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K-isomeric states in well-deformed heavy even-even nuclei
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We study excited states of two-quasiparticle (2qp) character in well-deformed even-even actinide and heavier
nuclei exhibiting K isomerism within the framework of the Skyrme energy-density functional (SEDF) approach,
including BCS pairing correlations with self-consistent blocking. We use the SIII SEDF parametrization with
time-odd terms and seniority pairing residual interaction as in a previous study of magnetic moments in odd-mass
nuclei [Phys. Rev. C 91, 054307 (2015)]. The strength of the seniority interaction is determined through an
overall fit on the 2+

1 excitation energies along the lines of Phys. Rev. C 99, 064306 (2019). Our calculations
confirm the 2qp configurations reported in the literature providing an overall good agreement with the available
data on isomeric energies. One notes, however, a few significant deviations such as in the N = 142 uranium
and N = 152 nobelium isotopes, which are explained through known single-particle features of the SEDF used.
Given the good predictive capability of the approach, we expect it to serve as a reliable tool in the search for
similar kinds of qp excitations and to suggest additional or alternative qp configurations.
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I. INTRODUCTION

Experimentally available even-even isotopes of actinide
and heavier elements, further away from the magic numbers
N = 126 and Z = 82, are known to possess an axially prolate
rigid intrinsic deformation [1]. In these nuclei the existence
of an isomeric activity whose excitation energy lies in the 1
MeV range is likely to correspond in most of the cases to a
seniority-2 quasiparticle (qp) excitation. These quasiparticle
states have a spin equal to K , the sum of the projections K1 and
K2 of the single-particle (sp) angular momenta of each cou-
pled sp state onto the intrinsic quantization axis. Such intrinsic
configurations generate collective bands by coupling with the
global rotation. Resulting from a sp type of excitation, they do
not differ substantially in intrinsic shape with respect to the qp
vacuum. Their isomeric character could thus be a consequence
of the K value being significantly higher than what is allowed
for a decay into states of collective bands built on the intrinsic
ground state (K = 0 for the ground and β bands, K = 2 for γ

bands, etc.). They are then called high-K isomers [2].
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Large K values are likely to be obtained by a parallel
coupling of sp states leading to K = K1 + K2 (with K1K2 > 0)
with large enough values of |K1| and |K2|. As is often noted
(see for instance the review in Ref. [3]), the occurrence of
states with high-K values in prolate deformed nuclei is mostly
to be found in the second part of nuclear deformation regions
(rare-earth or actinide and heavier elements) where many of
the corresponding sp wave functions have fewer nodes in the
z direction (chosen to be the symmetry axis). This explains
why they are especially abundant, for instance, around A =
180, in the rare-earth region. Conversely, they are relatively
scarce in actinides where this structural factor combined with
an increasing (with A) instability reduces the possibility for
their experimental observation [4], even though recent ad-
vances in spectroscopic studies of very heavy nuclei have been
achieved.

Theoretically, one attempts to describe such states by ap-
proximating the many-body problem through the use of a
one-body potential, e.g., of the Woods-Saxon type, or by
applying a nonrelativistic or relativistic mean-field approach
plus, in all cases, an appropriate albeit approximate treatment
of pairing correlations. Obtaining in such a way low-energy
qp excitations with spin I = K and parity π = π1π2 (π1 and
π2 being the parity of the coupled sp states) does not guar-
antee a priori their isomeric (metastable) character since, as
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is well known, the latter depends on factors which are dif-
ficult to determine unambiguously in these approaches. The
lifetime of a given state depends on its structural difference
with another state to which it may decay as well as on the
multipolarity and the matrix element of the electromagnetic
transition connecting both states [3]. However, whereas the
structural differences between the initial and the final state
(such as coupling to collectivity, or K mixing as considered,
e.g., in Ref. [5]) and their location in the spectrum favor
the metastability of the former, it is not obvious whether
the aforementioned simple theoretical descriptions are able to
fully incorporate the underlying physical mechanism.

Nevertheless, one may hint at a global validity of the av-
erage potential in use whenever these theoretical approaches
yield, in the right range of excitation energies, such 2qp
structures with the correct quantum numbers. Furthermore,
obtaining a good reproduction of the isomeric excitation en-
ergies E∗ assesses the relevance of the relative sp energies of
the two sp states under consideration. It is worth noting that
such seniority-2 states provide a separate test for the spectra
of each charge state, insofar as relevant data are available, in
contrast to other quantities (e.g., moments of inertia) implying
both neutrons and protons.

The study undertaken here is thus first meant as an
evaluation of the single-particle spectral quality of the phe-
nomenological effective Hamiltonian in use over the whole
region of heavy deformed nuclei. It is obvious (see, e.g.,
Ref. [6]) that the study of such spectra in transfermium iso-
topes represents a further interest. Indeed, it may be used to
estimate the possible extrapolation from existing data to study
the contours of the so-called island of stability of superheavy
elements. Here, our aim is purely methodological, namely to
gain some degree of confidence that one may have vis-à-vis
such a tentative assessment, as will be discussed in the con-
clusions.

However, the sp energy difference accounts only for a part
of the isomeric energy. As pointed out long ago [7,8], the
Pauli principle blocking effect, resulting in a decrease of the
level density of sp states available for pair transfer, quenches
significantly the pairing correlations in the isomeric states. As
a consequence it generates a loss of binding energy in this
state relative to the case in the ground state. For instance,
calculations of Ref. [9] find that the isomeric energy of the
16+ 178m2 Hf state results from the additive contributions from
the particle-hole excitation energy (1.5 MeV) and the pairing
effects (1.1 MeV).

As compared to the wealth of theoretical studies ad-
dressing specifically the high-K isomeric states in rare-earth
elements (see for instance the somewhat early review found
in Sec. IV A of Ref. [10] following the pioneering work on
noncollective high-spin states of the Lund-Warsaw Collabo-
ration [11]), such studies for actinide and heavier elements
are relatively less abundant. One should note the very early
work of Soloviev and Siklos [12] using the Nilsson potential
to compute E∗ as the sum of relevant qp energies. Similar
approaches have used the so-called universal parametrisa-
tion of the Woods-Saxon potential (see, e.g., Refs. [13–16])
or a two-center shell model approach [17]. Non-relativistic
microscopic mean-field studies have also been carried out

using a Skyrme force parametrization without [9] or with the
inclusion of the time-reversal breaking effects [18] as well
as similar calculations using the D1S parametrization of the
Gogny force [19]. Finally, covariant density functional calcu-
lations have also been performed (see, e.g., [20]).

In this paper we extend the study initiated by the work
reported in Ref. [18] where only two isotopes of uranium and
two of plutonium were considered. Here, we attempt to make
an exhaustive study of the seniority-2 K isomers in all rele-
vant actinide and heavier isotopes selected according to some
clear-cut criteria which will be explicitly given in Sect. III.
This is achieved within a Hartree-Fock (HF) plus BCS frame-
work, including some time-odd effects in the mean field [21]
to describe the isomeric states within a self-consistent block-
ing approach. The well-studied (and rather well qualified for
spectroscopic studies) Skyrme SIII parametrization [22] is
chosen for the particle-hole channel. As will be seen below,
this approach completely suffices not only to explore the sys-
tematic trends in the manifestation of K-isomeric excitations
in the considered mass region but also to assess the relevance
of their quasiparticle interpretation and the predictive capabil-
ity of the applied Skyrme energy-density functional (SEDF)
framework as a whole. A preliminary account of some of the
results presented here was briefly discussed in Ref. [23].

The present paper is merely a first step towards a complete
study of isomeric states which would include theoretical re-
sults on reduced electromagnetic probabilities pertaining to
the deexcitation of such metastable states. It is our contention,
however, that it is necessary to carefully study the effective
Hamiltonian in use through its eigenenergies and static prop-
erties of its eigenstates before attempting to describe decay
properties. To do so, we believe that the study of excitation
energies of K isomers is a good method to judge of the quality
of the mean-field potential, and this not only in terms of magic
gaps, for instance, as often considered. The study of these
gaps is indeed a valuable quality assessment but is merely of a
(semiclassically) averaged nature à la Strutinsky, thus unable
to discern correct level orderings within some relevant energy
interval.

In Sec. II we sketch the theoretical approach and approxi-
mations in use together with some computational details. The
selection of nuclei and isomeric states under study as well
as the adjustment of the residual interaction are discussed
in Secs. III and IV. The numerical results are presented and
discussed in Sec. V. Section VI provides a summary and some
concluding remarks, together with possible lines of improve-
ment and/or extension of the present study.

II. THEORETICAL FRAMEWORK

Both the ground and excited states of the considered
even-even nuclei are assumed to have axial symmetry in
the intrinsic (body-fixed) frame. They are described within
the Skyrme HF + BCS energy-density functional with self-
consistent blocking (of two single-particle states) as explained
in Ref. [21].

In particular, the time-reversal symmetry breaking at the
one-body level in the excited nuclear states induces the re-
moval of Kramers degeneracy in the single-particle energy
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TABLE I. Harmonic-oscillator basis parameter b optimized for
each considered nucleus. See text and Ref. [24] for its definition.

Nucleus b (fm−1)

234U 0.479
236U 0.479
236Pu 0.479
238Pu 0.479
240Pu 0.475
244Pu 0.475
244Cm 0.475
246Cm 0.475
248Cm 0.475
248Cf 0.475
248Fm 0.475
250Fm 0.475
256Fm 0.471
252No 0.475
254No 0.473
256No 0.470
254Rf 0.472
256Rf 0.470

spectrum due to the self-consistent blocking. Moreover, be-
cause we use the SIII Skyrme parametrization, we work in the
“minimal” scheme of Ref. [21] in which the only time-odd
fields retained in the HF Hamiltonian are the spin and current
vector fields.

The single-particle states are expanded in a truncated de-
formed harmonic-oscillator basis with axial symmetry. We
use N0 + 1 = 17 major oscillator shells together with basis
parameters b and q̃ where b is the inverse of the oscillator
length as displayed in Table I, and q̃ a dimensionless de-
formation parameter (ratio of oscillator frequencies along z
and the perpendicular directions), consistently found in our
calculations for the here considered nuclei to have a value of
q̃ = 1.20. These three parameters (N0, b, and q̃) are defined in
Ref. [24]. Finally we use for all quadratures 30 Gauss-Hermite
mesh points in the z direction and 15 Gauss-Laguerre mesh
points in the perpendicular direction.

The pairing contribution to the energy-density functional
is calculated from the expectation value of a seniority resid-
ual interaction in a BCS state, supplemented by blocking
when dealing with excited states. The parametrization of the
nucleon-number dependence of the corresponding matrix ele-
ments is the same as in Ref. [21] and the fitting of its strength
is presented in Sec. IV. The BCS equations are solved for
all sp states with a smearing factor f (ei ) = [1 + exp {(ei −
X − λq)/μ}]−1

, where ei is the energy of the sp state |i〉, X
plays the role of a limiting factor with X = 6 MeV, λq is the
chemical potential for the charge state q, and μ = 0.2 MeV is
a diffuseness parameter.

III. CHOICE OF THE SAMPLE OF NUCLEI

We have included in the present study 18 even-even iso-
topes of elements belonging to the actinide region and two
nuclei beyond, namely 254,256Rf. These have been chosen

following two strong criteria or one weak criterion. The strong
criteria are

(i) Well-deformed nuclei, yielding good rotor properties
as assessed by the ratio R4/2 of the energies of their
4+

1 and 2+
1 collective excited states being larger than

3.2. The basic set of data on these excitation energies
is taken from the NNDC chart of nuclides [25], while
additional information is taken from other sources,
such as [26] for 250Fm.

(ii) Nuclei with the presence of at least one K-isomeric
state whose energy, spin, and parity are experimentally
known or tentatively proposed. The basic set of data
on this criterion is taken from the “Atlas of Nuclear
Isomers” by Jain et al., Ref. [27], while additional
information is taken from later publications, such as
Ref. [28] for 244Pu.

The weaker criterion is

(iii) Nuclei with known excited states considered to be 2qp
configurations not belonging to the K isomers docu-
mented as above, but whose excitation energies are in
the same range. They have been retained to complete
some isotopic or isotonic series of isomeric states. To
this category we also assign nuclei with excitations
for which the lifetimes are either not known or of the
order of few nanoseconds, as well as nuclei entering
most probably the overall deformation region but with
no data allowing us to assess the R4/2 ratio.

From the selected nuclei, thirteen isotopes satisfy the two
strong criteria (i) and (ii). To them we have added five more
nuclei qualifying under criterion (iii).

The first one is 238Pu in which an isomeric activity has
been found (with a half-life of 8.5 ns) for which a tentative
4− assignment has been suggested [29]. It is specifically con-
sidered here in order to study the evolution with energy of
a 5− isomeric state based on the two-proton configuration
(Kπ = 5/2−, 5/2+) over a sequence of three plutonium iso-
topes from 236Pu to 240Pu.

Another one is 248Cf whose 8− state of 1.261 MeV [25]
is interpreted in the literature as a neutron 2qp configuration
[30]. Although, to the best of our knowledge, no experimental
half-life is available for it, its inclusion in the study allows
us to follow the evolution of the excitation energy of a 8−
isomeric state based on the two-neutron configuration (Kπ =
9/2−, 7/2+) over a sequence of several N = 150 isotopes
from 244Pu to 252No.

To this category we also assign 248Fm for which a 6+ state
with a half-life of 10.1 ms is included in the K-isomer col-
lection of Ref. [31], but we could not find any more detailed
experimental information about it.

Finally, two more nuclei were also added under criterion
(iii), namely 256No [32] and 254Rf [33,34], both subjects of
recent K-isomer studies with not yet clearly established char-
acteristics. The first provides the possibility to examine a trio
of isomers in No isotopes across the known N = 152 de-
formed subshell closure (see below) while the second provides
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Z

104 3.36 Rf
102 3.31 3.29 No
100 3.30 3.27 3.32 3.31 Fm
98 3.32 3.32 3.32 Cf
96 3.25 3.31 3.31 3.31 Cm
94 3.30 3.31 3.31 3.31 3.39 3.31 Pu
92 3.27 3.29 3.30 3.30 3.30 3.35 3.31 U
90 3.23 3.27 3.28 3.29 3.31 Th
88 3.21 3.25 3.29 Ra

138 140 142 144 146 148 150 152 154 156
N

FIG. 1. Ratios R4/2 outlining in the (N, Z ) plane an area of good-rotor nuclei (with R4/2 � 3.2) within the actinide and transfermium
region. The color code indicates the criteria under which the nuclei have been selected for this K-isomer study. The color coding is (yellow):
nuclei with explicitly documented data on isomeric states [criteria (i) and (ii)]; (red): well-deformed nuclei with isomer-like excitations not
explicitly adopted as K isomers [criterion (iii)]; (green): documented isomers in nuclei, assumed to be deformed, but with no data assessing
the R4/2 value [criterion (iii)].

a continuation of the aforementioned interesting 8− series in
the N = 150 isotones.

In Fig. 1 the selected nuclei are visualized in the (N, Z)
plane using a color coding corresponding to the criterion
under which each isotope has been chosen. Thus, accordingly,
calculations have been performed for 18 nuclei: 2 uranium, 4
plutonium, 3 curium, 1 californium, 3 fermium, 3 nobelium,
and 2 rutherfordium isotopes.

IV. FIT OF THE PAIRING INTERACTION

Let us discuss now the choice made for the parametriza-
tion of the seniority residual interaction to be used in our
HF + BCS approach. As discussed in the seminal paper
of Bohr, Mottelson, and Pines [35] two quantities deduced
from experimental data and accessible to mean-field based
calculations, exhibit a clear-cut dependence on pairing cor-
relations: the moments of inertia (MoI) of the first 2+ states
in well-deformed (good rotor) nuclei and the odd-even mass
differences (OEMD). In a recent paper [36] it has been shown
that upon parametrizing the |Tz| = 1 pairing matrix elements
Gq, assumed to be constant but charge dependent in the se-
niority force approximation, as

Gq = − G(q)
0

11 + Nq
, q = {n, p}, (1)

where Nq is the total number of particles of charge state q,
both MoI and OEMD fitting procedures lead in the rare-earth
region to consistent values of the parameters G(q)

0 within 1.7%
for neutrons and 2.8% for protons in calculations using the
Skyrme SIII particle-hole effective interaction [22] as done
here. The rms error on the resulting moments of inertia was
found, for the sample of 24 even-even nuclei included in the
fit, to be equal to 1.75 h̄2MeV−1, corresponding roughly to
a relative error in the range of 4%. We note in passing that
the quality of such a fit assesses the reasonable character
of the assumed Nq dependence of the above matrix element
parametrization and, at the same time, the quality of the
single-particle level densities obtained upon using the SIII
interaction.

Taking stock of this result and in view of the slightly easier
MoI approach, we have adjusted the above residual interaction
parameters G(q)

0 with respect to the experimental energies of
the 2+

1 excited states in all selected nuclei of this approach.
As shown in Table II, the considered 2+

1 energies are in gen-
eral reasonably well reproduced with the following parameter
values:

G(n)
0 = 15.8 MeV and G(p)

0 = 0.9 G(n)
0 . (2)

Some more important deviation is obtained (for normally
deformed solutions) near the well-known N = 152 deformed
shell closure (see, e.g., [37]). It appears that our calculations
exaggerate the neutron gap between the hole state 9/2− and
the particle state 11/2−, as well as the bunching of almost

TABLE II. Theoretical (HFBCS) and experimental (where avail-
able) energies (in keV) of the first 2+

1 states of several nuclei in
the range Z = 92–104. All data are taken from Ref. [25] except for
250Fm taken from [26].

Nucleus E th
2+

1
E exp

2+
1

234U 42.34 43.50
236U 48.81 45.24
236Pu 40.10 44.63
238Pu 42.93 44.07
240Pu 44.65 42.82
244Pu 46.73 44.20
244Cm 44.13 42.96
246Cm 44.73 42.85
248Cm 41.79 43.40
248Cf 46.97 41.53
248Fm 50.21 46
250Fm 47.70 45
256Fm 61.23 48.12
252No 44.90 46.40
254No 37.40 44.20
256No 49.87
254Rf 45.69
256Rf 37.09 44
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degenerate particle states, leading to an underestimation of the
pairing correlations and of the 2+

1 energy for the (N = 152)
254No and 256Rf nuclei and corresponding overestimations for
the (N = 156) 256Fm nucleus (see Ref. [23] for a discussion
of this point).

V. NUMERICAL RESULTS

Before discussing isomeric energies, we first present
single-particle spectra of the selected nuclei in their ground
states as well as charge radii and nuclear moments in the
ground and excited states. This allows us to assess the rele-
vance of the lowest-energy two-quasiparticle configurations,
known to be strongly dependent on the effective nuclear inter-
action and on the equilibrium deformation.

A. Single-particle spectra in ground states

In Fig. 2–6, we show the neutron (left) and proton (right)
single-particle energy spectra of all selected nuclei in their
Kπ = 0+ ground states. The degeneracy of each level is thus
2 owing to time-reversal symmetry. In each panel the neutron
number N and proton number Z are placed just above the
corresponding Fermi level (last occupied sp state). Assuming
J = K we can thus deduce the ground-state quantum numbers
Jπ of neighboring odd-mass nuclei. Within less than a couple
of hundreds of keV we find the quantum numbers of the ex-
perimental ground state and low-lying rotational bandheads.
This is consistent with the good results in an earlier work
based on the Bohr-Mottelson unified model [38]. Noticeable
disagreements of ground-state spin and parity are found due
to

(1) The inversion of the relative position of the neutron
7/2+ and 5/2+ levels near N = 148 (see Fig. 2) ac-
cording to the experimental ground states of 241,243Pu.
This is also hinted at from the 239Pu spectrum in
Ref. [38].

(2) the inversion of 5/2+ and 5/2− proton levels around
Z = 94 (see Fig. 3) according to the experimental
ground states of odd-mass Am and Np isotopes. Ac-
cording to Ref. [38] these levels come out in the correct
order with the SkM* Skyrme parametrization [39] but
not with SIII. However, their energy spacing is good
with both parameter sets as hinted at from the band-
head spectrum in 237Np (see Fig. 2 of Ref. [38]).

(3) The inversion of 7/2+ and 7/2− proton levels around
Z = 100 (see Fig. 4).

It should be noted that the above inversions do not af-
fect necessarily the corresponding two-quasiparticle isomeric
states as their Kπ quantum numbers and the associated
particle-hole excitation energy could be unaffected.

B. Nuclear charge radii and moments
in ground and excited states

In this subsection we briefly present intrinsic bulk quanti-
ties, namely charge radii and electric quadrupole moments,
and magnetic dipole moments for the isomeric states. The
former two (radii and quadrupole moments) are not much

affected by the two-quasiparticle excitations that we are inves-
tigating, but their study is meant to ensure that the mean-field
solutions which we have found do indeed contain the essential
physics required for a correct description of the K isomers. On
the other hand, as shown below, the magnetic moments serve
as a signature of the spin contents of neutron two-quasiparticle
configurations in connection with Gallagher’s rule [40].

The root-mean square charge radius is calculated from the
proton single-particle states |i〉 as

rc =
√√√√(∑

i

v2
i 〈i|R̂2|i〉 + a2

)/
Z , (3)

where the sum runs over proton states, v2
i is the BCS

occupation probability of the single-particle state |i〉, and
R̂ is the position operator in the intrinsic frame. The
parameter a is the proton radius. We use the rough estimate
a = 0.85 fm.

The intrinsic charge quadrupole moment is given in terms
of the matrix elements of the one-body quadrupole operator
Q̂20 in the HFBCS solution. This gives

Qc =
∑

i

v2
i 〈i|Q̂20|i〉, (4)

where the sum runs again over proton states. Expressions (3)
and (4) hold for the ground state as well as for the excited state
with blocking.

The calculated charge radii and charge quadrupole mo-
ments in the ground state and two-quasiparticle excited states
of the selected nuclei are displayed in Table III. Experimental
data for these observables in the ground states, as found in
Refs. [41,42], are also indicated.

We obtain a good agreement between calculated and exper-
imental charge quadrupole moments, as already noted long
ago [43]. A systematic overestimation of rc is observed, a
well known deficiency of the SIII parametrisation (see [22]).
Moreover we find virtually no isomeric displacement for the
charge radius, whereas a small effect (less than 30 fm2) is
visible in the charge quadrupole moments.

The magnetic dipole moment μ is calculated in the Bohr-
Mottelson unified model picture as explained in a previous
work [21]. It is the sum of an intrinsic contribution μintr and a
collective contribution μcoll. The former is defined by

μintr = K

K + 1

∑
i,q

v2
i

[
g(q)

� 〈i|L̂z|i〉 + g(q)
s 〈i|Ŝz|i〉

]
, (5)

where i runs over all single-particle states of charge q, L̂z

(resp. Ŝz) is the projection of the orbital angular momentum
(resp. spin) on the quantization axis z, and g(q)

� (g(q)
s ) is the

orbital (spin) gyromagnetic factor for the particle of charge q.
The collective contribution reads

μcoll = K

K + 1
gR, (6)

where gR is the collective gyromagnetic ratio of the core.
In particular the latter is computed using the Inglis-Belyaev
approximation with the single-particle states of positive
angular-momentum projection K on the symmetry axis arising
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234U (GS) 236U (GS)
e (MeV)

-8

-7

-6

-5

-4

3/2−3/2−

5/2+
5/2−3/2+

7/2−
1/2+

7/2+
5/2+

9/2−

7/2+

N = 142

11/2−3/2−
3/2+

1/2+
1/2+
1/2−3/2+
5/2−

5/2+

3/2−
7/2−
7/2+

Z = 92

e (MeV)

-8

-7

-6

-5

-4

3/2−
5/2+1/2−5/2−3/2+

7/2−
1/2+

7/2+
5/2+

9/2−

7/2+

N = 144

3/2−
11/2−
3/2+

1/2+
1/2+1/2−3/2+
5/2−

5/2+

3/2−
7/2−

7/2+

Z = 92

236Pu (GS) 238Pu (GS)
e (MeV)

-8

-7

-6

-5

-4

-3

-2

5/2−3/2−
5/2+5/2−1/2−3/2+

7/2−
1/2+

7/2+
5/2+

9/2−

7/2+

N = 142
11/2−
3/2+

1/2+
1/2+1/2−
3/2+
5/2−

5/2+

3/2−
7/2−
7/2+

1/2−
9/2−

Z = 94

e (MeV)

-8

-7

-6

-5

-4

-3

-2

3/2−
5/2+5/2−3/2+1/2−

7/2−
1/2+

7/2+
5/2+

9/2−

7/2+9/2+
1/2−

N = 144

11/2−
3/2+

1/2+

1/2−1/2+
3/2+
5/2−

5/2+

3/2−
7/2−

7/2+

1/2−

Z = 94

240Pu (GS) 244Pu (GS)
e (MeV)

-8

-7

-6

-5

-4

-3

3/2+
1/2−

7/2−
1/2+

7/2+
5/2+

9/2−

7/2+

9/2+

N = 146

11/2−
3/2+
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FIG. 2. Single-particle spectra of the considered uranium and plutonium isotopes in their ground state. Neutron and proton energies are
respectively displayed on the left and right of each figure.
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FIG. 3. Same as Fig. 2 for the considered curium and californium isotopes.

from the self-consistent blocked HFBCS solution, excluding
the blocked states.

The magnetic moments obtained for the two-quasiparticle
excited states in the selected nuclei are given in Table IV. We
notice that their values are small and positive (a few tenths
of nuclear magneton μN ) in all considered two-quasineutron
configurations except for two cases (248Cm and 254No 8−
isomers). In these configurations, for which g(n)

� = 0, μintr is
dominated by the spin contribution of the blocked states |i1〉
and |i2〉, and one has

μintr ≈ K

K + 1
g(n)

s (〈i1|Ŝz|i1〉 + 〈i2|Ŝz|i2〉). (7)

In most of the cases we observe a strong cancellation of the
〈i1|Ŝz|i1〉 and 〈i2|Ŝz|i2〉 matrix elements. It can be ascribed
to a dominating antiparallel relative orientation of the in-
trinsic nucleon spins in the structure of the corresponding
sp wave functions which enter the two-quasineutron isomer
configurations. This observation may be understood in the
context of Gallagher’s rule [40]. Indeed, for a given pair of
neutron sp states, the lower-lying two-quasiparticle configu-
ration is the one exhibiting antiparallel spin coupling [40],
which energetically favors the K-isomer formation [44]. In
our case this effect yields small negative values of the order
of −0.1μN for μintr . The only two exceptions encountered
are in 248Cm and 254No 8− isomers, both formed over the
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FIG. 4. Same as Fig. 2 for the considered fermium isotopes.

N = 152 gap, where we instead find 〈i1|Ŝz|i1〉 ≈ 〈i2|Ŝz|i2〉 ≈
0.4 (in h̄ units). This gives an indication for the presence of
parallel-spin couplings in the corresponding two-quasineutron
configurations. On the other hand the collective contribution
μcoll varies only a little over all considered nuclei and con-
figurations, and is of the order of 0.3 to 0.4 (in μN units).
Hence a small overall value of μ of the order of 0.2μN to
0.3μN in the two-quasineutron isomeric states is obtained
except for the above two cases where one instead finds
μ ≈ −1.7μN .

In contrast, the magnetic moment of two-quasiproton
K isomers is dominated by the orbital contribution of the

blocked states with an additive effect in all considered
isomers. Because we also find in almost all cases that
〈i1|Ŝz|i1〉 ≈ −〈i2|Ŝz|i2〉, we have 〈i1|L̂z|i1〉 + 〈i2|L̂z|i2〉 ≈ K .
Neglecting μcoll we therefore deduce that the magnetic mo-
ment of two-quasiproton K isomers is of the order of K2/(K +
1), as found in Table IV.

We may conclude that the calculated values of the magnetic
dipole moment in the considered K-isomeric states carry spe-
cific information about the contents of the sp wave functions
entering the isomer configurations. Thus, similarly to what is
suggested in Ref. [45], we may argue that any future exper-
imental data on magnetic moments would provide a test for
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FIG. 5. Same as Fig. 2 for the considered nobelium isotopes.

the relevance of the solutions obtained and the potential appli-
cability of the present approach to resolve the M1 (magnetic)
decay channel of K isomers.

From the single-particle spectra analysis and the above
bulk properties we can gain some confidence in the relevance
of our ground- and excited-state solutions.

C. Isomeric energies

Let us now turn to the main topic of the present paper,
namely the isomeric energies. Table IV shows their calculated
and experimental values for the considered nuclei together

with the two-quasiparticle configurations of these excited
states.

We start our investigation with the 234U nucleus where
we have identified two experimentally well established iso-
meric states. The 6− (33.5-μs) isomer is long known as
a neutron 2qp configuration ( 7

2
−
, 5

2
+

)n [12]. Our calcula-
tion overestimates its experimental energy of 1.421 MeV
[25,27] by 160 keV. We know for this state that releasing
the reflection symmetry in the variation procedure lowers
the theoretical value to 1.481 MeV [18] in better agreement
with the experiment. However, such a study is beyond the
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FIG. 6. Same as Fig. 2 for the considered rutherfordium isotopes.

scope of this work since here our aim is to systematically
examine the K-isomeric activity in the selected nuclei all
on the same footing based on the assumption of reflection
symmetry.

The 5+ state with a half-life of 2.2 ns and an energy of
1.553 MeV [25], recognized as a neutron 2qp configuration
( 5

2
+
, 5

2
+

)n [29], is calculated for this configuration to have
an excitation energy which overestimates the experimental
value by as much as 0.9 MeV. For this state we additionally
examined the alternative ( 7

2
+
, 3

2
+

)n configuration, which also
appears around the neutron Fermi level (see Fig. 2). The
corresponding theoretical 5+ 2qp isomeric energy of 2.348
MeV is slightly closer to the experimental value. These two
5+ configurations could probably be coupled to provide an
energy closer to the data for the lower resulting state. Yet,
this should be by far not enough to correct for the observed
discrepancy.

From Fig. 2 it is seen that in both configurations the
overestimation of the experimental energy is due to the large
gap of about 2 MeV between the corresponding orbitals.
Since the 6− isomeric energy is well reproduced, with a
blocked neutron configuration ( 5

2
+
, 7

2
−

), one can conclude

that the 5
2

+
particle state lies too high above the neutron Fermi

level.
In 236U the 4− isomer, assigned to be a neutron ( 7

2
−
, 1

2
+

)n

configuration [46], is well reproduced by the present cal-
culation, which underestimates the experimental energy by
only 25 keV. Also, a rather good theoretical description

is obtained for the 5−( 5
2

−
, 5

2
+

)p isomer [47] in 236Pu. The
same proton configuration forms a 5− isomer in 240Pu [49],
which is also very well reproduced with a deviation of
only 14 keV. We therefore considered worth predicting a
5−( 5

2
−
, 5

2
+

)p state in 238Pu with an isomeric energy of 1.190
MeV. Blocking instead the −5/2+ pairing partner (as defined
in Appendix A of Ref. [21]) in the configuration ( 5

2
−
,− 5

2
+

)p

we describe with a rather good accuracy (with an underesti-
mation of only 23 keV) the excitation energy (1.312 MeV)
of a 0− state in 236Pu. This state could thus be interpreted
as a possible 2qp excitation with not yet measured half-life
[25].

In 238Pu a 4−, 8.5-ns isomeric state interpreted as a neutron
( 7

2
−
, 1

2
+

)n configuration [29,48] is well reproduced. In 240Pu
we have also considered a 3+ state with a half-life of 1.32 ns
interpreted as a neutron ( 5

2
+
, 1

2
+

)n 2qp excitation [29]. Our
calculation for this configuration provides, however, an energy
which overestimates the experiment by more than 300 keV. By
looking at the neutron sp spectrum in Fig. 2, we notice that
another configuration, ( 7

2
+
,− 1

2
+

)n, would give a somewhat
lower theoretical energy and thus we obtained a slightly better
agreement with the experiment.

Of special interest is the isotonic series of 8− isomers
based on the neutron ( 9

2
−
, 7

2
+

)n configuration in N = 150
isotones. For 244Pu our calculation reproduces remarkably
well the experimental isomeric energy within a few keV, but
an increasing discrepancy with the experiment is observed
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TABLE III. Theoretical and experimental (where available)
charge radii rc and quadrupole moments Qc in the ground and iso-
meric states of several nuclei in the range Z = 92–104. In the data
the italicized numbers refer to the uncertainties in the last digits of
the quoted values. The (8−)n configuration considered here in 254No
is ( 5

2

+
, 11

2

−
)n.

Nucleus State rc (fm) Qc (b)

Theory Expt. [41] Theory Expt. [42]

234U GS 5.902 5.8291 52 10.08 10.35 10
(6−)n 5.901 10.14

236U GS 5.916 5.8431 38 10.36 10.80 9
(4−)n 5.917 10.55
(4−)p 5.910 10.14

236Pu GS 5.932 10.85
(5−)p 5.936 11.17

238Pu GS 5.945 5.8535 378 11.10 11.26 9
(4−)n 5.946 11.21
(5−)p 5.948 11.39

240Pu GS 5.958 5.8701 379 11.28 11.44 9
(5−)p 5.960 11.54

244Pu GS 5.980 5.8948 382 11.35 11.73 9
(8−)n 5.980 11.50

244Cm GS 5.998 5.8429 181 12.02 12.14 8
(6+)n 5.999 12.16

246Cm GS 6.008 5.8562 184 12.01 12.26 8
(8−)n 6.008 12.12

248Cm GS 6.018 5.8687 193 11.99 12.28 8
(8−)n 6.014 11.72

248Cf GS 6.033 12.47
(8−)n 6.033 12.59

248Fm GS 6.047 12.78
(6+)n 6.047 12.89

250Fm GS 6.057 12.83
(8−)n 6.057 12.94

256Fm GS 6.082 12.14
(7−)p 6.083 12.52

252No GS 6.081 13.18
(8−)n 6.080 13.26

254No GS 6.091 13.18
(8−)p 6.093 13.35
(8−)n 6.090 13.11

(16+)np 6.092 13.25
256No GS 6.100 12.94

(5−)n 6.101 13.15
(7−)n 6.101 13.15

254Rf GS 6.106 13.62
(8−)p 6.104 13.64

256Rf GS 6.116 13.64
(5−)p 6.116 13.55
(8−)n 6.120 14.08

as Z increases, and reaches about 250 keV in 252No. This is
not yet well understood. One could remark, however, that in
248Cf, for which the half-life of the 8− state is not known,
our calculation yields a quite good agreement (within 15 keV)
with the experiment, which supports its 2qp interpretation. In
254Rf the calculations predict some higher energy of about 1.6

MeV, which may be expected, according to the above trend,
to overestimate the future experimental value, which could be
measured, e.g., through the methods proposed in Ref. [34].

Apart from the above isotonic series of 8− isomers in this
region, our calculations provide an excellent reproduction of
the 34-ms 6+ isomer in 244Cm with neutron configuration
( 7

2
+
, 5

2
+

)n [29,50]. The overestimation of the 148-ms 8− iso-
mer in 248Cm by about 0.6 MeV may be explained as an effect
of the too large N = 152 deformed-shell gap.

For the 6+ isomer in 248Fm we observe, with an over-
estimation of the isomeric energy of about 50 keV, a rather
good agreement with the experiment. A reasonably good de-
scription (with an underestimation of about 100 keV) is also
obtained for the 7−, 70-ms isomer in 256Fm with the proton
configuration ( 7

2
+
, 7

2
−

)p [12,54].

In 254No we interpret the 8− isomer as a proton ( 7
2

−
, 9

2
+

)p

configuration [29,56]. Here our calculations overestimate
the experimental isomeric energy by about 0.6 MeV. Al-
ternatively, we also considered the neutron configurations
( 5

2
+
, 11

2
−

)n and ( 9
2

−
, 7

2
+

)n for which, however, the overesti-
mation already approaches and exceeds 1 MeV. This result
may be explained by the specific structure (overestimated
shell gap) of the neutron sp spectrum around the deformed
magic number N = 152 obtained in our HFBCS calculation.
At the same time it is interesting to note that the proton-
neutron combinations of the above configurations may form
a four-quasiparticle (4qp) configuration which could corre-
spond to the 184-μs 16+ isomer in 254No as claimed in
Ref. [6]. Although our calculations strongly overestimate the
experimental energy assigned to this isomeric activity, the
mechanism of 4qp configuration formation clearly resembles
the one of the 16+, 31-yr isomer of 178Hf [57] and, therefore,
calls for a further detailed study.

Extending our analysis to 256No, we have considered the
isomeric activity observed at an energy known merely by its
lower bound of 1.089 MeV (with a half-life of 7.8 μs in
Ref. [32]). We confirm the relevance of the assignment (5− or
7−) made in this publication as being obtained by the coupling
of a 11/2− neutron sp state with either a −1/2+ or a 3/2+
neutron sp state by calculating such states at about 0.4 MeV
above the quoted lower bound.

Finally, completing the set of selected nuclei and iso-
mers, we performed calculations for the tentative 5− and
8− isomers in 256Rf with, respectively, the proton and neu-
tron configurations ( 1

2
−
, 9

2
+

)p and ( 7
2

−
, 9

2
+

)n [58]. Given the
large uncertainties in the experimental energies of both states
[25,27], one can only assert that the theoretical predictions
are found to be in a reasonable proximity of the tentative
experimental energy values. Recent lifetimes measurements
in 256Rf suggest a rather rich and puzzling K-isomer activity
[59] calling for further detailed experimental and theoretical
work in this nucleus.

Summarizing the above results, one can say that an over-
all good model description of isomeric energies is obtained.
An appropriate quasiparticle-structure interpretation can be
given for the considered K-isomeric states and for the states
which are potential candidates for K isomerism. More pre-
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TABLE IV. Theoretical (HFBCS) magnetic moments and excitation energies obtained for Kπ isomeric states with given 2qp configurations
for several nuclei in the range Z = 92–104. The associated experimental isomeric energies and half-lives are also given. The qp structure of the
isomers resulting from our calculations is displayed, being in most cases in agreement with previous assignments, whose references are given.
References to relevant experimental work are also listed in the last column. In addition, for reasons explained in the text, we add a proton 2qp
5− state in 238Pu, a neutron 2qp 8− state in 254No, and the 4qp 16+ isomeric state in 254No.

Nucl. N Kπ 2qp config., μ E∗
HFBCS E∗

exp T exp
1/2 Experiment

Refs. (μN ) (MeV) (MeV) Refs.

234U 142 6− ( 7
2

−
, 5

2

+
)n [12] +0.23 1.582 1.421 33.5 (20) μs [25,27]

5+ ( 5
2

+
, 5

2

+
)n [29] −0.02 2.425 1.553 2.20 (25) ns [25,29]

( 7
2

+
, 3

2

+
)n +0.18 2.348

236U 144 4− ( 7
2

−
, 1

2

+
)n [46] +0.17 1.028 1.053 100 (4) ns [25,27]

236Pu 142 5− ( 5
2

−
, 5

2

+
)p [47] +4.23 1.138 1.186 1.2 (3) μs [25,27]

0− ( 5
2

−
, − 5

2

+
)p 0 1.289 1.312 [25]

238Pu 144 5− ( 5
2

−
, 5

2

+
)p +4.24 1.190

4− ( 7
2

−
, 1

2

+
)n [29,48] +0.23 1.033 1.083 8.5 (5) ns [25]

240Pu 146 3+ ( 5
2

+
, 1

2

+
)n [29] −0.04 1.367 1.031 1.32 (15) ns [25]

( 7
2

+
, − 1

2

+
)n +0.30 1.245

5− ( 5
2

−
, 5

2

+
)p [49] +4.24 1.295 1.309 165 (10) ns [25,27]

244Pu 150 8− ( 9
2

−
, 7

2

+
)n [28] +0.28 1.219 1.216 1.75 (12) s [25,28]

244Cm 148 6+ ( 7
2

+
, 5

2

+
)n [29,50] +0.12 1.042 1.040 34 (2) ms [25,27]

246Cm 150 8− ( 9
2

−
, 7

2

+
)n [51,52] +0.32 1.227 1.180 1.12 (24) s [25,51,52]

248Cm 152 8− ( 9
2

−
, 7

2

+
)n [52] −1.72 2.025 1.461 146 (18) μs [52]

248Cf 150 8− ( 9
2

−
, 7

2

+
)n [30,51] +0.31 1.276 1.261 [25]

248Fm 148 6+ ( 5
2

+
, 7

2

+
)n [31] +0.09 1.240 1.188 10.1 (6) ms [31,53]

250Fm 150 8− ( 9
2

−
, 7

2

+
)n [26] +0.32 1.374 1.199 1.92 (5) s [26,27]

256Fm 156 7− ( 7
2

+
, 7

2

−
)p [12,54] +6.31 1.312 1.426 70 (5) ms [25,27]

252No 150 8− ( 9
2

−
, 7

2

+
)n [51,55] +0.36 1.501 1.253 109 (3) ms [25,27]

254No 152 8− ( 7
2

−
, 9

2

+
)p [29,56] +7.31 1.914 1.297 263 (2) ms [25,27]

( 5
2

+
, 11

2

−
)n −1.65 2.209

( 9
2

−
, 7

2

+
)n −1.70 2.327

16+ ( 9
2

−
, 7

2

+
)n( 7

2

−
, 9

2

+
)p +5.66 4.142 2.930 184 (2) μs [25,27]

( 5
2

+
, 11

2

−
)n( 7

2

−
, 9

2

+
)p +5.71 3.892

256No 154 (5−) ( 11
2

−
, − 1

2

+
)n [32] +0.23 1.487 >1.089 7.8+8.3

−2.6 μs [32]

(7−) ( 11
2

−
, 3

2

+
)n [32] +0.23 1.448

254Rf 150 (8−) ( 9
2

−
, 7

2

+
)p [33] +0.36 1.647 4.7(1) μs [25,33,34]

256Rf 152 (5−) ( 1
2

−
, 9

2

+
)p [58] +4.49 1.028 ≈1.120 25(2) μs [25,27]

(8−) ( 7
2

−
, 9

2

+
)p [58] +7.33 1.748 ≈1.400 17(2) μs

cisely, a good agreement for isomeric energies is found with
a root-mean-square deviation of about 0.37 MeV. The largest
discrepancies are about 0.9 MeV for the 5+ state in 234U and
about 1 MeV for the 8− and 16+ states in 254No, which we
believe are due to the too large energy gap in the neutron
sp spectrum around the N = 152 deformed shell closure. If
we discard these three states, we obtain a root-mean-square
deviation of only 0.15 MeV.

VI. SUMMARY AND CONCLUSIONS

We have implemented a comprehensive study of the K-
isomeric states in heavy well-deformed actinide and heavier

nuclei. To this end we applied the Skyrme HF + BCS energy-
density functional with axial and parity symmetries, and with
self-consistent blocking for the isomeric states. Special at-
tention has been devoted to the adjustment of pairing matrix
elements in this mass region, to best reproduce the excitation
energy of the 2+

1 state assuming a good-rotor spectrum. For
the 18 retained nuclei we have calculated the ground-state
energies and identified relevant 2qp configurations describing
K isomers. From the corresponding blocked solutions we
have calculated the isomeric energies and compared them
with experimental data. With the exception of a few cases
(see below), we have obtained a rms deviation of about 150
keV. These exceptions are found in 234U and 254No. They can
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be ascribed to single-particle properties of the Skyrme SIII
parametrization. More precisely, this is the 5

2
+

particle state
which lies too high above the N = 142 neutron Fermi level
in 234U. One obtains an overestimated shell gap around the
N = 152 deformed magic number in 254No and, in addition, a
too large bunching of particle states.

Bearing in mind the overall good quality of the obtained
isomeric energies in the actinide region and some transfer-
mium nuclei, we expect that the present SEDF approach
possesses some predictive capability in identifying relevant
two-quasiparticle configurations and assessing their excitation
energies beyond the considered mass region (larger A and/or
Z numbers). This perspective entails the need of some further
improvements and extensions.

One direction in this respect is to try avoiding the BCS
low pairing-correlation regimes encountered in the 2qp states.
This can be achieved by applying in a fully self-consistent
way the so-called highly truncated diagonalizaton approach
(HTDA), allowing one to describe such correlations in a re-
stricted space of particle-hole excitations [9].

Another direction is to study the relevance of reflection-
asymmetric solutions. This would allow us to take into
account the possible presence of octupole deformed shapes as
hinted at from the work of Ref. [18]. The possible existence
of a softness of the potential energy surface, as a function of a
relevant intrinsic parity breaking mode parameter, could also
play a role in defining the isomeric wave function. A possible
way to look at such quantal shape fluctuations may be, for
instance, as suggested in Ref. [60]. Study along these two
directions is a subject of forthcoming works.
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