 k2 k3

α

β

k1 k2 k3

FIG. 3. (left) The second-order diagram from Fig. 2(a) has been separated to highlight the propagation of the ISCs with r = (k1, k2, k3).
(center and right) Performing a cyclic permutation of the intermediate quasiparticle states changes the topological structure of the diagram and
transforms it into the contribution of Fig. 2(b).

�̃21(ω) and �̃22(ω) are analogous. The algebraic derivation
of these diagrams was performed in Ref. [25]. The sum of
diagrams of Figs. 2(a) and 2(b) reads

�̃
11 2(a)
αβ

(ω) + �̃
11 2(b)
αβ

(ω)

=
∑

k1k2k3

{ Cα,k1k2k3C∗
β,k1k2k3

ω − ωk1 − ωk2 − ωk3 + iη

+ D̄∗
k1k2k3,α

D̄k1k2k3,β

ω + ωk1 + ωk2 + ωk3 − iη

}
. (38)

By comparison with Eq. (29a) and exploiting the expres-
sions derived in Ref. [25], the expressions of the interaction
and coupling matrices at play in Gorkov ADC(2) are easily
obtained as

C[ADC(2)]
α,r ≡ C (I)

α,r = 1√
6
P123

∑
μνλ

vαλ,μνU k1
μ U k2

ν V̄k3
λ , (39a)

D̄[ADC(2)]
r,α ≡ D̄(I)

r,α = 1√
6
P123

∑
μνλ

V̄k1
μ V̄k2

ν U k3
λ vμν,αλ, (39b)

E [ADC(2)]
r,r′ ≡ δr,r′E (0)

r = diag
{
ωk1 + ωk2 + ωk3

}
, (39c)

where the cyclic permutation operator acting on a generic
function of quasiparticle indices k1, k2, ...reads

Pi j� f (ki, k j, k�) ≡ f (ki, k j, k�) + f (k j, k�, ki )

+ f (k�, ki, k j ). (40)

Before moving to higher-order contributions, it is worth
making a few qualitative considerations on how different dia-
grams combine to yield the correct coupling matrices C and
D and to impose Pauli antisymmetry. Figure 3 shows the
diagram from Fig. 2(a) split across the lines propagating the
energy denominator E (0)

r=k1,k2,k3
. The upper half of the diagram

gives the contribution∑
μνλ

vαλ,μνU k1
μ U k2

ν V̄k3
λ (41)

to matrix C. It is antisymmetric under the exchange of quasi-
particles k1 and k2 by construction, due to the two-body

matrix element of V , but not for other permutations. The
second diagram in Fig. 3 illustrates one of the cyclic permu-
tations needed to achieve complete antisymmetry: rejoining
the propagator lines after such a transformation delivers
nothing but the other second-order diagram, Fig. 2(b). This
demonstrates how the sum of both diagrams does provide
Eq. (38) with C and D satisfying the correct antisymme-
try as in Eqs. (39). Similar combinations of diagrams also
appear in standard Dyson Green’s function theory. How-
ever, these are less frequent due to topological constraints
and to the need to antisymmetrize the quasiparticles and
quasiholes separately.4 In Gorkov theory, the presence of
anomalous propagators permits the exchange of any pair of
propagator lines so that the ISCs corresponding to each inter-
mediate energy denominator are forcefully antisymmetrized
with respect to all quasiparticle excitations. The important
consequence in seeking for proper approximations to the self-
energy is that one always needs to group together specific
sets of Feynman diagrams, related by exchanges of propagator
lines.

Another consideration concerns how the same residues C
and D arise in all Gorkov self-energies and follow the pat-
tern shown in Eqs. (29). The first column of Fig. 4 depicts
the possible time orientations of diagram 2(a), indicating the
corresponding coupling matrices to which it contributes. Con-
tributions to matrix C come from two upward-going lines
and a downward-going one ending into an interaction vertex,
which results into the vU2V product in Eq. (39a). At the
entrance of the diagram the same structure is found but re-
verse and complex conjugate, leading to a contribution to C†.
Analogously, contributions from the backward-going diagram
have structure of type vV2U and lead to Eq. (39b). Whenever
an anomalous self-energy is considered, one of the exit or
entry lines has to be reversed, hence exchanging a V for a
U , which leads to inverting C with D. This is shown in the
second column of Fig. 4 for the corresponding contribution

4To be specific, the first instances of the Dyson expansion in which
different Feynman diagrams have to be grouped to satisfy Pauli
antisymmetry are at third order if three-body forces are present [39].
With just two-body interaction, this happens only at fourth order in
perturbation theory.
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ti

m
e

α

α

β

β

DT

C†

D̄

(C̄†)T = C̄∗

Σ21
αβ(ω) :

α

α

β

β

C

C†

D̄

D̄†

Σ11
αβ(ω) :

FIG. 4. (left column) The two time orderings through which
the diagram of Fig. 2(a) contributes to �̃11(ω). The top (bottom)
diagram corresponds to the forward-going (backward-going) prop-
agation. The matrices C and D to which a given vertex contributes
are indicated next to it. (right column) Analogous time orderings
for the corresponding contributions to �̃21(ω) [Fig. 2(b)]. The C
(D) topologies that contribute to the anomalous index of �̃21(ω) are
highlighted with green (orange) vertices. A comparison between the
vertices on the left- and right-hand sides elucidates the occurrence of
the same couplings C and D across all Eqs. (29).

to �̃21(ω): the top part of the upper-right diagram is exactly
the same as the top part of the lower-left one, but it will
enter as a transposed matrix in the Lehmann representation
because it is an exit point of the self-energy in the first
case and entry point in the second. This property is general
because the net number of propagator (lines) flowing into
the interaction vertex is reversed exactly in the same way
both for backward time propagation and for the inversion of
a Nambu indices between normal to anomalous. It is easy
to convince oneself that the same considerations apply to
particle-number nonconserving interactions, as long as these
are Hermitian. Moreover, as for the case of quasiparticle
antisymmetrization, the presence of anomalous propagators
allows for any possible topological combination of lines and
ensures that this correspondence is realized also for more
complex diagrams, at any order in the Feynman expansion.
Therefore, any portion of Feynman diagram contributing to
a normal (anomalous) forward part of the self-energy will
contribute identically to the backward part of corresponding
anomalous (normal) case. It follows that exactly the same
matrices C and D must appear in all four self-energies of
Eqs. (29).

The rigorous proof of this property is beyond the scope of
the present work and is not elaborated on further. However,
let us recall that relations (29) naturally stem out from Nambu
covariant theory of Ref. [40]. In this case both the normal and
anomalous contributions are embedded in a single propagator
such that the C and D couplings are part of a unique cou-
pling matrix. For our purposes, we have verified by hand that
Eqs. (29) are satisfied by all diagrams discussed in the present
work.

B. Third-order skeleton diagrams

Following the above discussion one concludes that it is
sufficient to derive ADC(3) expressions of the coupling and
interaction matrices associated with one particular Gorkov
self-energy. While the diagrams contributing to �̃11(ω) are
presently employed, the other self-energies, Eqs. (29b)–(29d),
were checked to lead to the same results.

There exist 17 possible third-order skeleton diagrams that
must be grouped in three classes on the basis of their con-
nection through Pauli exchanges of propagator lines. These
are depicted respectively in Figs. 5–7. Each middle vertex in
these diagrams acts as a seed for the all-orders Tamm-Dancoff
resummations generated by ADC(3).

Diagram 5(a) is the diagram that makes two-particle and
two-hole interact in the ISCs in the usual Dyson-ADC(3)
formalism, respectively for forward and backward time prop-
agation. Adding diagrams 5(b), 5(c), and 5(d) guarantees the
antisymmetrization with respect to the third, noninteracting
quasiparticle. The frequency integrals needed to work out
the algebraic expressions of these diagrams are discussed in
Appendix C and lead to the same contributions as in Eqs. (39),
plus second-order corrections to the coupling amplitudes and
first-order correction to the energy matrix.

Let us first define the tensor

t k3k4
k1k2

≡
∑
αβγ δ

V̄k1
α V̄k2

β vαβ,γ δU k3
γ U k4

δ

−(ωk1 + ωk2 + ωk3 + ωk4

) (42)

that is closely related to the lowest-order double amplitude
in Bogoliubov coupled cluster (BCC) theory [47]. Note that
BCC expressions are typically derived performing first the
normal ordering of the Hamiltonian with respect to the Bo-
goliubov vacuum and expressing it in terms of Bogoliubov
quasiparticle operators whereas the original matrix elements
of V appear in Eq. (42). In the special case of a HFB mean
field, U and V amplitudes account for the normal ordering
and t k3k4

k1k2
does indeed reduce to the lowest order BCC double

amplitude. Consequently, Eq. (42) extends the concept of
BCC amplitudes to account for the strength fragmentation of
a dressed propagator. With this tensor at hand, the contribu-
tions to the coupling amplitudes resulting from the diagrams
displayed in Fig. 5 read

C (IIa)
α,r = 1√

6
P123

∑
μνλ
k4k5

vαλ,μν

2

(
V̄k4

μ V̄k5
ν

)∗
t k1k2
k4k5

V̄k3
λ , (43a)

C (IIb)
α,r = 1√

6
P123

∑
μνλ
k4k5

vαλ,μν

(
V̄k4

ν U k5
λ

)∗
t k1k2
k4k5

U k3
μ , (43b)

D̄(IIa)
r,α = 1√

6
P123

∑
μνλ
k4k5

t k4k5
k1k2

U k3
λ

(
U k4

μ U k5
ν

)∗ vμν,αλ

2
, (43c)

D̄(IIb)
r,α = 1√

6
P123

∑
μνλ
k4k5

t k4k5
k1k2

V̄k3
μ

(
U k4

ν V̄k5
λ

)∗
vμν,αλ. (43d)

The first-order corrections to the energy matrix differ accord-
ing to whether they refer to forward or backward poles of the

044330-9



BARBIERI, DUGUET, AND SOMÀ PHYSICAL REVIEW C 105, 044330 (2022)

(a) (b) (c) (d)

FIG. 5. Third-order skeleton diagrams corresponding to �̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,

E (Ia)
r,r′ =

⎧⎪⎪⎨⎪⎪⎩
1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)
for forward poles

1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)
for backward poles,

(44)

where

E (pp)
k1k2,k4k5

=
∑
αβγ δ

(
U k1

α U k2
β

)∗
vαβ,γ δU k4

γ U k5
δ , (45)

E (hh)
k1k2,k4k5

=
∑
αβγ δ

V̄k1
α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:

C (IIc)
α,r = 1√

6
P123

∑
μνλ
k4k5

vαλ,μν

2

(
V̄k4

μ V̄k5
ν

)∗
t k4k5
k1k2

V̄k3
λ , (47a)

C (IId)
α,r = 1√

6
P123

∑
μνλ
k4k5

vαλ,μν

(
V̄k4

ν U k5
λ

)∗
t k4k5
k1k2

U k3
μ , (47b)

D̄(IIc)
r,α = 1√

6
P123

∑
μνλ
k4k5

t k1k2
k4k5

U k3
λ

(
U k4

μ U k5
ν

)∗ vμν,αλ

2
, (47c)

D̄(IId)
r,α = 1√

6
P123

∑
μνλ
k4k5

t k1k2
k4k5

V̄k3
μ

(
U k4

ν V̄k5
λ

)∗
vμν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are

E (Ib)
r,r′ =

⎧⎪⎪⎨⎪⎪⎩
1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)
for forward poles

1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)
for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to �̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 7. Third-order skeleton diagrams contributing to �̃11(ω) with a particle-hole (ph) type intermediate interaction. Similarly to Figs. 5
and 6, the contributions to the other Nambu components of the self-energy with ph intermediate interactions originate from nine analogous
diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

under the exchange t k1k2
k4k5

↔ t k4k5
k1k2

. Inserting all contributions
into Eqs. (29) implies self-energy terms including mixed prod-
ucts of Eqs. (43) and (47). These are rightful time orderings
arising from fourth- and higher-order diagrams and therefore
not depicted in Figs. 5–7.

The remaining third-order skeleton diagrams involve a
particle-hole type intermediate interaction and are displayed
in Fig. 7. Performing the energy integral and making the an-
tisymmetrization with respect to all ISC quasiparticle indices
explicit through the use of the operator

Ai j� f (ki, k j, k�)

≡ f (ki, k j, k�) + f (k j, k�, ki ) + f (k�, ki, k j )

− f (k j, ki, k�) − f (k�, k j, ki ) − f (ki, k�, k j ), (49)

the nine diagrams of Fig. 7 introduce three additional terms to
each coupling matrix

C (IIe)
α,r = 1√

6
A123

∑
μνλ
k7k8

vαλ,μν

(
V̄k7

ν U k8
λ

)∗U k1
μ t k8k2

k7k3
, (50a)

C (IIf )
α,r = 1√

6
A123

∑
μνλ
k7k8

vαλ,μν

(
U k7

λ V̄k8
μ

)∗U k1
ν t k8k2

k7k3
, (50b)

C (IIg)
α,r = 1√

6
A123

∑
μνλ
k7k8

vαλ,μν

(
V̄k7

μ V̄k8
ν

)∗V̄k1
λ t k8k2

k7k3
, (50c)

D̄(IIe)
r,α = 1√

6
A123

∑
μνλ
k7k8

V̄k1
ν t k2k8

k3k7

(
V̄k7

λ U k8
μ

)∗
vμν,αλ, (50d)
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D̄(IIf )
r,α = 1√

6
A123

∑
μνλ
k7k8

V̄k1
μ t k2k8

k3k7

(
U k7

ν V̄k8
λ

)∗
vμν,αλ, (50e)

D̄(IIg)
r,α = 1√

6
A123

∑
μνλ
k7k8

U k1
λ t k2k8

k3k7

(
U k7

μ U k8
ν

)∗
vμν,αλ, (50f)

whereas the particle-hole contribution to the ISC energy inter-
action matrix is given by

E (Ic)
r,r′ = 1

6A123A456
(
δk1,k4E

(ph)
k2k3,k5k6

)
, (51)

with

E (ph)
k2k3,k5k6

=
∑
αβγ δ

(
U k2

α V̄k3
β

)∗
vαδ,βγU k5

γ V̄k6
δ . (52)

C. Nonskeleton contributions

Sections III A and III B exhaust all the diagrams that enter
fully self-consistent computations up to ADC(3). In this case,
the self-energy is purely a functional of the fully dressed
propagator, G(ω), and all above equations are expressed in
terms of its spectroscopic amplitudes and poles, Eqs. (19)–
(21). If, instead, the many-body expansion is based on the
unperturbed reference propagator G(0)(ω) additional compos-
ite, i.e., nonskeleton, diagrams need to be included. Thus, the
present section along with Appendix B introduce all remain-
ing composite diagrams up to third order.

The unperturbed propagator (25) has a spectral representa-
tion analogous to Eqs. (18)

G(0)11
αβ (ω) =

∑
k

{
Uk

αUk
β

∗

ω − ε
(0)
k + iη

+ V̄k
α

∗V̄k
β

ω + ε
(0)
k − iη

}
, (53a)

G(0)12
αβ

(ω) =
∑

k

{
Uk

αVk
β

∗

ω − ε
(0)
k + iη

+ V̄k
α

∗Ūk
β

ω + ε
(0)
k − iη

}
, (53b)

G(0)21
αβ

(ω) =
∑

k

{
Vk

αUk
β

∗

ω − ε
(0)
k + iη

+ Ūk
α

∗V̄k
β

ω + ε
(0)
k − iη

}
, (53c)

G(0)22
αβ (ω) =

∑
k

{
Vk

αVk
β

∗

ω − ε
(0)
k + iη

+ Ūk
α

∗Ūk
β

ω + ε
(0)
k − iη

}
, (53d)

where we used the notation ε
(0)
k , Uk , and Vk to stress that these

are not correlated spectroscopic quantities but unperturbed
ones. For the present purpose, these are the solution of the
HFB eigenvalue problem associated with �U ,

∑
β

(
tαβ + uαβ − μδαβ uan.

αβ̄

−(uan.
ᾱβ

)∗ −tβ̄ᾱ − uβ̄ᾱ + μδαβ

)(
Uk

β

Vk
β

)

= ε
(0)
k

(
Uk

α

Vk
α

)
. (54)

Since the composite diagrams discussed in this section assume
a HFB reference state, their contributions to ADC interactions

and amplitudes are expressed in terms of the unperturbed state
generated by Eq. (54).

1. Static self-energy

The composite diagrams contributing to �
(∞)
αβ (ω) can be

obtained by expanding Gorkov Eq. (26) up to second order
and by inserting the results into the diagrams of Fig. 1. The
resulting equations for the static self-energies are rather cum-
bersome and are detailed in Appendix B. However, these are
not needed in the vast majority of applications since their
self-consistent counter part, Eqs. (37), is easier to compute
and contains all of them implicitly.

2. Third-order terms

The energy-dependent �̃(ω) at second order receives no
contributions from self-energy insertions. Thus, the only com-
posite diagrams appear at order three and involve the insertion
of a static one-body potential to the known diagrams of Fig. 2.
This leads to the ten diagrams displayed in Fig. 8 for a generic
external potential U . In the following, we provide the contri-
butions from these diagrams in terms of the matrix elements
of U and the amplitudes of Eq. (53), with the understanding
that these need to be substituted with those of V HFB − U
introduced by the perturbation �I from Eq. (7).

The top two rows in Fig. 8 cover all diagrams containing
self-energies insertions originating from the normal compo-
nent of U , i.e., the term associated with matrix elements uαβ

in Eq. (13). They contribute to the coupling matrices C and D
through the normal BCC singlet amplitude

t k1
k2

≡
∑
αβ

V̄k1
α uαβUk2

β

−(ωk1 + ωk2

) , (55)

and to the energy matrix through particle and hole interactions

E (p)
k1k2

≡
∑
αβ

(
Uk1

α

)∗
uαβUk2

β , (56a)

E (h)
k1k2

≡
∑
αβ

V̄k1
α uαβ

(
V̄k2

β

)∗
. (56b)

All together, this leads to the following ADC(3) contributions
to the coupling matrices:

C (IIh)
α,r = 1√

6
A123

∑
μνλ
k7

vαλ,μν

(
V̄k7

μ

)∗[
t k7
k1

− t k1
k7

]
Uk2

ν V̄k3
λ , (57a)

C (IIi)
α,r = 1√

6
P123

∑
μνλ
k7

vαλ,μν

(
Uk7

λ

)∗[
t k7
k1

− t k1
k7

]
Uk2

μ Uk3
ν , (57b)

D̄(IIh)
r,α = 1√

6
A123

∑
μν
λk7

(
Uk7

μ

)∗[
t k7
k1

− t k1
k7

]
V̄k2

ν Uk3
λ vμν,αλ, (57c)

D̄(IIi)
r,α = 1√

6
P123

∑
μν
λk7

(
V̄k7

λ

)∗[
t k7
k1

− t k1
k7

]
V̄k2

μ V̄k3
ν vμν,αλ, (57d)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

FIG. 8. Third-order composite (nonskeleton) diagrams contributing to �̃11(ω) involving an external one-body potential U of Eq. (13) as
self-energy insertion. Dashed lines represent matrix elements of the two-particle interaction V , single lines are reference mean-field propagators
from Eqs. (53) and dashed lines with a cross denote the one body potential U . Similarly to Figs. 5–7, all other Nambu components of the
self-energy receive contributions from analogous diagrams that are obtained by inverting one or both of the incoming and outgoing lines.

and to the corresponding one-body energy interaction matri-
ces

E (Id)
r,r′ = P(14)(25)(36)

[(
E (p)

k1k4
− E (h)

k4k1

)
δk2k5δk3k6

]
, (58)

where the cyclic permutation operator is intended to act on
pairs of quasiparticle indices.

The remaining two rows of Fig. 8 arise from the anoma-
lous term in Eq. (13). Introducing the anomalous single BCC
amplitude in the two-particle channel

t k1k2 ≡
∑
αβ

(
uan.

αβ

)∗
Uk1

α Uk2
β

−2
(
ωk1 + ωk2

) , (59a)

and in the two-hole channel

tk1k2 ≡
∑
αβ

V̄k1
α V̄k2

β uan.
αβ

−2
(
ωk1 + ωk2

) , (59b)

the anomalous one-body energy interaction matrix reads

E (an)
k1k2

≡
∑
αβ

1

2

(
Uk1

α

)∗
uan.

αβ V̄k2
β (60)

and acts by mixing the addition and removal components
of a single quasiparticle. With these definitions at hand, the
remaining nonskeleton ADC(3) contributions are

C (IIj)
α,r = 1√

6
A123

∑
μνλ
k7

vαλ,μν

(
V̄k7

μ

)∗[
t k7k1 − tk7k1

]
Uk2

ν V̄k3
λ , (61a)

C (IIk)
α,r = 1√

6
P123

∑
μνλ
k7

vαλ,μν

(
Uk7

λ

)∗[
t k7k1 − tk7k1

]
Uk2

μ Uk3
ν , (61b)

D̄(IIj)
r,α = 1√

6
A123

∑
μν
λk7

(
Uk7

μ

)∗[
t k7k1 − tk7k1

]
V̄k2

ν Uk3
λ vμν,αλ, (61c)

D̄(IIk)
r,α = 1√

6
P123

∑
μν
λk7

(
V̄k7

λ

)∗[
t k7k1 − tk7k1

]
V̄k2

μ V̄k3
ν vμν,αλ, (61d)

and

E (Ie)
r,r′ = P(14)(25)(36)

[(
E (an)

k1k4
+ E (an)∗

k4k1

)
δk2k5δk3k6

]
. (62)
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IV. OPTIMIZED REFERENCE STATES AND
APPROXIMATIONS TO SELF-CONSISTENCY

The SCGF approach is based on using the dressed prop-
agator G(ω), Eq. (18), as the reference state upon which
the self-energy is expanded. It generalizes the unperturbed
propagator G(0)(ω) to include full many-body correlations
in the one-body Green’s function. In this framework, only
skeleton diagrams must be accounted for and the contributions
discussed in Secs. III A and III B define the complete Gorkov-
ADC(3) approach. Since G(ω) is itself obtained by solving
the Gorkov equations, in practice one needs to compute the
self-energy and diagonalize Eq. (33) iteratively until conver-
gence.

Our experience from applications to nuclear structure is
that the most important self-consistency effects arise from
the cHFB terms, i.e., Eqs. (37) [48]. These are rather
straightforward to compute and require very modest compu-
tational resources, even for fully dressed propagators. On the
other hand, the self-consistent computation of �̃(ω) becomes
quickly prohibitive. If NBs = dim({α}) denotes the dimension
of the single-particle basis, an unperturbed reference state
G(0)(ω) implies a dimension ≈2N3

Bs for the Gorkov eigen-
value problem (33) that generates half as many poles for
G(ω). At each subsequent self-consistency iteration, the di-
mension of the ISC space grows as dim({r})≈(NBs)3n

, with
n being the number of iterations. Therefore, it is mandatory
to devise proper approximations of the dressed propaga-
tor Gred(ω) that limit the growth in the number of poles.
Typical approaches proposed in the literature aim at a low-
dimensional representation of the propagator either by binning
of the spectral function in energy and momentum or by pro-
jecting it onto Krylov subspaces [26,44,49–51]. The second
approach is highly preferable, if not mandatory, when work-
ing with discrete Lehmann representations such as Eqs. (18)
and (29). In the context of Dyson SCGF, we introduced two
workable techniques that follow the latter strategy and further
rely on the conservation of the lowest moments of the spectral
function [37,52,53]. In the following, these ideas are general-
ized to the case of Gorkov propagators.

In general, both the one-body spectral function and the
dressed propagator (18) are uniquely defined by the set of
quasiparticle poles ωk and spectroscopic amplitudes (U k,Vk ).
If D is the number of independent poles (k = 1, . . . , D) we
aim at replacing these objects with a smaller set

ωk,

(
U k

Vk

)
−→ ω′

i,

(
U′i
V′i

)
, (63)

where i = 1, . . . , d and d � D. The pth moment of the spec-
tral distribution is defined in Nambu space as

S(p)
αβ ≡

∑
k

(ωk )p

(Ū k
α

∗

V̄k
α

∗

)(
Ū k

β V̄k
β

)
, (64)

and similarly for ω′
i and (U′i, V′i ). The new set of poles and

amplitudes is determined by imposing that it preserves all ma-
trix elements of the first 2n moments, p = 0, 1, . . . , 2n − 1,

for a given positive integer n. It is easy to verify that this
condition is met by choosing

ω′
i = ei, (65a)(

Ū′i
α

∗
V̄′i

α
∗

)
=

n∑
p=1

(
S(p−1)Z(p)

i

)
α
, (65b)

where ei and (Z(1)
i , Z(2)

i , . . . , Z(n)
i ) are the solutions of the

eigenvalue problem⎛⎜⎜⎝
S(1) S(2) · · · S(n)

S(2) S(3) · · · S(n+1)

...
...

. . .
...

S(n) S(n+1) · · · S(2n−1)

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

Z(1)
i

Z(2)
i
...

Z(n)
i

⎞⎟⎟⎟⎠

= ei

⎛⎜⎜⎝
S(0) S(1) · · · S(n−1)

S(1) S(2) · · · S(n)

...
...

. . .
...

S(n−1) S(n) · · · S(2n−2)

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

Z(1)
i

Z(2)
i
...

Z(n)
i

⎞⎟⎟⎟⎠, (66)

with the sums over single-particle basis indices being implicit
for simplicity. Note that each component Z(p)

i is a vector both
in the single-particle basis and in Nambu space, so that the
number of new amplitudes is d = 2nNBs. For very large values
of n the spectral distribution will be approximated with a
growing number of poles and the original poles and ampli-
tudes, ωk and (Ū k, V̄k ), will eventually be recovered exactly.
However, the most important physical information is already
preserved even for the simplest case, i.e., n = 1. For example,
the lowest spectral moment is

S(0)
αβ =

(
mαβ ρ̃∗

βα

ρ̃αβ ραβ

)
, (67)

where the matrix

mαβ ≡ S(0),11
αβ =

∑
k

Ū k
α

∗Ū k
β = 〈�0|c̄β c̄†

α|�0〉 (68)

is related to the density matrix through mαβ + ρβ̄ᾱ = δαβ

and informs on the distribution of unoccupied single-particle
states [54]. Hence, preserving Eq. (67) will automatically
preserve the pairing gaps, the density matrix, and all one-body
observables, including the average particle number (11) and
the point-particle density distributions. Likewise, the Koltun
energy sum rule (24) can be expressed in terms of the p = 0, 1
moments

�0 = 1

2

∑
αβ

[
(tαβ − μδαβ )S(0),22

βα − δαβS(1),22
βα

]
, (69)

and the effective single-particle energies, obtained diagonaliz-
ing hcent.

αβ ≡ μδαβ + S(1),11
β̄ᾱ

− S(1),22
αβ , remain unchanged [55].

In spite of its efficiency, the effective dressed single-
particle propagator for n = 1 has already a number of poles,
d = 2NBs, that is doubled with respect to the standard mean-
field reference. This implies an eightfold increase in the
dimension of the corresponding Gorkov eigenvalue prob-
lem (33). The self-consistent approach based on conserving
moments (64) is therefore viable only for sufficiently small
model spaces.
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A better approximation would consist in maintaining the
same number of poles as G(0)(ω) while not giving up the
ability of conserving key quantities from the previous scheme.
For this purpose let us compute moments of the spectral func-
tions with respect to the poles of G(ω) and sum over both
forward- and backward-going excitations from Eq. (18):

Q(p)
αβ =

∑
k

{ −1

(ωk )p

(U k
α

Vk
α

)(
U k

β
∗,Vk

β
∗)

+ 1

(ωk )p

(V̄k
α

∗

Ū k
α

∗

)(
V̄k

β, Ū k
β

)}
. (70)

Note that Q(p=1)
αβ = Gαβ (ω = 0). The set of amplitudes (63)

preserving the moments (70) is obtained following Eqs. (66)
and (65b) with S(p) replaced by Q(p) but choosing ω′

i = 1/ei.
Equation (70) leads to the general structure

Q(p)
αβ =

(
Q(p),11

αβ Q(p),12
αβ(

Q(p),12
βα

)∗
(−)p

(
Q(p),11

β̄ᾱ

)∗ ), (71)

which is analogous the HFB eigenmatrix (37). Inserting it into
Eq. (66), it can be shown that solutions come in pairs with
eigenvalues of opposite sign (1/ei,−1/ei ) and consequently
the approximated spectra distribution only has d = nNBs inde-
pendent poles. As for the case of the direct spectral function,
Eq. (64), imposing the preservation of the first 2n moments
Q(p) lead to an approximation to the spectral distribution that
approaches the complete set of D quasiparticles as n increases.
However, the greatest advantage is for n = 1 since it defines
an approximation to G(ω) (the self-consistent propagator)
that has the same number of poles as the standard reference
mean-field G(0)(ω).

The most relevant difference between moments (64)
and (70) is that the orthonormality of eigenvectors (34) im-
plies that Q(0)

αβ = Iδαβ is the identity matrix. Hence, the lowest
moments Q(0) no longer preserve the exact (normal and
anomalous) reduced density matrices. On the other hand, the
eigenvalue equation (66) for n = 1 becomes

Q(1)Zi = eiZi, (72)

where Z(1)
i

T = (U′i, V′i ) according of Eq. (65b). In addition,
relations (71) for Q(1) imply that this is a HFB-like problem.
Therefore, the poles ω′

i and (U′i, V′i ) are both a workable
approximation of the self-consistent propagator G(ω) and the
solution of an unperturbed mean-field Hamiltonian �

(OpRS)
U ,

which we dub the optimized reference state (OpRS) Hamilto-
nian.

To correctly define the external potential U (OpRS) that gen-
erates the new reference state, one has to remember that the
eigenvalues ei are associated with moments of inverse poles,
1/ωk , through Eq. (70). Thus, �

(OpRS)
U is identified with the

inverse matrix of Q(1),(
�

(OpRS)11
Uαβ �

(OpRS)12
Uαβ

�
(OpRS)21
Uαβ �

(OpRS)22
Uαβ

)
≡ [Q(1)

αβ

]−1

=
∑

i

(
U′i

α V̄′i
α

∗

V′i
α Ū′i

α
∗

)( 1
ei − 1

ei

)(
U′i

β
∗ V′i

β
∗

V̄′i
β Ū′i

β

)
, (73)

where the sum runs over all positive eigenvalues (ei > 0) of
Eq. (72). Comparing the matrix elements of Eq. (73) with the
left-hand side of Eq. (54) defines the potential U (OpRS).

Equation (73) has been systematically used to define an
optimized reference state for SCGF computations in nuclear
structure [5]. Although the physical quantities in Eqs. (67)–
(69) are no longer preserved exactly, it is our experience that
the Koltun sum rule and density distributions are still closely
reproduced even with such OpRS and even for strongly cor-
related systems such as atomic nuclei. Thus, this has become
our method of choice to implement self-consistency. In doing
so, it is crucial to define Q(p) in terms of the inverse quasi-
particle energies because the conservation of lowest moments
constrains more efficiently the extremes of the eigen spectrum
rather than its central part. By employing powers of 1/ωk in
Eq. (70) one ensures that greater weight is given to preserve
the structure of the self-consistent propagator G(ω) near the
Fermi surface.

In spite of being a somewhat poorer approximation than the
one generated by Eqs. (64), the OpRS has the great advantage
to be associated with an external mean-field potential �U

and propagator. Hence, the approximation made in replac-
ing the true self-consistent propagator G(ω) with G(OpRS)(ω)
can always be corrected systematically by computing the
nonskeleton diagrams of Sec. III C for U ≡ �HFB − U (OpRS).

V. IMPLEMENTATION OF THE ADC(n)
TRUNCATION HIERARCHY

Having derived all diagrammatic contributions up to third
order, it useful to briefly summarize the specific terms that
enter the various truncation levels of the ADC(n) method. At
each order n, the Gorkov propagator (18) is obtained by diago-
nalizing Eq. (33), with the eigenvectors normalized according
to Eq. (34) and the chemical potential tuned to reproduce
the correct number of particles on average [see Eq. (11) and
Ref. [26] ]. The matrix elements of the Gorkov eigenvalue
problem are given as follows:

(1) ADC(1). Only the cHFB sector of the Gorkov ma-
trix contributes at first order, while all couplings
to ISCs vanish: C[ADC(1)] = D̄[ADC(1)] = E [ADC(1)] = 0.
One computes the matrix elements of �(∞) from
Eqs. (37) and adds the one-body interaction T shifted
by the chemical potential μ. In this case, a self-
consistent computation reduces to the standard HFB
problem.

(2) ADC(2). The cHFB sector remains the same as
for ADC(1). The coupling matrices C[ADC(2)] and
D̄[ADC(2)] and energy denominator E [ADC(2)] are given
by Eqs. (39). Since all Feynman diagrams up to second
order are of skeleton type, the ADC(2) is uniquely
defined by these equations.

(3) Self-consistent ADC(3). For a self-consistent compu-
tation the reference Gorkov propagator is replaced
by a dressed one, which includes the fragmentation
of single-particle strength. In this case only skeleton
diagrams must be included. The ADC(3) equations re-
main unchanged in the cHFB sector but the couplings
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to ISCs receive additional terms from Eqs. (43)
through (51). Specifically:

C[ADC(3)−SC]
α,r = C[ADC(2)]

α,r + C (IIa)
α,r + C (IIb)

α,r + C (IIc)
α,r

+C (IId)
α,r + C (IIe)

α,r + C (IIf )
α,r + C (IIg)

α,r , (74a)

D̄[ADC(3)−SC]
r,α = D̄[ADC(2)]

r,α + D̄(IIa)
r,α + D̄(IIb)

r,α + D̄(IIc)
r,α

+D̄(IId)
r,α + D̄(IIe)

r,α + D̄(IIf )
r,α + D̄(IIg)

r,α , (74b)

E [ADC(3)−SC]
r,r′ = E [ADC(2)]

r,r′ + E (Ia)
r,r′ + E (Ib)

r,r′ + E (Ic)
r,r′ . (74c)

(4) Full ADC(3). Whenever a mean-field propagator is
used to define the reference state for the Feynman-
Gorkov expansion, composite diagrams must also be
included. The first nonskeleton terms appear at third
order and therefore contribute from ADC(3) onward.
These are detailed in Eqs. (57), (58), (61), and (62)
and lead to the final Gorkov-ADC(3) equations

C[ADC(3)−Full]
α,r = C[ADC(3)−SC]

α,r + C (IIh)
α,r + C (IIi)

α,r

+C (IIj)
α,r + C (IIk)

α,r , (75a)

D̄[ADC(3)−Full]
r,α = D̄[ADC(3)−SC]

r,α + D̄(IIh)
r,α + D̄(IIi)

r,α

+D̄(IIj)
r,α + D̄(IIk)

r,α , (75b)

E [ADC(3)−Full]
r,r′ = E [ADC(3)−SC]

r,r′ + E (Id)
r,r′ + E (Ie)

r,r′ . (75c)

Note that the latter corrections have to be computed for
the residual one-body interaction U ≡ �HFB − U (MF ),
where �HFB is the HFB potential and U (MF ) is the
mean field that defines the reference state. Therefore,
corrections (75) vanish for the special case of a HFB
reference state.

It should be noted that, for each of the above trunca-
tions, the cHFB sector in Eq. (33) needs to be evaluated
at least at the corresponding order in perturbation theory.
In practical applications it is sufficient to exploit Eqs. (37),
which are complete to all orders if expressed in terms of
the fragmented amplitudes U and V . This leads to a first
level of self-consistency, referred to as “sc0”, where only the
cHFB part of the eigenmatrix (33) is updated iteratively [26].
Complete self-consistency requires iterating also the coupling
amplitudes and interactions, C, D, and E : these are computed
from the spectroscopic amplitudes and poles of the dressed
propagator, whenever possible, or otherwise resorting to the
corresponding OpRS discussed in Sec. IV.

The same working equations for the case of a spherical
system in angular-momentum coupling scheme are derived
in Appendix A, with the final eigenvalue problem given by
Eqs. (A37) and (A38). The J-coupled contributions corre-
sponding to the above truncation schemes are collected in
Secs. A 1, A 2 a, A 2 b, and A 2 c, respectively. Extensive de-
tails about the numerical implementation of Gorkov-ADC(n)
can be found in Ref. [26].

VI. CONCLUSIONS

The major outcome of the present work is the full develop-
ment of the Gorkov method at the ADC(3) truncation level for
which all algebraic details necessary to perform a numerical
implementation are provided.

The full set of working equations for a two-body Hamilto-
nian has been presented in Sec. III for a general single-particle
basis set and are summarized for the different ADC(n) trun-
cations in Sec. V. This allows for the largest possible range
of applications to a variety of systems. Our results could
be easily adapted to complex geometries as in molecules or
specified to cylindrical and deformed bases (which will be
highly relevant to deformed nuclei). The particular case of
spherical symmetry can be exploited for simple atoms and
semimagic nuclear isotopes and is presently derived in full in
Appendix A. This development is expected to open the way to
new advances in ab initio nuclear structure studies.

In spite of the large number of Gorkov diagrams that needs
to be considered to build the ADC(3) approximation, i.e., 17
skeleton plus 20 composite ones at third order, most contri-
butions can be gathered together in a handful of final terms.
Combining Goldstone (time-ordered) contributions across dif-
ferent diagrams leads to important simplifications [56], i.e.,
it is not only to simplify the working equations but also to
satisfy Pauli antisymmetrization. Further simplifications of
our results from Sec. III could be achieved by identifying
specific terms with unperturbed Bogoliubov coupled cluster
amplitudes [47]. The close relation between SCGF and cou-
pled cluster methods was already observed at the level of the
standard (particle number conserving) formulations [57,58].
The ADC(3) many-body truncation is normally expected to
be equivalent to triple corrections in CC [59,60]. Furthermore,
the identification of BCC amplitudes pointed out in Sec. III
can be the basis for further improvements of the ADC(3)
scheme, as discussed in Ref. [23].

In the effort to clarify all possible aspects of a future imple-
mentation of the method, the systematic procedures to handle
self-consistency were discussed. In particular, the necessary
approximations in applying SCGF to the energy-dependent
self-energy can be rationalized as a process of learning an op-
timal reference state that encodes the most important features
of many-body correlations. The proposed OpRS approach
provides a way to maintain a faithful implementation, i.e.,
to correct systematically for the approximation itself, up to
order ADC(3) by simply adding the composite diagrams cor-
rections.

The numerical implementation of ADC(3) is notoriously
more difficult than ADC(2) and implies much higher needs
for computational resources. Although it is not clear a priori
how large model spaces can be reached, the present-day avail-
ability of massively parallel computing resources provides a
significant advantage with respect to our early applications at
the ADC(2) level [61,62].

With the right formalism in place and the hierarchy of
approximations ADC(1) (i.e., HFB), ADC(2), ADC(3), it will
be possible to better assess the limits and merits of the Gorkov
approach. In particular, the implications of symmetry break-
ing can be addressed in a more systematic way.
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The formalism set out in this work does not consider
the implication of three-body forces, which are a crucial
component of the nuclear Hamiltonian. This is not a major
hindrance for ab initio nuclear physics because the vast major-
ity of state-of-the-art applications find it sufficient to include
three-nucleon forces as effective two-body interactions. The
details of the full ADC(n) Gorkov formalism based on two-
and three-body forces, including anomalous and interaction-
irreducible contributions, will be the subject of a future
work.
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APPENDIX A: COUPLING OF ANGULAR MOMENTA

The Gorkov-ADC(3) equations derived in Sec. III are
generally applicable to any many-fermion system, given an
orthonormal one-body basis {|α〉} and its dual defined in
Eq. (2). However, this form rarely represents the optimal
choice for practical implementations. In most cases, compu-
tational requirements can be drastically reduced by adopting
an appropriate basis and exploiting the symmetries of the
problem under consideration. We now discuss the particular
case of a rotationally invariant Hamiltonian and (spherical)
ground state with total angular momentum J = 0. This class
of systems includes a number of atoms and ions in quantum
chemistry and the vast majority of semimagic isotopes in
nuclear physics.

Most ab initio implementations in nuclear physics exploit
spherical single-particle basis states with an isospin spinor
Xq(τ ) plus a spherical spherical harmonic Y�(r̂) and spin
X 1

2
(σ ) coupled to angular momentum j and its z-axis pro-

jection m:

φα (r, σ, τ ) = fnα�α jαqα
(r)
[
Y�α

(r̂) ⊗ X 1
2
(σ )
] jα

mα

Xqα
(τ ), (A1)

where r, σ , and τ are the spatial, spin, and isospin coordinates
and the most general radial function fa(r) may depend on
all quantum numbers except mα due to rotational symmetry.
Here, qα stands for any quantum number (or set of num-
bers) that is needed to label different distinguishable particles.
Typically, it is not needed for a single-fermion system such
as the electron gas while it is customary to use the nucleon
charge to distinguish among protons and neutrons in atomic
nuclei. However, the latter representation is inefficient for
our purposes since the Gorkov formulation conserves only
particle-number parity but not the total number of particles.
Hence, the total charge is also not conserved. A more general
and practical choice is a vector of quantum numbers encod-
ing the particle-number parity of all types of particles in the
systems. For example, in the case of Eq. (A1), qα will be a
“one-hot” vector with all zeros except for the element that
identifies the given particle, which is set to 1. In the follow-
ing this representation of qα will be used, always implicitly

intended as a vector in {0, 1}Nf , with Nf being the number
of different fermion species. For spin 1

2 , the combination of
spatial parity πα and jα uniquely defines the orbital angular
momentum �α . Thus, it is convenient to label our basis in
terms of πα and the particle-number parities qα as these have
corresponding good quantum numbers for the many-body
states of Eq. (8). To summarize, the collective index α denotes
the set of quantum numbers

α ≡ (nα, πα, jα, qα, mα ) = (a, mα ), (A2a)

where we introduce a latin letter index,

a ≡ (nα, πα, jα, qα ), (A2b)

to group the quantum numbers that are not contracted in the
coupling of angular momenta.

The dual basis {|ᾱ〉} can be made explicit by identifying the
antiunitary transformation T with the time-reversal operator.
Applying it to state (A1) gives

T φa,mα
(r, σ, τ ) = (−1)�α+ jα−mαφa,−mα

(r, σ, τ ), (A3)

from where one identifies the conjugate quantum number of
α to be α̃ = (a,−mα ). Since the parity πα = (−1)�α only
introduces a global real phase, we define the antiunitary trans-
formation simply as ηα ≡ (−1) jα+mα . It can be shown that

c†
α = c†

a,mα
, (A4a)

c̄α = ηαcα̃ = (−1) jα+mα ca,−mα
, (A4b)

are the mαth components of irreducible tensor operators of
rank jα .

We use a similar notation to Eq. (A2) for Gorkov quasipar-
ticle indices k and define the subset k̃ of rotationally invariant
quantum numbers such that5

k = (nk, πk, jk, qk, mk ) ≡ (̃k, mk ). (A5)

Quantities nk , πk , jk , and mk denote the principal quantum
number, parity, total angular momentum, and its projection of
the many-body states in Eq. (8). Similarly,

qk ≡ |〈�k|N |�k〉 − N| mod 2 (A6)

is the difference between the particle-number parities of |�k〉
and |�0〉. Eq. (A6) is intended element-wise for all types of
distinguishable fermions. The ISC indices (35) will require
coupling to total angular momentum Jr and projection Mr . In
this case we choose the convention of coupling the first two
indices to the intermediate angular momentum J12, as detailed
in Sec. A 2, and define the general index r = (̃r, Mr ) with r̃ ≡
[(̃k1, k̃2, J12, k̃3), Jr].

Let us now take the assumption that the target ground state
|�0〉 is spherical with good angular momentum and parity

5Thẽ notation used here is unrelated to the definition of quantum
number of the dual basis, Eq. (2). This should not cause confusion
since the Gorkov quasiparticle and ISC indices k and r do not pos-
sess a dual basis. Moreover, the distinction between direct and dual
single-particle bases disappear from the angular-momentum-coupled
equations discussed in the rest of this Appendix.
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Jπ = 0+. Considering the definition of the spectroscopic am-
plitudes (19) and applying the Wigner-Eckart theorem with
the tensor operators (A4), one finds

U k
α = 〈�0|cα|�k〉

= ηα̃〈�0|c̄α̃|�k〉
= (−1) jα−mα C00

jkmk jα−mα
〈�0||c̄a||�k〉

= δ jα, jk δmα,mk

〈�0||c̄a||�k〉
ĵα

≡ δ
(π jq)
a,̃k

δmα,mkU k̃
a , (A7a)

Vk
α = 〈�0|c̄†

α|�k〉
= ηα〈�0|c†

α̃|�k〉

= δ jα, jk δmα,mk

〈�0||c†
a||�k〉

ĵα
(−1)2 jα

≡ δ
(π jq)
a,̃k

δmα,mkV k̃
a , (A7b)

where the notation ĵ ≡ √
2 j + 1 is used and C j3m3

j1m1 j2m2
denotes

the usual Clebsch-Gordan coefficient. Applying transforma-
tions (20) yields

Ū k
α = ηαU k

α̃ = δ
(π jq)
a,̃k

δmα,−mk (−1) jα+mαU k̃
a , (A7c)

V̄k
α = −ηαVk

α̃ = δ
(π jq)
a,̃k

δmα,−mk (−1) jα−mαV k̃
a . (A7d)

In Eqs. (A7), we have applied the conservation of particle-
number parity and of parity in coordinate space and have
introduced a compact notation for multiple Kronecker δs on
the conserved symmetries:

δ
(π jq)
a,̃k

≡ δπα,πk δ jα, jk δqα,qk , (A8)

where, again, δqαqk is element-wise on the vectors qα and qk .
Note that Eq. (A8) does not imply an equality on the principal
quantum numbers, thus δ̃k1 ,̃k2

= δnk1 ,nk2
δ

(π jq)
k̃1 ,̃k2

. Equations (A7)
show that all spectroscopic amplitudes, barred and nonbarred,
amount down to the same two reduced quantities U k̃

a and V k̃
a

plus some phase factor.
The Hamiltonian (1) is also independent of the third

component of total angular momentum due to rotational sym-
metry. The most general one-body operator that we encounter

is given by Eq. (13) and breaks particle number symmetry. Its
matrix elements can then factored as

uαβ = δ
(π jq)
a,b δmα,mβ

uab, (A9a)

uan.
αβ = δ

(π jq)
a,b δmα,−mβ

(−1) jβ−mβ ũab, (A9b)

where the δ(π jq)s reflect the fact that conservation of spatial
parity and of odd or even particle number is still assumed.
For the two-body interaction V we adopt the usual angular-
momentum-coupling convention for its properly normalized
matrix elements,

vJ
ab,gd = 1√

1 + δa,b

1√
1 + δg,d

×
∑
mαmβ
mγ mδ

CJM
jαmα jβ mβ

vαβ,γ δCJM
jγ mγ jδmδ

. (A10)

Moreover, the ADC(3) contributions discussed in Sec. A 2 b
are conveniently expressed in terms of the particle-hole cou-
pling, which is related to Eq. (A10) through the Pandya
transformation:

v
(ph)J
ab−1,gd−1 =

∑
J2

(−1) jβ+ jγ +J2 (2J2 + 1)

{
jα jβ J
jγ jδ J2

}
×√1 + δa,dv

J2
ad,bg

√
1 + δb,g. (A11)

1. First-order self-energy

From the definitions (A7) one can easily derive the angular-
momentum form of the reduced density matrices:

ραβ = δ
(π jq)
a,b δmα,mβ

∑
k̃

δ
(π jq)
a,̃k

(
V k̃

a

)∗
V k̃

b

= δ
(π jq)
a,b δmα,mβ

ρab, (A12)

and

ρ̃αβ = δ
(π jq)
a,b δmα,mβ

(−1)2 jα
∑

k̃

δ
(π jq)
a,̃k

(
V k̃

a

)∗
U k̃

b

= δ
(π jq)
a,b δmα,mβ

ρ̃ab. (A13)

Inserting the latter into Eqs. (37) leads to the following ex-
pression for the energy-independent terms of the self-energy

�
(∞)11
αβ = δ

(π jq)
a,b δmα,mβ

∑
gdJ

δ
(π jq)
g,d

2J + 1

2 jα + 1

√
1 + δa,gv

J
ag,bd

√
1 + δb,dρdg ≡ δ

(π jq)
a,b δmα,mβ

�ab, (A14a)

�
(∞)12
αβ = δ

(π jq)
a,b δmα,mβ

(−1)2 jα

2

∑
gd

δ
(π jq)
g,d (−1)2 jγ

ĵγ
ĵα

√
1 + δa,bv

J=0
ab,gd

√
1 + δg,d ρ̃gd ≡ δ

(π jq)
a,b δmα,mβ

h̃ab, (A14b)

�
(∞)21
αβ = δ

(π jq)
a,b δmα,mβ

(
h̃ba
)∗

, (A14c)

�
(∞)22
αβ = −δ

(π jq)
a,b δmα,mβ

�ba = −δ
(π jq)
a,b δmα,mβ

(�ab)∗. (A14d)

2. Dynamic self-energy

The dynamic part of the self-energy involves the ampli-
tudes Cα,r and Dr,α that couple single-particle states to the

ISCs defined by Eqs. (35). Their contributions have been pre-
sented in Eqs. (39) and Secs. III B and III C 2 at different level
of many-body truncation and are fully antisymmetric with
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respect to the Gorkov indices in r. However, it is convenient
to decompose each term (generally indicated by the symbol
“·” in the following) through cyclic permutations of partially
antisymmetrized amplitudes

C (·)
α,r = 1√

3
P123M(·)

α,k1k2k3
, (A15a)

D(·)
r,α = 1√

3
P123N (·)

k1k2k3,α
, (A15b)

where Mα,k1k2k3 = −Mα,k2k1k3 and Nk1k2k3,α = −Nk2k1k3,α are
antisymmetric with respect to the exchange of the first two
indices in r = (k1, k2, k3). With this choice, it is efficient to
first couple Gorkov quasiparticles k1 and k2 to an intermediate
angular momentum J12 and then add k3 to obtain the total
angular momentum of the ISC, with quantum numbers Jr

and Mr . We adopt this convention and define the angular-
momentum coupled amplitudes through the relations

∑
mk1 mk2

mk3

Mα,rCJ12M12
jk1 mk1 jk2 mk2

CJr Mr
J12M12 jk3 mk3

≡ δ
(π jq)
a,̃r δmα,Mr

√
1 + δ̃k1 ,̃k2

2
Ma,̃r, (A16a)

∑
mk1 mk2

mk3

Nr,αCJ12M12
jk1 mk1 jk2 mk2

CJr Mr
J12M12 jk3 mk3

≡ δ
(π jq)
a,̃r δmα,Mr

√
1 + δ̃k1 ,̃k2

2
Nr̃,a, (A16b)

while the barred quantities follow through the equivalent of Eqs. (30) for M̄ and N̄ :

∑
mk1 mk2

mk3

M̄α,rCJ12M12
jk1 mk1 jk2 mk2

CJr Mr
J12M12 jk3 mk3

= δ
(π jq)
a,̃r δmα,−Mr (−1) jα+mα

√
1 + δ̃k1 ,̃k2

2
Ma,̃r, (A16c)

∑
mk1 mk2

mk3

N̄r,αCJ12M12
jk1 mk1 jk2 mk2

CJr Mr
J12M12 jk3 mk3

= δ
(π jq)
a,̃r δmα,−Mr (−1) jα−mα

√
1 + δ̃k1 ,̃k2

2
Nr̃,a. (A16d)

Equations (A16) apply to each separate contribution of the ADC(n) expansion, as well as the corresponding fully antisym-
metrized amplitudes Cα,r and Dr,α . Note that the collective Kronecker δs entering the above equations involve the total angular
momentum Jr , parity πr ≡ πk1πk2πk3 , and particle-number parities qr ≡ |qk1 + qk2 + qk3 | mod 2 (element-wise for all types of
particles) of the ISC r but do not impose charge conservation. As we see below, some Mα,r and Nr,α amplitudes may have more
stringent selection rules on qr that arise from charge conservation in the two-body interaction but these are reshuffled by the
permutations in Eqs. (A15), so that only the conservation of even and odd particle-number applies to the final Cα,r and Dr,α .

The angular-momentum coupled form of the cyclic permutation operator is given by∑
mk1 mk2

mk3

∑
mk4 mk5

mk6

CJ12M12
jk1 mk1 jk2 mk2

CJr Mr
J12M12 jk3 mk3

Pr,r′CJ45M45
jk4 mk4 jk5 mk5

CJr′ Mr′
J45M45 jk6 mk6

=
[
δ̃k1 ,̃k4

δ̃k2 ,̃k5
δ̃k3 ,̃k6

δJ12,J45 + δ̃k3 ,̃k4
δ̃k1 ,̃k5

δ̃k2 ,̃k6
(−1) jk1 + jk2 +2 jk3 +J12 Ĵ12Ĵ45

{
jk2 jk1 J12

jk3 Jr J45

}
+ δ̃k2 ,̃k4

δ̃k3 ,̃k5
δ̃k1 ,̃k6

(−1)2 jk1 + jk2 + jk3 +J45 Ĵ12Ĵ45

{
jk1 jk2 J12

jk3 Jr J45

}]
δJr Jr′ δMr Mr′

≡ δ
(π jq)
r̃ ,̃r′ δMr ,Mr′

√
1 + δ̃k1 ,̃k2

2
Pr̃ ,̃r′

√
1 + δ̃k4 ,̃k5

2
(A17)

in terms of Wigner 6- j coefficients.
For the first-order corrections to the energy denominators, a similar combination of cyclic permutations is employed:

E (I·)
r,r′ ≡ 1

3P123F (I·)
k1k2k3,k4k5k6

P456, (A18)

whereas the angular-momentum coupling for the partially antisymmetrized energy is defined as

∑
mk1 mk2

mk3

∑
mk4 mk5

mk6

CJ12M12
jk1 mk1 jk2 mk2

CJr Mr
J12M12 jk3 mk3

Fr,r′CJ45M45
jk4 mk4 jk5 mk5

CJr′ Mr′
J45M45 jk6 mk6

≡ δ
(π jq)
r̃ ,̃r′ δMr ,Mr′

√
1 + δ̃k1 ,̃k2

2
Fr̃ ,̃r′

√
1 + δ̃k4 ,̃k5

2
. (A19)

It is convenient to factor out the terms
√

(1 + δ̃k1 ,̃k2
)/2 from definitions (A16) through (A19) because these cancel out when

restricting the sums over r̃ to ISCs ordered in the first two indices, k̃1 � k̃2 [see Sec. (A 3) below].
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a. ADC(2) amplitudes

The ADC(2) version of the M and N amplitudes is given by Eqs. (39). Following definitions (A16a) and (A16b), one has

M(I )
a,̃r = 
( jk1 , jk2 , J12)
(J12, jk3 , Jr )(−1) jα+ jk3 −J12

Ĵ12

ĵα

×
∑
m�v

l

√
1 + δa,lv

J12
al,mv

U k̃1
m δ

(π jq)
m,̃k1

U k̃2
v δ

(π jq)
v,̃k2

− (−1) jk1 + jk2 −J12U k̃1
v δ

(π jq)
v,̃k1

U k̃2
m δ

(π jq)
m,̃k2√

1 + δm,v

√
1 + δ̃k1 ,̃k2

V k̃3
l δ

(π jq)
l ,̃k3

, (A20)

and

N (I )
r̃,a = 
( jk1 , jk2 , J12)
(J12, jk3 , Jr )(−1) jα− jk3 −J12

Ĵ12

ĵα

×
∑
m�v

l

V k̃1
m δ

(π jq)
m,̃k1

V k̃2
v δ

(π jq)
v,̃k2

− (−1) jk1 + jk2 −J12V k̃1
v δ

(π jq)
v,̃k1

V k̃2
m δ

(π jq)
m,̃k2√

1 + δ̃k1 ,̃k2

√
1 + δm,v

vJ12
mv,al

√
1 + δa,lU k̃3

l δ
(π jq)
l ,̃k3

, (A21)

where


( j1, j2, j3) =
{

1 if | j1 − j2| � j3 � j1 + j2
0 otherwise (A22)

is the triangular condition. The sums over single-particle states m and v have been restricted to ordered m � v by exploiting the
antisymmetry of vJ12

mv,al . Here and in the rest of the this Appendix, we interpret the inequality m � v as m�v if (−1) jμ+ jν−J12 =−1
is satisfied and as m < v otherwise.

The energy denominator for three freely propagating quasiparticles, Eq. (39c), is diagonal in the ISCs indices and does not
need to be antisymmetrized. Hence, we follow a different convention than Eq. (A19) and define∑

mk1 mk2
mk3

∑
mk4 mk5

mk6

CJ12M12
jk1 mk1 jk2 mk2

CJr Mr
J12M12 jk3 mk3

E (0)
r,r′ CJ45M45

jk4 mk4 jk5 mk5
CJr′ Mr′

J45M45 jk6 mk6

= δ̃k1 ,̃k4
δ̃k2 ,̃k5

δ̃k3 ,̃k6
δJ12,J45δJr ,Jr′ δMr ,Mr′

(
ωk̃1

+ ωk̃2
+ ωk̃3

)
≡ δ

(π jq)
r̃ ,̃r′ δMr ,Mr′E

(0)
r̃ ,̃r′ . (A23)

b. Self-consistent ADC(3) amplitudes

ADC(3) contributions require summation on the unperturbed doublet amplitudes (42). Here, an angular-momentum coupling
convention similar to the one used for two-body interactions is adopted and the rotationally invariant matrix elements is defined
as

t k̃1 k̃2J
k̃3 k̃4

≡
∑

mk1 mk2
mk3 mk4

CJM
jk1 mk1 jk2 mk2

t k1k2
k3k4

CJ−M
jk3 mk3 jk4 mk4

(−1)J−M

= 
( jk1 , jk2 , J )
( jk3 , jk4 , J )
∑
abgd

V k̃3
a δ

(π jq)
a,̃k3

V k̃4
b δ

(π jq)
b,̃k4

vJ
ab,gdU k̃1

g δ
(π jq)
g,̃k1

U k̃2
d δ

(π jq)
d ,̃k2

−(ωk̃1
+ ωk̃2

+ ωk̃3
+ ωk̃4

) , (A24)

where the upper (lower) indices are coupled together as they correspond to direct interactions among pairs of Gorkov quasipar-
ticles. Whenever the quasiparticles are coupled through a two-body interaction in the particle-hole channel, it becomes more
efficient to first perform a Pandya transformation similar to Eq. (A11). In particular, we choose the convention

t k̃1 k̃3(ph)J
k̃2 k̃4

=
∑

J2

(−1) jk2 − jk4 +J2 (2J2 + 1)

{
jk3 jk4 J
jk2 jk1 J2

}
t k̃1 k̃3J2

k̃2 k̃4
. (A25)

Given the above definitions, we are in the position to state the angular-momentum-coupled form for the skeleton ADC(3)
diagrams. Contributions from Eqs. (43) and (47) can be conveniently gathered as the only difference among them is in the
inversion of the upper and lower indices in t k1k2

k3k4
. After introducing a common factor for normalization and angular-momentum
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conditions,

K (̃r) = 
( jk1 , jk2 , J12)
(J12, jk3 , Jr )√
1 + δ̃k1 ,̃k2

, (A26)

the Ma,̃r amplitudes read

M(IIa+c)
a,̃r = (−1) jα+ jk3 −J12 K (̃r)

Ĵ12

ĵα

∑
mvl

∑
k̃7 k̃8

√
1 + δa,lv

J12
al,mv

√
1 + δm,v

×1

2

(
V k̃7

m δ
(π jq)
m,̃k7

V k̃8
v δ

(π jq)
v,̃k8

)∗[
t k̃1 k̃2J12

k̃7 k̃8
+ (−1)2J12t k̃7 k̃8J12

k̃1 k̃2

]
V k̃3

l δ
(π jq)
l ,̃k3

, (A27a)

M(IIb+d)
a,̃r = (−1) jα+ jk3 −J12 K (̃r)

Ĵ12

ĵα

∑
mvl

∑
k̃7 k̃8

(−1)2 jk3 +2 jk8 v
(ph)J12

am−1,vl−1

×(V k̃7
v δ

(π jq)
v,̃k7

U k̃8
l δ

(π jq)
l ,̃k8

)∗[
t k̃1 k̃2J12

k̃7 k̃8
+ (−1)2J12t k̃7 k̃8J12

k̃1 k̃2

]
U k̃3

m δ
(π jq)
m,̃k3

. (A27b)

The particle-hole interactions from diagrams of Fig. 7 and Eqs. (50a)–(50c) are

M(IIe′ )
a,̃r = (−1) jα+ jk3 −J12 K (̃r)

Ĵ12

ĵα

∑
mvl

∑
k̃7 k̃8

(−1)2 jk3 +2 jk8 v
(ph)J12

am−1,vl−1

×(V k̃7
v δ

(π jq)
v,̃k7

U k̃8
l δ

(π jq)
l ,̃k8

)∗[
(−1) jk1 + jk2 − jk7 − jk8 t k̃8 k̃1(ph)J12

k̃7 k̃2
+ t k̃7 k̃2(ph)J12

k̃8 k̃1

]
U k̃3

m δ
(π jq)
m,̃k3

, (A27c)

M(IIf ′ )
a,̃r = (−1) jα+ jk3 −J12 K (̃r)

Ĵ12

ĵα

∑
mvl

∑
k̃7 k̃8

(−1)1+2 jk3 +2 jk7 v
(ph)J12

av−1,ml−1

×(U k̃7
l δ

(π jq)
l ,̃k7

V k̃8
m δ

(π jq)
m,̃k8

)∗[
(−1) jk1 + jk2 −J12t k̃8 k̃1(ph)J12

k̃7 k̃2
+ (−1) jk7 + jk8 −J12t k̃7 k̃2(ph)J12

k̃8 k̃1

]
U k̃3

v δ
(π jq)
v,̃k3

, (A27d)

M(IIg)
a,̃r = (−1) jα+ jk3 −J12 K (̃r)

Ĵ12

ĵα

∑
mvl

∑
k̃7 k̃8

√
1 + δa,lv

J12
al,mv

√
1 + δm,v

×(V k̃7
m δ

(π jq)
m,̃k7

V k̃8
v δ

(π jq)
v,̃k8

)∗[
(−1) jk1 + jk2 − jk7 − jk8 t k̃8 k̃1(ph)J12

k̃7 k̃2
+ t k̃7 k̃2(ph)J12

k̃8 k̃1

]
V k̃3

l δ
(π jq)
l ,̃k3

, (A27e)

where we used the primed superscripts (e′ and f ′) to indicate that Eqs. (A27c) and (A27d) are actually linear combinations
of (50a) and (50b).

Similarly, Eqs. (43c), (43d) and (47c), (47d) for the Nr̃,a amplitudes give

N (IIa+c)
r̃,a = (−1) jα− jk3 −J12 K (̃r)

Ĵ12

ĵα

∑
mvl

∑
k̃7 k̃8

1

2

[
t k̃7 k̃8J12

k̃1 k̃2
+ (−1)2J12t k̃1 k̃2J12

k̃7 k̃8

]
×(U k̃7

m δ
(π jq)
m,̃k7

U k̃8
v δ

(π jq)
v,̃k8

)∗U k̃3
l δ

(π jq)
l ,̃k3

√
1 + δm,vv

J12
mv,al

√
1 + δa,l , (A28a)

N (IIb+d)
r̃,a = (−1) jα− jk3 −J12 K (̃r)

Ĵ12

ĵα

∑
mvl

∑
k̃7 k̃8

[
t k̃7 k̃8J12

k̃1 k̃2
+ (−1)2J12t k̃1 k̃2J12

k̃7 k̃8

]
×(U k̃7

v δ
(π jq)
v,̃k7

V k̃8
l δ

(π jq)
l ,̃k8

)∗V k̃3
m δ

(π jq)
m,̃k3

v
(ph)J12

vl−1,am−1 , (A28b)

while the coupling of particle-hole interactions from the diagrams of Fig. 7 and Eqs. (50d)–(50f) are

N (IIe′ )
r̃,a = (−1) jα− jk3 −J12 K (̃r)

Ĵ12

ĵα
(−1)

∑
mvl

∑
k̃7 k̃8

[
(−1) jk1 + jk2 −J12t k̃2 k̃7(ph)J12

k̃1 k̃8
+ (−1) jk7 + jk8 −J12t k̃1 k̃8(ph)J12

k̃2 k̃7

]
×(V k̃7

l δ
(π jq)
l ,̃k7

U k̃8
m δ

(π jq)
m,̃k8

)∗V k̃3
v δ

(π jq)
v,̃k3

v
(ph)J12

ml−1,av−1 , (A28c)

N (IIf ′ )
r̃,a = (−1) jα− jk3 −J12 K (̃r)

Ĵ12

ĵα

∑
mvl

∑
k̃7 k̃8

[
(−1) jk1 + jk2 − jk7 − jk8 t k̃2 k̃7(ph)J12

k̃1 k̃8
+ t k̃1 k̃8(ph)J12

k̃2 k̃7

]
×(U k̃7

v δ
(π jq)
v,̃k7

V k̃8
l δ

(π jq)
l ,̃k8

)∗
v

(ph)J12

vl−1,am−1V k̃3
m δ

(π jq)
m,̃k3

, (A28d)

N (IIg)
r̃,a = (−1) jα− jk3 −J12 K (̃r)

Ĵ12

ĵα

∑
mvl

∑
k̃7 k̃8

[
(−1) jk1 + jk2 − jk7 − jk8 t k̃2 k̃7(ph)J12

k̃1 k̃8
+ t k̃1 k̃8(ph)J12

k̃2 k̃7

]
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×(U k̃7
m δ

(π jq)
m,̃k7

U k̃8
v δ

(π jq)
v,̃k8

)∗√
1 + δm,vv

J12
mv,al

√
1 + δa,lU k̃3

l δ
(π jq)
l ,̃k3

. (A28e)

Finally, energy denominators for the skeleton ADC(3) self-energy are given by

F (I pp)
r̃ ,̃r′ = K (̃r)K (̃r ′)δ̃k3 ,̃k6

δJ12,J45

∑
abgd

(
U k̃1

a U k̃2
b

)∗√
1 + δa,bv

J12
ab,gd

√
1 + δg,dU k̃4

g U k̃5
d , (A29a)

F (Ihh)
r̃ ,̃r′ = K (̃r)K (̃r ′)δ̃k3 ,̃k6

δJ12,J45

∑
abgd

V k̃1
a V k̃2

b

√
1 + δa,bv

J12
ab,gd

√
1 + δg,d

(
V k̃4

g V k̃5
d

)∗
, (A29b)

F (I ph)
r̃ ,̃r′ = K (̃r)K (̃r ′)δ̃k3 ,̃k6

δJ12,J45

[∑
αβγ δ

(
U k̃1

a V k̃2
b

)∗
v

(ph)J12

ab−1,gd−1U k̃4
g V k̃5

d − (−1) jk1 + jk2 −J12
∑
αβγ δ

(
U k̃2

a V k̃1
b

)∗
v

(ph)J12

ab−1,gd−1U k̃4
g V k̃5

d

−(−1) jk4 + jk5 −J12
∑
αβγ δ

(
U k̃1

a V k̃2
b

)∗
v

(ph)J12

ab−1,gd−1U k̃5
g V k̃4

d + (−1) jk1 + jk2 − jk4 − jk5

∑
αβγ δ

(
U k̃2

a V k̃1
b

)∗
v

(ph)J12

ab−1,gd−1U k̃5
g V k̃4

d

]
. (A29c)

c. Nonskeleton diagrams

Using Eqs. (A9), the normal and anomalous singlet BCC amplitudes, Eqs. (55) and (59), can be reexpressed as

t k1
k2

= δ
(π jq)
k̃1 ,̃k2

δmk1 ,−mk2

∑
ab

δ
(π jq)
k̃1,a

Vk̃1
a (−1) jk1 +mk1 uabUk̃2

b

−(ε (0)
k̃1

+ ε
(0)
k̃2

) δ
(π jq)
a,b ≡ δ

(π jq)
k̃1 ,̃k2

δmk1 ,−mk2
(−1) jk1 +mk1 t k̃1

k̃2
, (A30)

and

t k1k2 = δ
(π jq)
k̃1 ,̃k2

δmk1 ,−mk2

∑
ab

(̃uab)∗Uk̃1
a Uk̃2

b (−1) jk2 −mk2 δ
(π jq)
b,̃k2

−2
(
ε

(0)
k̃1

+ ε
(0)
k̃2

) δ
(π jq)
a,b ≡ δ

(π jq)
k̃1 ,̃k2

δmk1 ,−mk2
(−1) jk1 +mk1 t k̃1 k̃2 , (A31)

tk1k2 = δ
(π jq)
k̃1 ,̃k2

δmk1 ,−mk2

∑
ab

δ
(π jq)
k̃1,a

Vk̃1
a Vk̃2

b (−1) jk1 +mk1 ũab

−2
(
ε

(0)
k̃1

+ ε
(0)
k̃2

) δ
(π jq)
a,b ≡ δ

(π jq)
k̃1 ,̃k2

δmk1 ,−mk2
(−1) jk1 +mk1 t̃k1 k̃2

. (A32)

One can now write down the composite Mr̃,a amplitudes at second order:

M(IIh+i)
a,̃r = (−1) jα+ jk3 −J12 K (̃r)

Ĵ12

ĵα

∑
mvl

√
1 + δa,lv

J12
al,mv

√
1 + δm,v

×
⎧⎨⎩δ

(π jq)
m,̃k1

∑
k̃7

(
Vk̃7

m

)∗
δ

(π jq)
k̃1 ,̃k7

[
t k̃7

k̃1
− (−1)2 jk1 t k̃1

k̃7

]
Uk̃2

v δ
(π jq)
v,̃k2

Vk̃3
l δ

(π jq)
l ,̃k3

+Uk̃1
m δ

(π jq)
m,̃k1

δ
(π jq)
v,̃k2

∑
k̃7

(
Vk̃7

v

)∗
δ

(π jq)
k̃2 ,̃k7

[
t k̃7

k̃2
− (−1)2 jk2 t k̃2

k̃7

]
Vk̃3

l δ
(π jq)
l ,̃k3

+Uk̃1
m δ

(π jq)
m,̃k1

Uk̃2
v δ

(π jq)
v,̃k2

δ
(π jq)
l ,̃k3

∑
k̃7

(
Uk̃7

l

)∗
δ

(π jq)
k̃3 ,̃k7

[
(−1)2 jk3 t k̃7

k̃3
− t k̃3

k̃7

]⎫⎬⎭, (A33a)

M(IIj+k)
a,̃r = (−1) jα+ jk3 −J12 K (̃r)

Ĵ12

ĵα

∑
mvl

√
1 + δa,lv

J12
al,mv

√
1 + δm,v

×
⎧⎨⎩δ

(π jq)
m,̃k1

∑
k̃7

(
Vk̃7

m

)∗
δ

(π jq)
k̃1 ,̃k7

[
t k̃7 k̃1 − t̃k7 k̃1

]
Uk̃2

v δ
(π jq)
v,̃k2

Vk̃3
l δ

(π jq)
l ,̃k3

+Uk̃1
m δ

(π jq)
m,̃k1

δ
(π jq)
v,̃k2

∑
k̃7

(
Vk̃7

v

)∗
δ

(π jq)
k̃2 ,̃k7

[
t k̃7 k̃2 − t̃k7 k̃2

]
Vk̃3

l δ
(π jq)
l ,̃k3

+Uk̃1
m δ

(π jq)
m,̃k1

Uk̃2
v δ

(π jq)
v,̃k2

δ
(π jq)
l ,̃k3

∑
k̃7

(−1)2 jk3
(
Uk̃7

l

)∗
δ

(π jq)
k̃3 ,̃k7

[t k̃7 k̃3 − t̃k7 k̃3
]

⎫⎬⎭, (A33b)
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as well as the corresponding Nr̃,a amplitudes

N (IIh+i)
r̃,a = (−1) jα− jk3 −J12 K (̃r)

Ĵ12

ĵα

×
∑
mvl

⎧⎨⎩δ
(π jq)
m,̃k1

∑
k̃7

(
Uk̃7

m

)∗
δ

(π jq)
k̃1 ,̃k7

[
(−1)2 jk1 t k̃7

k̃1
− t k̃1

k̃7

]
Vk̃2

v δ
(π jq)
v,̃k2

Uk̃3
l δ

(π jq)
l ,̃k3

+Vk̃1
m δ

(π jq)
m,̃k1

δ
(π jq)
v,̃k2

∑
k̃7

(
Uk̃7

v

)∗
δ

(π jq)
k̃2 ,̃k7

[
(−1)2 jk2 t k̃7

k̃2
− t k̃2

k̃7

]
Uk̃3

l δ
(π jq)
l ,̃k3

+Vk̃1
m δ

(π jq)
m,̃k1

Vk̃2
v δ

(π jq)
v,̃k2

δ
(π jq)
l ,̃k3

∑
k̃7

(
Vk̃7

l

)∗
δ

(π jq)
k̃3 ,̃k7

[
t k̃7

k̃3
− (−1)2 jk3 t k̃3

k̃7

]⎫⎬⎭√1 + δm,vv
J12
mv,al

√
1 + δa,l , (A34a)

N (IIj+k)
r̃,a = (−1) jα− jk3 −J12 K (̃r)

Ĵ12

ĵα

×
∑
mvl

⎧⎨⎩δ
(π jq)
m,̃k1

∑
k̃7

(−1)2 jk1
(
Uk̃7

m

)∗
δ

(π jq)
k̃1 ,̃k7

[
t k̃7 k̃1 − t̃k7 k̃1

]
Vk̃2

v δ
(π jq)
v,̃k2

Uk̃3
l δ

(π jq)
l ,̃k3

+Vk̃1
m δ

(π jq)
m,̃k1

δ
(π jq)
v,̃k2

∑
k̃7

(−1)2 jk2
(
Uk̃7

v

)∗
δ

(π jq)
k̃2 ,̃k7

[
t k̃7 k̃2 − t̃k7 k̃2

]
Uk̃3

l δ
(π jq)
l ,̃k3

+Vk̃1
m δ

(π jq)
m,̃k1

Vk̃2
v δ

(π jq)
v,̃k2

δ
(π jq)
l ,̃k3

∑
k̃7

(
Vk̃7

l

)∗
δ

(π jq)
k̃3 ,̃k7

[
t k̃7 k̃3 − t̃k7 k̃3

]⎫⎬⎭√1 + δm,vv
J12
mv,al

√
1 + δa,l . (A34b)

The energy denominators for the composite self-energy at third order read

F (Id )
r̃ ,̃r′ = K (̃r)K (̃r ′)

(
δ̃k1 ,̃k4

δ̃k2 ,̃k5
− (−1) jk1 + jk2 −J12 δ̃k2 ,̃k4

δ̃k1 ,̃k5

)
δJ12,J45

×δ
(π jq)
k̃3 ,̃k6

∑
ab

δ
(π jq)
a,̃k3

δ
(π jq)
b,̃k3

[(
Uk̃3

a

)∗
uabUk̃6

b + Vk̃6
a uab

(
Vk̃3

b

)∗]
, (A35a)

F (Ie)
r̃ ,̃r′ = K (̃r)K (̃r ′)

(
δ̃k1 ,̃k4

δ̃k2 ,̃k5
− (−1) jk1 + jk2 −J12 δ̃k2 ,̃k4

δ̃k1 ,̃k5

)
δJ12,J45

×δ
(π jq)
k̃3 ,̃k6

1

2

∑
ab

δ
(π jq)
a,̃k3

δ
(π jq)
b,̃k3

[(
Uk̃3

a

)∗
ũabVk̃6

b + Uk̃6
a

(̃
uabVk̃3

b

)∗]
. (A35b)

3. J-coupled Gorkov eigenvalue problem

The angular-momentum-coupling conventions just described allow us to decouple the Gorkov equations (33) into several
independent eigenvalue problems, one for each set (π, J, q) of the parity, total angular momentum, and particle number parity
of the many-body state |�e(o)

k 〉. Moreover, we use antisymmetry to limit the sums over the ISCs to ordered combinations of the
first two indices. For example, ∑

r̃

. . . ≡
∑

k̃1�k̃2,J12 ,̃k3

. . . , (A36)

where the configurations with k̃1 = k̃2 are included only when (−1) jk1 + jk2 −J12 = −1 and the sum on the right-hand side runs
implicitly over quantum numbers that satisfy the constraint (πr, Jr, qr ) = (π, J, q). With this choice, the

√
(1 + δ̃k1 k̃2

)/2 terms
from Eqs. (A16) through (A19) drop out. The Gorkov Eqs. (33) for channel (πk, Jk, qk ) become

ωk

⎛⎜⎜⎜⎜⎜⎝
U k̃

a

V k̃
a

W k̃
r̃

Z k̃
r̃

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
tab − μδab + �ab h̃ab Ca,̃r′ D∗

r̃′,a
(h̃ba)∗ −tab + μδab − (�ab)∗ Dr̃′,a (−1)2JrC∗

a,̃r′

C∗
b,̃r D∗

r̃,b Ẽr ,̃r′

Dr̃,b (−1)2JrCb,̃r −Ẽr′ ,̃r

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

U k̃
b

V k̃
b

W k̃
r̃′

Z k̃
r̃′

⎞⎟⎟⎟⎟⎟⎠, (A37)
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with implicit sums over repeated indices nβ and r̃′. The matrix elements of the coupling amplitudes are

Ca,̃r = 1√
3

∑
r̃′

Ma,̃r′Pr̃′ ,̃r, (A38a)

Dr̃,a = 1√
3

∑
r̃′

Pr̃ ,̃r′Nr̃′,a, (A38b)

and the energy denominators

Ẽr ,̃r′ = E (0)
r̃ ,̃r′ + 1

3

∑
r̃2̃r3

Pr̃ ,̃r2F (I )
r̃2 ,̃r3

Pr̃3 ,̃r′ . (A39)

The ISC components of the eigenvectors (A37), W k̃
r̃ and Z k̃

r̃ , correspond to the angular-momentum coupling of Eqs. (32),
respectively following the conventions (A16a) and (A16d). The normalization condition becomes∑

a

∣∣U k̃
a

∣∣2 +
∑

a

∣∣V k̃
a

∣∣2 +
∑

r̃

∣∣W k̃
r̃

∣∣2 +
∑

r̃

∣∣Z k̃
r̃

∣∣2 = 1, (A40)

with the sums over r̃ as specified by Eq. (A36).
Finally, the GMK sum rule for total energy is given by

E0 = �0 + μ〈N〉 =
∑

(πk , jk ,qk )

2 jk + 1

2

∑
nk
a,b

δ
(π jq)
b,̃k

δ
(π jq)
a,̃k

[tab + (μ − ωk̃ )δab]V k̃
b

∗V k̃
a . (A41)

APPENDIX B: STATIC SELF-ENERGY UP
TO THIRD ORDER

The complete static self-energy is given by the diagrams of
Fig. 1 and Eqs. (37) and its computation requires the knowl-
edge of the exact (dressed) propagators (18). In some cases it
can be useful to access the separate contributions at each order
in perturbation theory. The first-order terms are simply given
by Eqs. (37) but with the spectroscopic amplitudes replaced
by the HFB wave functions from Eq. (54). These terms read

�
(I )11
αβ = −�

(∞)22(I )
β̄ᾱ

=
∑
kγ δ

vαγ ,βδV̄k
δ
∗V̄k

γ , (B1a)

�
(I )12
αβ = (

�
(I )21
βα

)∗ = 1

2

∑
kγ δ

vαβ̄,γ δV̄k
γ

∗Uk
δ . (B1b)

To extract the specific contributions at second and third or-
ders, the dressed propagator must be expanded according to
Eqs. (26). The first-order contribution is simply

G(1)
αβ

(ω) =
∑
γ δ

G(0)
αγ (ω)�(∞)I

γ δ G(0)
δβ

(ω), (B2)

where the sums over Nambu indices is implicit in the matrix
algebra. The second-order self-energy is obtained by inserting
Eq. (B2) into the frequency integrals for �(∞) as

�
(∞,2)11
αβ =

∑
γ δ

∫
C↑

dω

2π i
vαγ ,βδG(1)11

δγ
(ω)

=
∑
γ δ

k1k2

vαγ ,βδ

Uk1
δ Qfb

k1k2
V̄k2

γ + (Uk1
γ Qfb

k1k2
V̄k2

δ

)∗
−(ε (0)

k1
+ ε

(0)
k2

)+ iη
,

(B3a)

�
(∞,2)12
αβ = 1

2

∑
γ δ

∫
C↑

dω

2π i
vαβ̄,γ δ̄G(1)12

γ δ
(ω)

=
∑
γ δ

k1k2

vαβ̄,γ δ

2

Uk1
γ Qfb

k1k2
Uk2

δ + (V̄k1
δ Qfb

k1k2
V̄k2

γ

)∗
−(ε (0)

k1
+ ε

(0)
k2

)+ iη
,

(B3b)

where C ↑ is a counterclockwise path along the real axis and
including the whole positive imaginary plane and Qfb

k1k2
is

defined below in Eq. (B7b).
For the second-order expansion of the propagator two dif-

ferent terms arise, one from iterating two static first-order
self-energies,

G(2a)
αβ

(ω) =
∑
γ δμν

G(0)
αγ (ω)�(∞)I

γ δ G(0)
δμ

(ω)�(∞)I
μν G(0)

νβ
(ω), (B4)

and the other including a single second-order self-energy,

G(2b)
αβ

(ω) =
∑
γ δ

G(0)
αγ (ω)�̃(ADC2)

γ δ
(ω)G(0)

δβ
(ω). (B5)

Both Eqs. (B4) and (B5) imply similar frequency integrals
combining three poles. After performing such integrals, one
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obtains

�
(∞,3a)11
αβ =

∑
γ δ

∫
dω

2π i
vαγ ,βδG(2a)11

δγ
(ω)

=
∑

k1k2k3
γ δ

vαγ ,βδ

1[−(ε (0)
k1

+ ε
(0)
k2

)+ iη
][−(ε (0)

k1
+ ε

(0)
k3

)+ iη
]

×{Uk2
δ Qfb

k2k1

(
Uk3

γ Qfb
k3k1

)∗ − (V̄k2
δ Qfb

k1k2

)∗
V̄k3

γ Qfb
k1k3

+ (V̄k1
δ Qfb

k2k1

)∗(
Uk3

γ Qff
k3k2

)∗
+Uk1

δ Qfb
k1k2

V̄k3
γ Qff

k3k2
+ Uk2

δ Qff
k2k3

V̄k1
γ Qfb

k3k1
+ (V̄k2

δ Qff
k2k3

)∗(
Uk1

γ Qfb
k1k3

)∗}
, (B6a)

�
(∞,3a)12
αβ = 1

2

∑
γ δ

∫
dω

2π i
vαβ̄,γ δ̄G(2a)12

γ δ
(ω)

=
∑

k1k2k3
γ δ

vαβ̄,γ δ

2

1[−(ε (0)
k1

+ ε
(0)
k2

)+ iη
][−(ε (0)

k1
+ ε

(0)
k3

)+ iη
]

×{Uk2
γ Qfb

k2k1

(
V̄k3

δ Qfb
k3k1

)∗ − (V̄k2
γ Qfb

k1k2

)∗
Uk3

δ Qfb
k1k3

+ (V̄k1
γ Qfb

k2k1

)∗(
V̄k3

δ Qff
k3k2

)∗
+Uk1

γ Qfb
k1k2

Uk3
δ Qff

k3k2
+ Uk2

γ Qff
k2k3

Uk1
δ Qfb

k3k1
+ (V̄k2

γ Qff
k2k3

)∗(
V̄k1

δ Qfb
k1k3

)∗}
, (B6b)

and

�
(∞,3b)11
αβ =

∑
γ δ

∫
dω

2π i
vαγ ,βδG(2b)11

δγ
(ω)

=
∑
γ δ

rk4k5

vαγ ,βδ

Uk4
δ Rfb

k4r

(
Rfb

k5rUk5
γ

)∗ − (V̄k4
δ Rfb

k4r

)∗
Rfb

k5rV̄k5
γ[−(ε (0)

k1
+ ε

(0)
k2

+ ε
(0)
k3

+ ε
(0)
k4

)+ iη
][−(ε (0)

k1
+ ε

(0)
k2

+ ε
(0)
k3

+ ε
(0)
k5

)+ iη
]

+
∑
γ δ

rk4k5

vαγ ,βδ

Uk5
δ Rff

k5rRfb
k4rV̄k4

γ − Uk4
δ Rfb

k4rRff
k5rV̄k5

γ + (V̄k4
δ Rfb

k4rRff
k5rUk5

γ

)∗ − (V̄k5
δ Rff

k5rRfb
k4rUk4

γ

)∗[−(ε (0)
k1

+ ε
(0)
k2

+ ε
(0)
k3

+ ε
(0)
k4

)+ iη
][−(ε (0)

k4
+ ε

(0)
k5

)+ iη
] , (B6c)

�
(∞,3b)12
αβ = 1

2

∑
γ δ

∫
dω

2π i
vαβ̄,γ δ̄G(2b)12

γ δ
(ω)

=
∑
γ δ

rk4k5

vαβ̄,γ δ

2

Uk4
γ Rfb

k4r

(
Rfb

k5rV̄k5
δ

)∗ − (V̄k4
γ Rfb

k4r

)∗
Rfb

k5rUk5
δ[−(ε (0)

k1
+ ε

(0)
k2

+ ε
(0)
k3

+ ε
(0)
k4

)+ iη
][−(ε (0)

k1
+ ε

(0)
k2

+ ε
(0)
k3

+ ε
(0)
k5

)+ iη
]

+
∑
γ δ

rk4k5

vαβ̄,γ δ

2

Uk5
γ Rff

k5rRfb
k4rUk4

δ − Uk4
γ Rfb

k4rRff
k5rUk5

δ + (V̄k4
γ Rfb

k4rRff
k5rV̄k5

δ

)∗ − (V̄k5
γ Rff

k5rRfb
k4rV̄k4

δ

)∗[−(ε (0)
k1

+ ε
(0)
k2

+ ε
(0)
k3

+ ε
(0)
k4

)+ iη
][−(ε (0)

k4
+ ε

(0)
k5

)+ iη
] . (B6d)

In Eqs. (B3) and (B6) the following tensors of rank two and four in the quasiparticle indices have been employed:

Qff
k1k2

≡
∑
αβ

[(
Uk1

α

)∗
�

(I )11
αβ Uk2

β − V̄k2
α �

(I )11
αβ

(
V̄k1

β

)∗ + (Uk1
α

)∗
�

(I )12
αβ Vk2

β + Uk2
α

(
�

(I )12
αβ Vk1

β

)∗]
, (B7a)

Qfb
k1k2

≡
∑
αβ

[(
Uk1

α

)∗
�

(I )11
αβ

(
V̄k2

β

)∗ − Uk2
α �

(I )11
αβ

(
V̄k1

β

)∗ + (Uk1
α

)∗
�

(I )12
αβ

(
Ūk2

β

)∗ + (V̄k2
α �

(I )12
αβ Vk1

β

)∗]
, (B7b)

and

Rff
kr ≡

∑
α

[
C (I)

α,r

(
Uk

α

)∗ + D̄(I)
r,α

(
V̄k

α

)∗]
, (B8a)

Rfb
kr ≡

∑
α

[(
D̄(I)

r,αUk
α

)∗ + (C (I)
α,rV̄k

α

)∗]
, (B8b)
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where C (I) aned D̄(I) are the first-order coupling amplitudes defined in Eqs. (39) and the index r encapsulate three quasiparticle
excitations as defined in Eq. (35).

APPENDIX C: FREQUENCY INTEGRALS

The ADC coupling amplitudes and denominators discussed in Sec. III are obtained by direct comparison to the analytic
expression of all relevant diagrams [23]. The Feynman rules for computing diagrams have been introduced in Ref. [25], where
the full calculation of all ADC(2) diagrams has also been discussed in detail. The case of third-order diagrams is essentially
analogous, involving more complicated frequency integral. However, one must also pay attention in grouping together classes of
different diagrams in such a way that important symmetries are preserved, and in particular permutations signs imposed by the
Pauli principle. This last section outlines the computation for the third-order diagrams of Fig. 5 as an example. Let us start with
the computations of diagram 5(a) contributing to �̃11(ω). By applying the Feynman rules from Ref. [25], we have

�̃
11(Fig.5(a))
αβ

(ω) = 1

4

∫
dω1

2π i

dω2

2π i

dω3

2π i
vαλ,μνG11

μμ′ (ω2)G11
νν ′ (ω + ω1 − ω2)vμ′ν ′,γ ′δ′

× G11
γ ′γ (ω3)G11

δ′δ (ω + ω1 − ω3)vγ δ,βλ′G11
λ′λ(ω1), (C1)

where we use the convention that repeated indices are summed over. The fist step is to substitute the spectral representation (18)
of the propagators and apply Cauchy’s theorem to perform integrals over ω2 and ω3

�̃
11(Fig.5(a))
αβ

(ω) = 1

4

∑
k1k2k3
k4k5

∫
dω1

2π i
vαλ,μν

×
{

U k1
μ U k2

ν

(
U k1

μ′U k2
ν ′
)∗

ω + ω1 − (ωk1 + ωk2

)+ iη
+

(
V̄k1

μ V̄k2
ν

)∗V̄k1
μ′ V̄k2

ν ′

ω + ω1 + (ωk1 + ωk2

)− iη

}
vμ′ν ′,γ ′δ′

×
{

U k4
γ ′U k5

δ′
(
U k4

γ U k5
δ

)∗
ω + ω1 − (ωk4 + ωk5

)+ iη
+

(
V̄k4

γ ′ V̄k5
δ′
)∗V̄k4

γ V̄k5
δ

ω + ω1 + (ωk4 + ωk5

)− iη

}
vγ δ,βλ′

×
{ U k3

λ′ U k3
λ

∗

ω1 − ωk3 + iη
+ V̄k3

λ′
∗V̄k3

λ

ω1 + ωk3 − iη

}
. (C2)

The final integral yields six (time ordered) Goldstone contributions. We consider only the three forward going ones,

�̃
11(Fig.5(a))
αβ

(ω) = vαλ,μν

(
V̄k1

μ V̄k2
ν

)∗V̄k1
μ′ V̄k2

ν ′ vμ′ν ′,γ ′δ′

−(ωk1 + ωk2 + ωk4 + ωk5

)+ iη

1

2

U k4
γ ′U k5

δ′ V̄k3
λ

(
U k4

γ U k5
δ V̄k3

λ′
)∗

ω − (ωk4 + ωk5 + ωk3

)+ iη

1

2
vγ δ,βλ′

+ vαλ,μν

U k1
μ U k2

ν V̄k3
λ

(
U k1

μ′U k2
ν ′ V̄k3

λ′
)∗

ω − (ωk1 + ωk2 + ωk3

)+ iη

1

2

vμ′ν ′,γ ′δ′
(
V̄k4

γ ′ V̄k5
δ′
)∗V̄k4

γ V̄k5
δ vγ δ,βλ′

−(ωk1 + ωk2 + ωk4 + ωk5

)+ iη

1

2

+ vαλ,μν

1

2

U k1
μ U k2

ν V̄k3
λ

(
U k1

μ′U k2
ν ′
)∗

ω − (ωk1 + ωk2 + ωk3

)+ iη
vμ′ν ′,γ ′δ′

U k4
γ ′U k5

δ′
(
U k4

γ U k5
δ V̄k3

λ′
)∗

ω − (ωk4 + ωk5 + ωk3

)+ iη

1

2
vγ δ,βλ′ + · · ·

= J (2a)
α,k4k5k3

1

ω − E (0)
k4k5k3

+ iη

(
Mβ,k4k5k3

)∗ + Mα,k1k2k3

1

ω − E (0)
k1k2k3

+ iη

(
J (2a)

β,k1k2k3

)∗
+ Mα,k1k2k3

1

ω − E (0)
k1k2k3

+ iη

1

2
E (pp)

k1k2,k4k5

1

ω − E (0)
k4k5k3

+ iη

(
Mβ,k4k5k3

)∗ + · · · , (C3)

where we have defined

Mα,k1k2k3 ≡ 1√
2
vαλ,μνU k1

μ U k2
ν V̄k3

λ , (C4)

J (2a)
α,k4k5k3

≡ vαλ,μν

1√
8

(
V̄k1

μ V̄k2
ν

)∗V̄k1
μ′ V̄k2

ν ′ vμ′ν ′,γ ′δ′U k4
γ ′U k5

δ′ V̄k3
λ

−(ωk1 + ωk2 + ωk4 + ωk5

)+ iη

= 1√
2

vαλ,μν

2

(
V̄k1

μ V̄k2
ν

)∗
t k4k5
k1k2

V̄k3
λ , (C5)

and E (0) and E (pp) are given by Eqs. (39c) and (45).
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Matrices M and J define the coupling amplitudes between single-particle states and ISCs. However, the sole diagram
of Fig. 5(a) is not sufficient to guarantee the correct antisymmetrization among quasiparticles. Part of the missing terms are
introduced by the third diagram in Fig. 5,

�̃
11(Fig. 5(c))
αβ

(ω) = −1

2

∫
dω1

2π i

dω2

2π i

dω3

2π i
vαλ,μνG11

μμ′ (ω2)G11
νν ′ (ω + ω1 − ω2)vμ′ν ′,γ ′δ′

× G11
γ ′γ (ω3)G12

δ′λ′ (ω + ω1 − ω3)vγ δ̄,βλ̄′G21
δλ(ω1)

= − 2J (2a)
α,k4k5k3

1

ω − E (0)
k4k5k3

+ iη

(
Mβ,k4k3k5

)∗ + Mα,k1k2k3

1

ω − E (0)
k1k2k3

+ iη

(
J (2b)

β,k1k2k3

)∗
− Mα,k1k4k3

1

ω − E (0)
k1k2k3

+ iη
E (pp)

k1k2,k4k5

1

ω − E (0)
k4k5k3

+ iη

(
Mβ,k4k3k5

)∗ + · · · , (C6)

with

J (2b)
α,k1k2k3

≡ 1√
2
vαλ,μν

(
V̄k4

ν U k5
λ

)∗
t k1k2
k4k5

U k3
μ . (C7)

The first terms on the right-hand side in Eqs. (C3) and (C6) become fully antisymmetrized once they are summed together.
By using the antisymmetry of Mα,k1k2k3 and J (2a)

α,k1k2k3
with respect to the exchange of their first two quasiparticle indices and the

independence of E (0)
k1k2k3

under any permutation, one finds

J (2a)
α,k4k5k3

(
Mα,k4k5k3 − 2Mα,k4k3k5

)∗ = J (2a)
α,k4k5k3

(
Mα,k4k5k3 + Mα,k3k4k5

)∗ − J (2a)
α,k5k4k3

(− Mα,k4k3k5

)∗
= J (2a)

α,k4k5k3

(
Mα,k4k5k3 + Mα,k3k4k5 + Mα,k5k3k4

)∗
= J (2a)

α,k4k5k3

(√
3C (I )

α,k4k5k3

)∗
= 1√

3

[
J (2a)

α,k4k5k3
+ J (2a)

α,k5k3k4
+ J (2a)

α,k3k4k5

](
C (I )

α,k4k5k3

)∗
= C (IIa)

α,k4k5k3

(
C (I )

α,k4k5k3

)∗
, (C8)

where Eq. (A15) was also used. Similarly, diagrams 5(b) and 5(d) provide the missing contributions needed to antisymmetrize
the second term of Eqs. (C3) and (C6), respectively. The full antisymmetrization of the terms with double denominators requires
all four diagrams of Fig. 5. When all contributions are added together, one obtains

�̃
11(Fig. 5a+b+c+d)
αβ

(ω) = [
C (IIa)

α,k1k2k3
+ C (IIb)

α,k1k2k3

] 1

ω − E (0)
k1k2k3

+ iη

(
C (I )

β,k1k2k3

)∗
+ C (I )

α,k1k2k3

1

ω − E (0)
k1k2k3

+ iη

[
C (IIa)

β,k1k2k3
+ C (IIb)

β,k1k2k3

]∗
+ C (I )

α,k1k2k3

1

ω − E (0)
k1k2k3

+ iη

1

2

[
E (pp)

k1k2,k4k5
δk3k6 + E (pp)

k3k1,k6k4
δk2k5 + E (pp)

k2k3,k5k6
δk1k4

]
× 1

ω − E (0)
k4k5k3

+ iη

(
C (I )

β,k4k5k3

)∗ + · · · . (C9)

The perturbative expansion of �̃11(ω) is obtained by sub-
stituting Eqs. (36) into Eq. (29a) and then expanding the
inverse matrices with respect to the E (I ) appearing in the
denominators. By comparing the third-order terms of this
expansion to Eq. (C9), one identifies the amplitudes and de-
nominators of Eqs. (43a), (43b), and (44).

The above example clarifies how a proper approximation
to the self-energy may require to gather contributions of spe-
cific time ordering across different Feynman diagrams. The
ADC(n) framework ensures that all Feynman diagrams are
included in full up to order n, while all other terms beyond this
(including nonperturbative resummations) appear for selected

time ordering and do not necessarily constitute full Feynman
amplitudes. We note that there exist mixed approximations in
the literature [that is, intermediate among different ADC(n)
orders] that can be obtained by suppressing some of the
Goldstone distributions. For example, third-order corrections
due to C (II ) are known to be important to reproduce correct
separation energies of dominant quasiparticle peaks, both in
atomic nuclei and molecules. This was the basis of the outer-
valence Green’s function (OVGF) method, one of the earliest
approximations used by quantum chemists for ionization
potentials and affinities [63]. Conversely, the two-particle–
one-hole Tamm-Dancoff approximation extends ADC(2) by
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including the E (I ) contributions to the energy denominators
but neglects the remaining ADC(3) contributions [64,65]. In

each of these cases, one needs to add consistently selected
time orderings from different diagrams.
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