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The fine structure of the scissors mode is investigated within the time dependent Hartree-Fock-Bogoliubov
(TDHFB) approach. The solution of TDHFB equations by the Wigner function moments (WFM) method
predicts a splitting of the scissors mode into three intermingled branches. Together with the conventional scissors
mode two new modes arise due to spin degrees of freedom. They generate significant M1 strength below the
conventional energy range. The results of calculations of scissors resonances in rare earths and actinides by
WFM and quasiparticle-phonon nuclear model methods are compared with experimental data. A remarkable
coherence of both methods together with experimental data is observed.
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I. INTRODUCTION

The idea of orbital nuclear scissors was reported by Hilton
in 1976 at the International Conference on Nuclear Structure
in Dubna [1] but the lecture remained unpublished. The first
reasonable estimate of the energy of this collective excitation
was given by Suzuki and Rowe [2]. However, they acknowl-
edge discussions on the subject with Lo Iudice and Palumbo,
whose ideas were published slightly later in [3]. The approach
in this latter work was based on the so-called two rotor model
(TRM) where the deformed proton distribution rotates against
the neutron one in an oscillatory way, the restoring force
being given by the symmetry energy of the liquid drop model.
However, this model is presently not state of the art. As Lip-
parini and Stringari [4,5] and later Balbutsev et al. [6,7] have
shown, microscopically there is a strong coupling between the
scissors mode and the isovector giant quadrupole resonance.
Actually without this coupling the scissors mode comes at
zero energy (see [6,7]). Its first experimental detection in
156Gd by the Darmstadt group [8] has initiated a cascade of
experimental and theoretical studies. An exhaustive review
of the subject is given in the paper [9] containing about
400 references.

The Wigner function moments (WFM) or phase space
moments method [7,10] turned out to be very useful for the
explanation of all qualitative features of the scissors mode.
In the paper [11] the WFM method was generalized to solve
the time dependent Hartree-Fock equations including spin
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dynamics. The most remarkable result was the prediction of a
new type of nuclear collective motion: rotational oscillations
of “spin-up” nucleons with respect to “spin-down” nucle-
ons (the spin scissors mode). A generalization of the WFM
method which takes into account spin degrees of freedom
and pair correlations simultaneously was outlined in [12],
where the time dependent Hartree-Fock-Bogoliubov (TD-
HFB) equations were considered. As a result the agreement
between theory and experiment in the description of nuclear
scissors modes was improved considerably. The evolution of
our results in comparison with experimental data is shown
in Fig. 1.

In principle, the scissors mode is believed to be a pure
isovector mode. That is why we had divided the dynami-
cal equations describing collective motion into isovector and
isoscalar parts with the aim to separate the pure scissors mode.
In the present paper, in order to study the interplay of isovector
and isoscalar low-lying 1+ excitations we solved the coupled
dynamical equations of our model for protons and neutrons
exactly, without the isovector-isoscalar decoupling. As a result
one more magnetic mode (a third type of scissors) emerged
(see Fig. 2 and explanations in Sec. III C). Actually, the pos-
sible existence of three scissors motions is easily explained
by combinatoric consideration—there are only three ways to
divide the four different kinds of objects (spin-up and spin-
down protons and neutrons in our case) into two pairs. The
analysis of the new situation, which appeared due to this last
finding in the description of nuclear scissors, is presented in
this paper.

The paper is organized as follows. In Sec. II the TDHFB
equations for the 2 × 2 normal and anomalous density matri-
ces are formulated and their Wigner transform is found, the
model Hamiltonian is presented, collective variables are de-
fined, and the respective dynamical equations are derived. In
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FIG. 1. Energy centroids E (a) and summed B(M1) values (b) of
the scissors mode. Th. 1, the results of calculations without spin
degrees of freedom and pair correlations; Th. 2, pairing is included
[13]; Th. 3, pairing and spin degrees of freedom are taken into
account.

Sec. III the results of calculations of energies, B(M1) values,
and currents for nuclei of the N = 82–126 mass region and
actinides are presented and discussed. In Sec. IV more ele-
ments for the understanding of the nature of the spin scissors
modes are outlined. The summary of main results is given
in the Conclusion section. The mathematical details can be
found in Appendices A–C.

II. TDHFB EQUATIONS AND WFM
EQUATIONS OF MOTION

The TDHFB equations in matrix formulation [14,15] are

ih̄Ṙ = [H,R] (1)

with

R =
(

ρ̂ − κ̂

−κ̂† 1 − ρ̂∗

)
, H =

(
ĥ �̂

�̂† − ĥ∗

)
. (2)

The normal density matrix ρ̂ and Hamiltonian ĥ are hermitian
whereas the anomalous density κ̂ and the pairing gap �̂ are
skew symmetric: κ̂† = −κ̂∗, �̂† = −�̂∗. The detailed form
of the TDHFB equations is

ih̄ ˙̂ρ = ĥρ̂ − ρ̂ĥ − �̂κ̂† + κ̂�̂†,

−ih̄ ˙̂ρ∗ = ĥ∗ρ̂∗ − ρ̂∗ĥ∗ − �̂†κ̂ + κ̂†�̂,

−ih̄ ˙̂κ = −ĥκ̂ − κ̂ ĥ∗ + �̂ − �̂ρ̂∗ − ρ̂�̂,

−ih̄ ˙̂κ† = ĥ∗κ̂† + κ̂†ĥ − �̂† + �̂†ρ̂ + ρ̂∗�̂†. (3)

Let us consider their matrix form in coordinate space keeping
all spin indices s, s′: 〈r, s|ρ̂|r′, s′〉, 〈r, s|κ̂|r′, s′〉, etc. We do
not specify the isospin indices in order to make formulas
more transparent. Let us introduce the more compact nota-
tion 〈r, s|X̂ |r′, s′〉 = X ss′

rr′ . Then the set of equations (3) with
specified spin indices reads

ih̄ρ̇
↑↑
rr′′ =

∫
d3r′(h↑↑

rr′ ρ
↑↑
r′r′′ − ρ

↑↑
rr′ h↑↑

r′r′′ + ĥ↑↓
rr′ ρ

↓↑
r′r′′ − ρ

↑↓
rr′ h↓↑

r′r′′ − �
↑↓
rr′ κ

†↓↑
r′r′′ + κ

↑↓
rr′ �

†↓↑
r′r′′ ),

ih̄ρ̇
↑↓
rr′′ =

∫
d3r′(h↑↑

rr′ ρ
↑↓
r′r′′ − ρ

↑↑
rr′ h↑↓

r′r′′ + ĥ↑↓
rr′ ρ

↓↓
r′r′′ − ρ

↑↓
rr′ h↓↓

r′r′′ ),

ih̄ρ̇
↓↑
rr′′ =

∫
d3r′(h↓↑

rr′ ρ
↑↑
r′r′′ − ρ

↓↑
rr′ h↑↑

r′r′′ + ĥ↓↓
rr′ ρ

↓↑
r′r′′ − ρ

↓↓
rr′ h↓↑

r′r′′ ),

ih̄ρ̇
↓↓
rr′′ =

∫
d3r′(h↓↑

rr′ ρ
↑↓
r′r′′ − ρ

↓↑
rr′ h↑↓

r′r′′ + ĥ↓↓
rr′ ρ

↓↓
r′r′′ − ρ

↓↓
rr′ h↓↓

r′r′′ − �
↓↑
rr′ κ

†↑↓
r′r′′ + κ

↓↑
rr′ �

†↑↓
r′r′′ ),

ih̄κ̇
↑↓
rr′′ = −�̂

↑↓
rr′′ +

∫
d3r′(h↑↑

rr′ κ
↑↓
r′r′′ + κ

↑↓
rr′ h∗↓↓

r′r′′ + �
↑↓
rr′ ρ

∗↓↓
r′r′′ + ρ

↑↑
rr′ �

↑↓
r′r′′ ),

ih̄κ̇
↓↑
rr′′ = −�̂

↓↑
rr′′ +

∫
d3r′(h↓↓

rr′ κ
↓↑
r′r′′ + κ

↓↑
rr′ h∗↑↑

r′r′′ + �
↓↑
rr′ ρ

∗↑↑
r′r′′ + ρ

↓↓
rr′ �

↓↑
r′r′′ ). (4)

This set of equations must be complemented by the complex conjugated equations. Writing these equations we neglected the
diagonal in spin matrix elements of the anomalous density: κss

rr′ and �ss
rr′ . It was shown in [12] that such an approximation works

very well in the case of monopole pairing considered here.
The microscopic Hamiltonian of the model, a harmonic oscillator with spin orbit potential plus separable quadrupole-

quadrupole and spin-spin residual interactions, is given by

H =
A∑

i=1

[
p̂2

i

2m
+ 1

2
mω2r2

i − ηl̂iŜi

]
+ Hqq + Hss, (5)
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FIG. 2. Schematic representation of three possible types of scissors modes: (a) spin-scalar isovector (conventional, orbital scissors),
(b) spin-vector isoscalar (spin scissors), and (c) spin-vector isovector (spin scissors). Arrows show the direction of spin projections: p, protons;
n, neutrons. To avoid any possible misunderstanding it is necessary to emphasize that this is a schematic representation of the possible content
of the three low lying solutions of the TDHFB equations for the density matrix which depends on spin and isospin projections and it should
not be mixed up with the motions of four independent fluids. For a more quantitative representation see Sec. III C.

with

Hqq =
2∑

μ=−2

(−1)μ
{

κ̄

Z∑
i

N∑
j

+κ

2

[
Z∑

i, j(i �= j)

+
N∑

i, j(i �= j)

]}
q2−μ(ri )q2μ(r j ), (6)

Hss =
1∑

μ=−1

(−1)μ
{

χ̄

Z∑
i

N∑
j

+χ

2

[
Z∑

i, j(i �= j)

+
N∑

i, j(i �= j)

]}
Ŝ−μ(i)Ŝμ( j) δ(ri − r j ), (7)

where q2μ = √
16π/5 r2Y2μ = √

6{r ⊗ r}λμ, {r ⊗ r}λμ = ∑
σ,ν Cλμ

1σ,1νrσ rν, Cλμ
1σ,1ν is the Clebsch-Gordan coefficient, cyclic co-

ordinates r−1, r0, r1 are defined in [16], and N and Z are the numbers of neutrons and protons. Ŝμ are spin matrices [16]:

Ŝ1 = − h̄√
2

(
0 1

0 0

)
, Ŝ0 = h̄

2

(
1 0

0 −1

)
, Ŝ−1 = h̄√

2

(
0 0

1 0

)
. (8)

Equations (4) will be solved by the WFM method in a small
amplitude approximation. To this end we rewrite them with
the help of the Wigner transformation [15]. So, instead of four
matrix elements of the density matrix ρss′

rr′ and two matrix ele-
ments κ

↑↓
rr′ and κ

↓↑
rr′ we will work with four Wigner functions

f ss′
(r, p) and two phase space distributions κss′

(r, p), that is
more convenient for WFM method (see [12,17] for details).

Integrating the transformed equations over phase space
with the weights

W = {r ⊗ p}λμ, {r ⊗ r}λμ, {p ⊗ p}λμ, and 1

one gets dynamic equations for the following collective vari-
ables:

Lτς

λμ(t ) =
∫

d (p, r){r ⊗ p}λμδ f τς (r, p, t ),

Rτς

λμ(t ) =
∫

d (p, r){r ⊗ r}λμδ f τς (r, p, t ),

Pτς

λμ (t ) =
∫

d (p, r){p ⊗ p}λμδ f τς (r, p, t ),

F τς (t ) =
∫

d (p, r)δ f τς (r, p, t ),

L̃τ
λμ(t ) =

∫
d (p, r){r ⊗ p}λμδκτ i(r, p, t ),

R̃τ
λμ(t ) =

∫
d (p, r){r ⊗ r}λμδκτ i(r, p, t ),

P̃τ
λμ(t ) =

∫
d (p, r){p ⊗ p}λμδκτ i(r, p, t ), (9)

where τ is the isospin index; ς = +, −, ↑↓, ↓↑; and∫
d (p, r) ≡ (2π h̄)−3

∫
dr

∫
dp. δ f and δκ are variations of f

and κ .
We are interested in the scissors mode with quantum

number Kπ = 1+. Therefore, we only need the part of dy-
namic equations with μ = 1. It is convenient to rewrite
the dynamical equations for neutron and proton variables
in terms of isoscalar and isovector variables Rλμ = Rn

λμ +
Rp

λμ, R̄λμ = Rn
λμ − Rp

λμ, and so on. We also define isovec-

tor and isoscalar strength constants κ1 = 1
2 (κ − κ̄ ) and κ0 =

1
2 (κ + κ̄ ) connected by the relation κ1 = ακ0 with α = −2
[10]. The integration yields the sets of coupled equations for
isovector and isoscalar variables which are written out in the
Appendix A.

III. RESULTS OF CALCULATIONS

The calculations were performed for nuclei of the N =
82–126 mass region by the WFM method and in the frame
of the quasiparticle-phonon nuclear model (QPNM). A short
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TABLE I. The results of WFM calculations for 164Dy: energies
E (MeV), magnetic dipole B(M1) (μ2

N ), and electric quadrupole
B(E2) (W.u.) strengths of 1+ excitations. Isoscalar (IS) and isovector
(IV) scenarios are valid only for the decoupled case. The excitations
interpreted as scissors modes are marked in boldface.

Decoupled equations Coupled equations

E B(M1) B(E2) E B(M1) B(E2)

IS 1.29 0.01 53.25 1.47 0.17 25.44
IV 2.44 2.03 0.34 2.20 1.76 3.30
IS 2.62 0.09 2.91 2.87 2.24 0.34
IV 3.35 1.36 1.62 3.59 1.56 4.37
IS 10.94 0.00 55.12 10.92 0.04 50.37
IS 14.04 0.00 2.78 13.10 0.00 2.85
IV 14.60 0.06 0.48 15.42 0.07 0.57
IS 15.88 0.00 0.55 15.55 0.00 1.12
IV 16.46 0.07 0.36 16.78 0.06 0.53
IS 17.69 0.00 0.45 17.69 0.01 0.68
IS 17.90 0.00 0.51 17.91 0.00 0.53
IV 18.22 0.18 1.85 18.22 0.13 0.89
IV 19.32 0.10 0.97 19.32 0.08 0.61
IV 21.29 2.47 31.38 21.26 2.03 21.60

outline of QPNM together with calculational details can be
found in the papers [18,19]. Calculations for actinides will
also be carried out by the WFM method. The procedure of
calculations and parameters of the WFM method are mostly
the same as in our previous paper [17].

A. N = 82–126 mass region

Let us analyze in detail the results of systematic calcula-
tions for nuclei of this mass region considering the example
of Dy isotopes. The most interesting of them is 164Dy, where
a rather exceptional experimental situation with the low-lying
1+ excitations exists. The results of the solution of Eqs. (A1)
and (A2) for this nucleus are presented in Table I, where the
energies of 1+ levels with their magnetic dipole and electric
quadrupole strengths (see Appendix B) are shown (left panel,
the solutions of decoupled equations; right panel, isoscalar-
isovector coupling taken into account). The first observation
is that the high-lying levels are less sensitive to decoupling.
Among the high-lying states μ = 1 branches of isoscalar (at
the energy of 10.92 MeV) and isovector (E = 21.26 MeV)
giant quadrupole resonances are distinguished by large B(E2)
values. The rest of the high-lying states have quite small exci-
tation probabilities and we omit them from further discussion.

The lowest level with an energy of 1.29 MeV is an isoscalar
spin-scalar state of an irrotational nature with large B(E2)
value and practically zero B(M1) strength. Taking into ac-
count the isoscalar-isovector coupling strongly affects this
state, reducing its B(E2) value by a factor of 2 (from 53
to 25 W.u.). However, it retains its electrical nature, and its
energy changes only from 1.29 to 1.47 MeV (see Table I). The
interpretation of this lowest electric level requires separate
investigations. Its nature shall be studied in future work. Here
we only note that this state inevitably appears in the theory
and should be considered as part of the predictions.

Comparing the left and right panels, we see that the most
remarkable change happens with the third low-lying level
(an isoscalar one without coupling) acquiring a rather big
magnetic strength with coupling. The “jump” from 0.09 μ2

N
to 2.24 μ2

N looks surprising. However it is explained quite
naturally by the structure of the matrix element of the exci-
tation operator (see Appendix B). According to formula (B5)
the contribution of isoscalar variables occurs with the factor
[gn

s + gp
s − gp

l ]. Its numerical value (including the quenching
factor q = 0.7) is 0.23. The contribution of isovector variables
goes with the factors 1

2 (gp
s − gn

s ) = 3.29 and gp
l = 1, i.e., ≈20

times bigger than the isoscalar one. In the decoupled case
the third level, being the isoscalar one, has the contribution
only from isoscalar variables, which is obviously small. In
the case with coupling it gets the additional contribution from
isovector variables, which is an order of magnitude bigger.
This explains the extraordinarily big increase of the B(M1)
value.

Thus, the coupling results in three magnetic levels of a
mixed isovector-isoscalar nature. The three magnetic states
correspond to three physically possible types of scissors
modes already mentioned in the introduction. Roughly speak-
ing the state at the energy 3.59 MeV in 164Dy is predominantly
the conventional “orbital” scissors mode, and the last two
states at the energies 2.20 and 2.87 MeV are predominately
the “spin” scissors modes. The detailed analysis of these three
states is given in Sec. III C. Figure 2 shows a schematic
representation of the possible content of these modes: the
orbital scissors (neutrons versus protons) and two spin scis-
sors (spin-up nucleons versus spin-down nucleons and a more
complicated case—spin-up protons together with spin-down
neutrons versus spin-down protons with spin-up neutrons).
Both spin scissors exist only due to spin degrees of freedom.

So, the calculations without an artificial decoupling pro-
duce three low-lying magnetic states (instead of two without
coupling). This is the main result of this paper.

In our example of 164Dy the summarized magnetic strength∑
B(M1) = 5.56 μ2

N of three scissors is remarkably stronger
than the analogous value

∑
B(M1) = 3.39 μ2

N of two mag-
netic states in the case of decoupling (see Table I). One may
say that it is also stronger than the respective experimental
value. However, one must be careful here.

Trying to compare the theoretical results with the existing
experimental data for the scissors mode, we encounter dif-
ferent summing interval conventions. It is assumed that the
scissors mode includes only the states in a certain energy
range. As a rule, the following two conventions are chosen,
which lead to slightly different results for the summed M1
strength: 2.7 < E < 3.7 MeV for Z < 68 and 2.4 < E < 3.7
MeV for Z � 68 [20], and 2.5 < E < 4.0 MeV for 82 � N �
126 [21]. Only the two highest scissors fall into both of these
intervals in 164Dy (see Table I).

We have collected in Table II the experimental B(M1)
values found by nuclear resonance fluorescence (NRF) exper-
iments for nuclei of the N = 82–126 mass region (see [20–22]
and references therein). The last column of Table II contains
the experimental M1 strength summed over the energy inter-
val 1.8–4.0 MeV. We have also separated the 2.5–4.0-MeV
range introduced as the area of orbital scissors [21] [see col-

044323-4



SPIN-ISOSPIN STRUCTURE OF THE NUCLEAR … PHYSICAL REVIEW C 105, 044323 (2022)

TABLE II. The results of calculations by the WFM method and QPNM. In the case of WFM i = 1 means the lowest scissors and i = 2
means the centroid of two highest scissors; parameters are written out in Appendix A. The energy ranges for QPNM and NRF: 1.8–4.0 MeV
(i = 1, 1.8–2.5 MeV; i = 2, 2.5–4.0 MeV).

Ei (MeV) Bi(M1) (μ2
N ) Ē (MeV)

∑
B(M1) (μ2

N )

Nuclei δ i WFM QPNM NRF WFM QPNM NRF WFM QPNM NRF WFM QPNM NRF

148Nd 0.17 1 2.51 2.47 2.38 0.28 0.41 0.09(02) 3.40 3.30 3.23 1.45 2.07 1.12(26)
2 3.49 3.42 3.49 1.17 1.65 1.03(24)

150Nd 0.23 1 2.39 2.46 1.08 0.52 3.12 2.88 3.16 2.94 2.10 1.83(27)
2 3.16 3.39 3.12 1.85 1.59 1.83(27)

148Sm 0.12 1 2.48 2.43 0.08 0.22 3.07 3.02 2.88 0.31 1.57 0.51(12)
2 3.21 2.95 3.07 0.23 1.36 0.51(12)

150Sm 0.16 1 2.27 0.49 3.18 2.67 3.11 1.10 1.59 0.97(17)
2 3.00 3.11 3.18 0.61 1.59 0.97(17)

152Sm 0.24 1 2.18 2.31 1.45 0.13 2.97 2.74 3.40 3.83 3.50a 2.41(33)
2 3.08 3.21 2.97 2.38 2.51 2.41(33)

154Sm 0.26 1 2.22 2.19 2.23 1.59 0.83 0.33(12) 3.14 2.90 3.16 5.03 4.18 2.76(50)
2 3.22 3.41 3.26 3.44 3.34 2.43(38)

156Gd 0.26 1 2.25 2.04 2.28 1.75 0.79 0.49(12) 2.94 2.87 3.02 5.06 4.92 3.22(68)
2 3.19 3.20 3.06 3.31 4.13 2.73(56)

158Gd 0.26 1 2.22 2.34 2.37 1.70 0.48 0.28(06) 3.04 2.88 3.11 5.23 5.80 3.99(65)
2 3.19 3.18 3.10 3.53 5.32 3.71(59)

160Gd 0.27 1 2.23 2.47 2.28 1.74 0.63 0.39(05) 3.10 2.97 3.08 5.96 5.82 4.41(54)
2 3.27 3.15 3.17 4.22 5.18 4.02(49)

160Dy 0.26 1 2.25 2.43 1.84 1.07 2.87 2.84 3.05 5.19 5.14 2.42(30)
2 3.17 3.22 2.87 3.35 4.07 2.42(30)

162Dy 0.26 1 2.22 2.46 2.40 1.80 1.40 0.52(03) 2.84 2.85 3.10 5.38 5.98 3.30(24)
2 3.16 3.30 2.93 3.58 4.58 2.78(21)

164Dy 0.26 1 2.20 2.08 1.76 1.26 3.00 2.86 2.87 5.56 5.36 5.52(48)
2 3.17 3.11 3.00 3.80 4.10 5.52(48)

166Er 0.26 1 2.23 2.04 1.95 1.89 1.35 0.58(10) 2.79 2.83 2.91 5.51 5.17 3.12(58)
2 3.14 3.21 2.99 3.62 3.82 2.55(48)

168Er 0.26 1 2.20 2.32 2.49 1.81 1.14 0.17(02) 3.21 2.85 2.84 5.67 4.15 3.85(50)
2 3.15 3.03 3.24 3.86 3.01 3.68(48)

170Er 0.26 1 2.18 2.14 1.81 1.45 3.22 2.85 3.01 5.87 5.20 2.63(39)
2 3.15 3.35 3.22 4.06 3.75 2.63(39)

172Yb 0.25 1 2.18 2.16 1.86 0.53 2.93 2.74 3.04 5.26 4.06 2.37(49)
2 3.05 3.17 2.93 3.40 3.53 2.37(49)

174Yb 0.25 1 2.16 2.10 2.18 1.82 0.86 0.63(33) 2.96 2.75 3.00 5.44 4.33 3.33(1.21)
2 3.05 3.22 3.15 3.62 3.48 2.70(88)

176Yb 0.24 1 2.11 1.88 2.32 1.69 1.11 1.36(33) 2.86 2.69 2.91 5.02 4.47 3.24(1.05)
2 2.99 3.25 3.25 3.33 3.36 1.88(72)

176Hf 0.23 1 2.66 2.21 2.04 1.08 1.04 0.13(01) 3.22 3.26 3.12 3.79 3.93 3.32(28)
2 3.50 3.45 3.26 2.71 2.89 3.19(27)

178Hf 0.22 1 2.62 2.22 0.96 0.92 3.21 3.21 3.03 3.42 3.59 2.38(33)
2 3.44 3.31 3.21 2.46 2.66 2.38(33)

180Hf 0.22 1 2.60 2.29 2.49 0.93 0.79 0.09(02) 3.16 3.22 3.14 3.51 3.66 2.13(30)
2 3.44 3.37 3.19 2.58 2.86 2.04(28)

182W 0.20 1 2.59 2.29 2.47 0.80 0.01 0.31(05) 3.10 3.08 3.28 2.43 3.50 1.65(28)
2 3.32 3.28 3.25 1.63 3.49 1.34(23)

184W 0.19 1 2.56 2.39 2.24 0.68 0.54 0.20(04) 3.19 3.02 3.29 2.05 3.49 1.24(37)
2 3.35 3.45 3.37 1.37 2.96 1.04(33)

186W 0.18 1 2.53 2.40 0.57 0.01 3.19 2.96 3.40 1.68 3.27 0.82(21)
2 3.18 3.40 3.19 1.11 3.25 0.82(21)

190Os 0.15 1 2.51 2.41 0.42 0.09(01) 2.83 3.01 3.37 2.09 1.93 0.94(12)
2 3.13 3.37 2.87 1.68 1.93 0.85(11)

192Os 0.14 1 2.49 0.35 3.00 2.96 3.53 1.77 2.27 0.93(06)
2 3.08 3.53 3.00 1.41 2.27 0.93(06)
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TABLE II. (Continued.)

Ei (MeV) Bi(M1) (μ2
N ) Ē (MeV)

∑
B(M1) (μ2

N )

Nuclei δ i WFM QPNM NRF WFM QPNM NRF WFM QPNM NRF WFM QPNM NRF

194Pt 0.12 1 2.50 2.23 0.32 0.06 3.25 2.91 3.48 1.32 1.06 1.31(23)
2 3.05 3.56 3.25 1.00 1.00 1.31(23)

196Pt 0.11 1 2.47 2.27 2.25 0.26 0.02 0.06(02) 2.70 2.86 3.33 1.01 0.73 0.69(13)
2 2.99 3.36 3.74 0.75 0.71 0.63(11)

aThe level with energy E = 4.14 MeV was taken into account.

umn 9 (line i = 2)]. The M1 strength detected below 2.5 MeV
is shown in the same column 9 (i = 1). The corresponding
energy centroids are shown in columns 12 and 6. The WFM
and QPNM calculation results are processed in the same way.
In the case of WFM i = 1 means the lowest scissors and i = 2
means the centroid of the two highest scissors.

The M1 strength below 2.5 MeV was detected by the NRF
only in 16 out of 28 nuclei considered in Table II. The B(M1)
of the lower group is always smaller than B(M1) of the higher
group. Comparing the values of the B(M1) in columns 7 and
9, one can see that while there is a good agreement between
theory and experiment for the higher energy region, for the
lower one the theoretical values in most cases are several times
larger than the observed ones. This may be partly due to the
difficulty of NRF experiments in separating weaker transitions
from the atomic background in the low energy range [23]. If,
with more careful measurements, the additional M1 strength
turns out to be negligible, one will have to conclude that the
NRF data do not support the theory in this part.

Generally speaking, such a division of the spectrum into
regions is rather artificial. It was introduced in an attempt to
separate the purely orbital scissors mode. Our results demon-
strate that the contribution of the spin to the formation of
the scissors resonance (SR) is very significant. Accounting
for spin degrees of freedom and isovector-isoscalar coupling
generates spin scissors modes and splits the resonance into
three branches. In addition, as will be shown below, taking
into account the spin part of the magnetic dipole operator
significantly affects the B(M1) value of all scissors states. In
this regard, we think that it is more reasonable to compare
the WFM results with the summed M1 strength in the entire
region of 1.8–4.0 MeV.

We also believe that some portion of the spin contribution
associated with spin scissors may have been missed in the
NRF experiments. So, for all these reasons, we first compare
WFM results for the energy centroids Ei=2 (column 4 in Ta-
ble II) and summed Bi=2(M1) values (column 7) of only the
two highest scissors mode with NRF centroids and summed
B(M1) (columns 12 and 15, respectively). This comparison
is displayed also in Fig. 3 (the theory results are marked
as WFM1). It turns out that with this selection, the overall
agreement between the theoretical and experimental results
is very good—there are only three (out of 28) remarkable
differences for B(M1) values (160Dy, 170Er, and 172Yb) and
three ones for energies (160,162Dy and 166Er). The energy
centroids and summed B(M1) values of all three scissors are
shown in columns 10 and 13 in Table II. These data are also
shown in Fig. 3 (WFM2). Only for 164Dy there is the excellent

agreement of the theory and experiment. In the remaining
nuclei an equally significant low energy M1 strength was not
detected in the NRF experiments. However, WFM calcula-
tions predict the existence of comparable magnetic strength in
all well-deformed nuclei of this mass region. This prediction
is supported by calculations in the frame of the QPNM (see
Table II and Fig. 4).

The situation with the lowest scissors is very interesting.
It helps to explain the experimentally observed features of
the 1+ spectrum of 164Dy. Figure 5 demonstrates experimen-
tal M1 strength distributions in 160,162,164Dy in the energy
range between 2 and 4 MeV, reported by Margraf et al. [24].
Obviously, there are two groups of strong M1 excitations in
164Dy around 2.6 and 3.1 MeV. However, only the upper group
was attributed to the scissors mode, and the group around
2.6 MeV was not included because it has a rather big spin
contribution and one level has pure two-quasiparticle nature
and the summed M1 strength of both groups strongly deviates
from the scissors mode systematics in the rare-earth nuclei
[21]. The results of WFM calculations allow one to clarify
the origin of both groups. Table III demonstrates that the
energy centroid and summed B(M1) value of the observed
lower group agree very well with the calculated energy E
and B(M1) value of the lowest scissors. The respective values
of the observed higher group are in excellent agreement with
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FIG. 3. Calculated (WFM) and experimental (NRF) mean excita-
tion energies (a) and summed M1 strengths (b) of the scissors mode.
WFM1, the sum of the two highest scissors; WFM2, the sum of three
scissors. Experimental data are taken from the papers listed in Table I
of [21]. The solid circle marks the experimental result for 164Dy when
summed in the energy range 1.8−4.0 MeV.
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FIG. 4. WFM2, energy centroid of three scissors and the respec-
tive B(M1) value given by WFM method; QPNM, analogous values
calculated in the frame of QPNM in the energy range 1.8–4.0 MeV;
and NRF, experimental data.

the calculated energy centroid and summed B(M1) of the two
remaining (higher in energy) scissors.

The calculations with and without the spin part of the
dipole magnetic operator (B4) show that all three scissors
states are equally sensitive to the spin dependent part of the
external field (compare columns 2 and 3 in Table III) in
agreement with analogous findings of other authors (see for
example [25,26]). The enhancement of the spin contribution
to B(M1) plays in favor of spin scissors.

So, according to our results, the low energy group of states
in 164Dy is also a branch of the scissors mode (spin-vector
isovector scissors) and the calculated summed magnetic
strength 5.56 μ2

N is in excellent agreement with the experi-
mental value 5.52 μ2

N (sum of both groups). Analogous values
for two other Dy isotopes, 160Dy and 162Dy, are predicted to
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FIG. 5. Excitation energies E with the corresponding B(M1) val-
ues, obtained by the NRF experiment [24]. The dashed lines mark the
boundaries of the conventional interval from [20].

TABLE III. The calculated energies E (MeV) and excitation
probabilities B(M1) (μ2

N ) of three scissors are compared with exper-
imental values Ē and

∑
B(M1) of two groups of 1+ levels in 164Dy

[24]. q, spin quenching factor; gτ
s = qgτ free

s ; q = 0 means that the spin
part of the external field (B4) is omitted.

Theory (WFM)

B(M1) Experiment (NRF)

E q = 0 q = 0.7 Ē
∑

B(M1) Ē
∑

B(M1)

2.20 0.53 1.76 2.20 1.76 2.60 1.67(14)
2.87 1.52 2.24

3.17 3.80 3.17 3.85(31)3.59 6.63 1.56

be 5.19 μ2
N and 5.38 μ2

N (see Table IV). This result is sup-
ported by the QPNM calculations, which also demonstrates
for 160,162,164Dy isotopes remarkable M1 strength below the
conventional energy interval.

From a glance at Fig. 5 it becomes clear that the situation in
160,162Dy observed by NRF experiments is quite different from
that of 164Dy. However, our prediction may be in accord with
the recent results of photoneutron measurements performed
by the Oslo group. In [23] the authors revised their previous
data on the SR in 160−164Dy obtained by the Oslo method.
The essence of their findings is formulated in the following
quotation from [23]: “The present fit strategy gives about 40%
higher summed SR strengths than the reported NRF results.
However, if we apply the NRF energy limits to Eq. (19),
we obtain excellent agreement with the NRF results.... It is
interesting to note that ≈40–60% of our measured SR strength
lies in the energy region below 2.7 MeV.”

Though the statements about “40% higher” and
“≈40–60% . . . below 2.7 MeV” could be in qualitative
or even semiquantitative agreement with our results,
unfortunately, the error bars of the Oslo data are much
too large to be considered much more than an eventual
“smoking gun.” So, we cannot use the Oslo results for a
undoubted support of our findings. Only more precise data
can clear up the situation from the experimental point of view.

The energy centroids and corresponding summed B(M1)
given by the WFM theory and by the QPNM calculations
for Dy isotopes are compared with experimental results from
the NRF and from photoneutron measurements (Oslo) [23] in
Table IV. The results are shown for various energy averaging
intervals. As it is seen, the theoretical results are in very good
overall agreement for all three Dy isotopes. It is worthwhile
to note the excellent agreement between all theoretical and
experimental results for 164Dy. In Fig. 6 the summed B(M1)
values are also shown for 160,162,164Dy including this time
the results from Gogny quasiparticle random phase approx-
imation (QRPA) calculations and the experimental results
obtained by the photoneutron measurements (Oslo) [23] and
radiative capture of resonance neutrons [27]. It is noteworthy
that the WFM results are in good agreement both with two
other more complex theoretical results and with the available
experimental data. We tend to view this as a support of our
assumption that in fact not one but three intermingled scis-
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TABLE IV. The energy centroids Ē and corresponding summed B(M1) values given by WFM and QPNM are compared with experimental
results by the NRF [24] and photoneutron measurements (Oslo) [23] for 160,162,164Dy. Comparison is presented for various energy intervals.

Theory Experiment

WFM QPNM NRF Oslo

ADy Ē (MeV) B(M1) (μ2
N ) Ē (MeV) B(M1) (μ2

N ) Ē (MeV) B(M1) (μ2
N ) Ē (MeV) B(M1) (μ2

N )

2.7 < E < 3.7 MeV 2.7 < E < 3.7 MeV
160Dy 3.17 3.35 3.05 3.17 2.87 2.42(30) 2.66(12) 1.7(10)
162Dy 3.16 3.58 3.08 3.27 2.96 2.59(19) 2.81(8) 2.3(8)
164Dy 3.17 3.80 3.26 2.13 3.17 3.85(31) 2.83(8) 2.8(9)

2.0 < E < 4.0 MeV 2.0 < E < 4.0 MeV 0 < E < 10 MeV
160Dy 2.84 5.19 3.05 5.14 2.87 2.42(30) 2.66(12) 4.8(26)
162Dy 2.85 5.38 3.10 5.98 2.84 3.30(24) 2.81(8) 4.8(17)
164Dy 2.86 5.56 2.87 5.36 3.00 5.52(48) 2.83(8) 5.5(18)

sors modes are involved: the conventional one and two spin
scissors which may be to a good proportion isovector spin
vector and isoscalar spin vector in nature. As mentioned, this
is just the natural triplet of scissors modes which one obtains
from pure combinatorics. The detailed spin-isospin balance
between the three modes will be discussed in Sec. III C.

B. Actinides

The scissors mode is especially pronounced in stable nuclei
with significant deformation, such as rare-earth nuclei and
in the region of actinides. Low-lying M1 strength has been
observed in several actinide nuclei. Experimental studies of
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FIG. 6. Comparison of the summed B(M1) values for SR in
160,162,164Dy from the present WFM theory, the QPNM and Gogny
QRPA [23] calculations with the experimental values from the NRF
[24], photoneutron measurements (Oslo) [23] (with very large error
bars), and multistep-cascade (MSC) measurements of γ decay fol-
lowing neutron capture [27]. (a) Averaging energy intervals are 2–4
MeV for WFM, QPNM, and NRF; 0–3.5 MeV for QRPA; and 0–10
MeV for Oslo and MSC. (b) The averaging interval is 2.7–3.7 MeV.

scissors mode excitation by nuclear resonance fluorescence in
the actinides have been reported for 232Th [28,29], 236U [30],
and 238U [29,31]. The experimental and theoretical situation
for 232Th, 236U, and 238U has been carefully analyzed in [31].
Studies of the scissors resonance excited by deuteron and
3He-induced reactions on 232Th in residual nuclei 231,232,233Th
and 232,233Pa using the Oslo method have also been reported in
[32]. It was found that the scissors mode spectrum of many of
the nuclei studied exhibits a distinct double-humped structure
(see [28,32] and discussion in [17]). The experimentally ob-
served spectra of 1+ excitations in 232Th [28], 236U [30], and
238U [31] are shown in Fig. 7. The data show a clear splitting
of the scissors resonance strength in 232Th.

In our calculations, the case of actinides is similar to the
rare-earth region (see Table V and Fig. 8). The scissors res-
onance is split into three branches. Since the SR roughly
follows the inverse mass dependence of ∼A−1/3, the spectrum
in actinides is shifted towards lower energies. In all the nuclei
studied, 232Th and 236,238U, the lowest state is localized at

0

0.5

1.0

1.5

0

0.5

1.0

B
(M

1)
↑ 

(μ
2 N
)

1.5 2.0 2.5 3.0 3.5
E (MeV)

0

0.5

1.0

232
Th

236
U

238
U

(a)

(b)

(c)

FIG. 7. The experimentally observed spectra of 1+ excitations in
(a) 232Th [28], (b) 236U [30], and (c) 238U [31].
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TABLE V. The nuclear scissors mode fine structure. The results of calculations by the WFM method: energies Ei with corresponding
Bi(M1) values. Energy centroids Ē and summed M1 strengths are also presented. Parameters of pair correlations: V p

0 = 25.5 MeV, V n
0 = 21.5

MeV, rp
p = 1.5 fm, rn

p = 1.80 fm; κNils = 0.06, q = 0.7.

Ei (MeV) Bi(M1) (μ2
N ) Ē[2−3] (MeV)

3∑
i=2

Bi(M1) (μ2
N ) Ē[1−3] (MeV)

3∑
i=1

Bi(M1) (μ2
N )

Nuclei δ i WFM WFM NRF WFM NRF WFM

1 1.53 1.70
232Th 0.216 2 2.21 2.55 2.43 2.49 4.07 4.26(64) 2.16 5.77

3 2.81 1.51

1 1.54 1.91
236U 0.220 2 2.22 2.87 2.44 2.35 4.51 4.06(61) 2.17 6.41

3 2.82 1.64

1 1.57 2.12
238U 0.234 2 2.32 3.69 2.54 2.58 5.80 7.59(1.2) 2.28 7.92

3 2.93 2.10

the energy of about 1.55 MeV, while in the rare earths it is
2.2–2.6 MeV. The calculated energy centroids and summed
B(M1) values of the two highest scissors in 232Th are in
excellent agreement with experimental NRF data. The agree-
ment between the analogous values in 236U can be character-
ized as acceptable.

In addition, Fig. 8 demonstrates that the average energy
and the summed magnetic strength of the lower group of
levels in 232Th practically exactly coincide with the energy
and B(M1) value of the middle (E = 2.21 MeV) calculated
scissors mode and the analogous values of the higher group of
levels are in very good agreement with the energy and B(M1)
value of the highest (E = 2.81 MeV) scissors mode given by
the theory. A similar picture can be obtained for 236U if to
divide its spectrum in two groups, the boundary between them
being chosen in the energy window 2.3 < E < 2.4 MeV (see
Fig. 7).

One observes an unexpectedly large value of the summed
B(M1) for 238U in comparison with that of 236U and 232Th
and with the theoretical result for the energy region above
2.0 MeV. The possible reason for this discrepancy was indi-
cated by the authors of [31]: “M1 excitations are observed
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FIG. 8. The centroids of experimentally observed spectra of 1+

excitations in 232Th (a) and 236U (b) (black rectangles with error bars)
are compared with the results of WFM calculations (red rectangles).

at approximately 2.0 MeV < Eγ < 3.5 MeV with a strong
concentration of M1 states around 2.5 MeV. . .. The observed
M1 strength may include states from both the scissors mode
and the spin-flip mode, which are indistinguishable from each
other based exclusively on the use of the NRF technique.” The
most reasonable (and quite natural) place for the boundary
between the scissors mode and the spin-flip resonance is lo-
cated in the spectrum gap between 2.5 and 2.62 MeV (see
Fig. 7). The summed M1 strength of scissors in this case
becomes B(M1) = 4.38 ± 0.5 μ2

N in rather good agreement
with 236U and 232Th. However, one cannot be satisfied by this
agreement, because this value turns out a little bit too small
in comparison with the theoretical result 5.8 μ2

N . In addition,
having remarkably bigger deformation, 238U is expected to
have bigger M1 strength than 236U and 232Th according to
the experimentally established rule B(M1) ∼ δ2. In this con-
nection it makes sense to consider another possible place for
the required boundary. If one puts it into the less pronounced
spectrum gap between 2.82 and 2.88 MeV, then the summed
B(M1) of scissors becomes 5.97 μ2

N which agrees rather well
with the theoretical value. However, more studies should be
undertaken to definitely clear up the situation.

Note also that the B(M1) value calculated within QPNM
in the energy range 2.1–2.5 MeV is equal to 3.3 μ2

N [33]. As
can be seen from Table V, in that energy region the proper
state given by WFM theory is located at E = 2.32 MeV with
B(M1) = 3.69 μ2

N .
Comparison of the results presented in this paper with

those obtained earlier without taking into account the
isovector-isoscalar coupling shows that the overall picture
remains practically unchanged, if the lowest state at 1.55 MeV
is left out. The agreement with experiment for the summa-
rized M1 strength over two states became even slightly better
(compare Table V and Fig. 8 with Table II and Fig. 8 in [17]).
Thus, for example, the B(M1) = 4.07 μ2

N for 232Th is closer
to the experimental value of 4.26(64) μ2

N than the 3.82 μ2
N re-

ported in [17]. The presence of an additional magnetic dipole
strength around 1.5 MeV should be considered as a prediction.
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In this regard, it is worth noting an interesting detail of the
236U spectrum. Its lowest level is disposed remarkably lower
than 2 MeV and is separated by a remarkable energy gap
from the higher levels. This makes it possible to interpret this
level as a small fraction of the lowest scissors predicted by the
theory. A possible involvement of the spin flip cannot be ruled
out either (see the discussion in Sec. IV C).

Again for 238U it is noteworthy that the summed B(M1)
value, equal to 7.92 μ2

N (see Table V), is in good agree-
ment with both the results of QPNM calculations of 7.02 μ2

N
[19,33], obtained by summation in the energy range from 1 to
3 MeV, and the observed M1 strength 7.59(1.2) μ2

N [31].
Summarizing the results presented in these two sections,

we can conclude that, in general, there is good agreement
between both theories and experimental data. Concerning the
lowest magnetic states in the rare earths and in the actinides
we can repeat that it is a prediction.

C. Currents

When studying little collective states where shell effects
are dominated, it is not easy to extract from the quantal
QRPA results a global average trend. However, the macro-
scopic WFM approach does just this. It only yields the average
trends. This kind of features has already become manifest for
the study of moments of inertias of superfluid nuclei. The
microscopic picture of the corresponding flows is quite erratic
due to the strong shell effects (see [34]), while a semiclassical
calculation very nicely shows a mixture of rigid and irrota-
tional flows which very well accounts for the experimental
situation on average (see [34,35]). We think with more data to
come we will see the same situation emerging for spin scissors
currents and B(M1).

Figure 2 gives a schematic view of all possible nuclear
scissors motions. To obtain an objective picture of the phe-
nomenon it is necessary to study the distribution of neutron
and proton currents Jς

i (r). By definition the current is ob-
tained by the odd in p part of the phase space distribution:

Jς
i (r, t ) =

∫
dp

(2π h̄)3
pi f ς (r, p, t ). (10)

An isospin index is omitted for simplicity. In [10], where
the simple model of a harmonic oscillator with separable
qq interaction was considered, the analytical formula for the
nucleons’ flows was derived. In the case with spin degrees of
freedom and pair correlations the currents can be constructed
only numerically. According to the approximation suggested
in [36,37] the current variation is expanded in the following
series:

δJς
i (r, t ) = n+(r)

[
Kς

i (t ) +
∑

j

(−1) jKς
i,− j (t )r j

+
∑
λ′,μ′

(−1)μ
′
Kς

i,λ′−μ′ (t ){r ⊗ r}λ′μ′ + · · ·
]
. (11)

All terms containing expansion coefficients K with odd num-
bers of indices disappear due to axial symmetry. Furthermore,
we truncate this series omitting all terms generating higher
than second order moments. So, finally the following expres-

sion is used:

δJς
i (r, t ) = n+(r)

∑
j

(−1) jKς
i,− j (t )r j . (12)

The detailed expressions are

δJς

1 = n+(
Kς

1,0r0 − Kς

1,−1r1 − Kς

1,1r−1
)
,

δJς

0 = n+(
Kς

0,0r0 − Kς

0,−1r1 − Kς

0,1r−1
)
,

δJς

−1 = n+(
Kς

−1,0r0 − Kς

−1,−1r1 − Kς

−1,1r−1
)
.

The coefficients Kς
i,− j (t ) are connected by linear relations with

the collective variables Lς

λμ(t ) (see Appendix C). Taking into
account that in the frame of the problem considered here
Lς

λ0 = Lς

λ2 = 0, we find for ς = +,−
δJς

1 = n+α1
(Lς

21 − Lς

11

)
r0,

δJς

0 = n+α2
[(Lς

2−1 − Lς

1−1

)
r1 + (Lς

21 + Lς

11

)
r−1

]
,

δJς

−1 = n+α1
(Lς

2−1 + Lς

1−1

)
r0,

where αi = √
3/(

√
2Ai ) and Ai are defined by (A3). The ex-

pressions for currents in Cartesian coordinates are written

δJς
x = (

δJς

−1 − δJς

1

)
/
√

2

= 1√
2

n+α1
(Lς

2−1 − Lς

21 + Lς

1−1 + Lς

11

)
z,

δJς
y = i

(
δJς

−1 + δJς

1

)
/
√

2

= i√
2

n+α1
(Lς

2−1 + Lς

21 + Lς

1−1 − Lς

11

)
z,

δJς
z = δJς

0 = n+α2
[(Lς

21 − Lς

2−1 + Lς

11 + Lς

1−1

)
x

− i√
2

(Lς

21 + Lς

2−1 + Lς

11 − Lς

1−1

)
y
]
. (13)

According to their definition Lς

2−1 = Lς

21 and Lς

1−1 = −Lς

11
(with ς = +,−). Therefore we have

δJς
x = 0,

δJς
y = −i

√
3

A1
n+(Lς

11 − Lς

21

)
z,

δJς
z = −i

√
3

A2
n+(Lς

11 + Lς

21

)
y. (14)

This result is quite remarkable. The first equation δJς
x = 0

says that all motions take place only in two dimensions, i.e.,
in one plane. Obviously it is one of the properties to be
satisfied by the scissors mode. Another obvious and necessary
property of the scissors mode is the rotational out of phase
motion of its subentities. This property is demonstrated by the
pictures of currents (see Figs. 9–11) constructed with the help
of Eqs. (14).

Let us analyze these figures. First of all it is seen that one
cannot identify any of three M1 excitations with only one type
of motions shown in Fig. 2—it turns out that every excitation
is a mixture of all three possible scissors. Nevertheless an
approximate identification can be done. It is necessary to in-
troduce some numerical measure of the contribution of every
type of scissors into the particular excitation. Introducing the
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FIG. 9. The currents in 164Dy for E = 2.20 MeV: δJ+
p (a), δJ+

n

(b), δJ↑↑ (c), δJ↓↓ (d), δJ↑↑
p + δJ↓↓

n (e), and δJ↓↓
p + δJ↑↑

n (f). y =
y/R, z = z/R.

notations [see Eqs. (14)]

Aς = −i

√
3

A2

(Lς

11 + Lς

21

)
,

Bς = −i

√
3

A1

(Lς

11 − Lς

21

)
,

we can construct the following indicator characterizing the
definite scissors, for example, the conventional one:

AB(ab) = [A2 + B2](a) + [A2 + B2](b).

Analogous values AB(cd ) and AB(e f ) are defined also for spin
scissors. After normalization all three values are transformed
in percents, which are shown in Table VI together with the
respective values of A and B. The simple analysis of this table
allows one to conclude the following.

(1) Excitation with E = 2.20 MeV represents predomi-
nantly (51%) the “complicated” spin scissors [Figs. 9(e) and
9(f)] with rather strong admixture (47%) of the “simple” spin
scissors [Figs. 9(c) and 9(d)].

(2) Excitation with E = 2.87 MeV represents predomi-
nantly (54%) the simple spin scissors [Figs. 10(c) and 10(d)]

FIG. 10. The currents in 164Dy for E = 2.87 MeV: δJ+
p (a), δJ+

n

(b), δJ↑↑ (c), δJ↓↓ (d), δJ↑↑
p + δJ↓↓

n (e), and δJ↓↓
p + δJ↑↑

n (f). y =
y/R, z = z/R.

with rather big admixture (32%) of the conventional scissors
[Figs. 10(a) and 10(b)].

(3) Excitation with E = 3.59 MeV represents predomi-
nantly (62%) the conventional scissors [Figs. 11(a) and 11(b)]
with a rather strong admixture (31%) of the complicated spin
scissors [Figs. 11(e) and 11(f)].

It is worth noting that the introduced in [10] indicator β =
−B/A works here too: if β is positive or negative the lines of
current produce an ellipse or hyperbola.

A special comment is required for the situation in Figs. 9(a)
and 9(b) where both currents turn in the same direction lead-
ing to the impression that the total angular momentum is not
zero as it should be. We remark, however, that (i) this con-
figuration has very little weight (1.75%) and (ii) total angular
momentum zero is well conserved, the counter-rotation being
performed by the motion of spins.

The situation with currents in actinides is exactly the same
as in rare earths. The picture of currents in 232Th is practically
indistinguishable from that of 164Dy.
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FIG. 11. The currents in 164Dy for E = 3.59 MeV: δJ+
p (a), δJ+

n

(b), δJ↑↑ (c), δJ↓↓ (d), δJ↑↑
p + δJ↓↓

n (e), and δJ↓↓
p + δJ↑↑

n (f). y =
y/R, z = z/R.

IV. DISCUSSION

Palumbo analyzed the possible significance of triaxiality in
explaining the fine structure of scissors resonance of the nuclei
[38]. Indeed in [39] it is shown with a microscopic approach
that only a very small triaxiality can induce the substantial
splitting. Such a small triaxiality cannot be excluded to be
present in 164Dy. On the other hand the work in [39] is not free
of deficiencies. Most importantly superfluidity is not included.
This entails that for the moment of inertia the rigid body value
is used while it is well known that its value is situated about
halfway between the rigid and irrotational flow values (see
[35]).

In discussing the splitting of SR, Palumbo introduced the
so-called signature [38] that characterizes the energy partition
in the treatment of [17]. Palumbo finds that in the rare-earth
region the signature yields half positive and half negative
values when the experimental values for B(M1) values and
energies given in [17] are taken. On the other hand WFM
theory gives only negative values for the signature while the
TRM approach in [38] leads to only positive values. Palumbo

TABLE VI. Strengths (amplitudes) of currents in 164Dy. β =
−B/A.

E (MeV) (i) B (10−2) A (10−2) % β

(a) 0.75 −0.47 1.75 1.60
(b) 0.51 −0.18 2.79

2.20 (c) −1.46 2.77 47.29 0.53
(d) 2.72 −3.42 0.79
(e) 2.87 −3.50 50.95 0.82
(f) −1.61 2.85 0.57

(a) 1.99 −2.44 31.90 0.82
(b) −2.94 4.00 0.74

2.87 (c) 2.90 −3.32 53.71 0.87
(d) −3.85 4.89 0.79
(e) 1.22 −1.24 14.39 0.99
(f) −2.17 2.80 0.78

(a) 11.57 −12.14 61.55 0.95
(b) −8.17 15.05 0.54

3.59 (c) −1.87 5.75 7.76 0.33
(d) 5.27 −2.84 1.86
(e) −5.95 10.39 30.69 0.57
(f) 9.35 −7.48 1.25

came to the conclusion that “the complexity of the observed
spectrum originates from an interplay of the two mechanisms
with one or the other dominating and a further fragmenta-
tion due to twists and other degrees of freedom.” Herewith
an important part of fragmentation is related to spin forces.
At the same time, the signature for all actinides is negative.
Such a result is in full agreement with the WFM theory. So
the situation with respect to triaxiality is not yet completely
clear. Though small triaxiality cannot be excluded from being
responsible for some splitting of SR states in rare-earth nuclei,
its inclusion in the present paper goes beyond its scope and we
will postpone such a study for the future.

The interpretation of two excitations with energies 2.2 and
2.87 MeV as spin scissors is not obvious and requires some
explanation. There are at least three questions to be answered.

A. Driving force

The first question is the following: what is the origin of
forces which coerce the spin-up and spin-down particles to
move out of phase? There is no analogous problem with
the conventional scissors, because the Hamiltonian (5) in-
cludes the neutron-proton quadrupole-quadrupole interaction
(6), which makes protons and neutrons move out of phase.
But what generates a similar motion of spin-up and spin-down
particles? It turns out that again the main working element
is the nucleon-nucleon qq interaction. However, this time it
works together with the spin-orbital part of the mean field.

Let us consider in detail the “life” of, for example, the
system of spin-up protons and spin-down neutrons within the
mean field. Due to the neutron-proton qq interaction, protons
push neutrons and force them to move, generating in such a
way for example the scissors modes [Fig. 2(b)]. Neutrons have
spins, so due to the spin-orbital term their motion will depend
on their spin projection. That means that the result of pushing
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FIG. 12. Spectrum of B(M1) strength distribution: (a) with nom-
inal pairing strength and (b) with doubled pairing strength. Notice
the very small satellites in panel (b).

will depend on the spin projections of the pushed neutrons.
In addition,the pushing protons also have spins, therefore the
result of pushing will depend on their spin projection too.
Furthermore, due to proton-proton qq interaction spin-up pro-
tons will push spin-down protons and again the result of their
interaction will be influenced by the spin-orbital potential.
As we see, there is no necessity to introduce a special kind
of interaction to activate the spin degrees of freedom and to
generate in such a way the spin dependent excitations. It is
done quite naturally by the usual qq interaction, the result
of the activation being dependent on spin projections due to
the spin-orbital potential, which can lead to the appearance of
three different types of scissors motions.

B. Spin scissors versus Cooper pairs

The second question arises because it is sometimes men-
tioned that the low-lying spectrum of superfluid nuclei is
entirely due to the motion of neutron and proton Cooper pairs.
So, how can we have those spin scissors modes (b) and (c)
of Fig. 2 when the spins of each species are locked into spin
singlet Cooper pairs? The argument of spin-up and spin-down
neutron and proton pairs locked in Cooper pairs would indeed
be pertinent, if the two superfluids were ideal ones, expressed,
e.g., by an irrotational moment of inertia. However, it is well
known that the real moments of inertia are far from the irro-
tational limit, somewhere half in between the rigid body and
irrotational value (see on this an illuminating recent work in
[35]). For instance in that work velocity fields and moments
of inertia are given by analytic formulas which divide these
quantities into rotational and irrotational components. So, a
good portion of the nucleons in deformed nuclei seems to be
not paired but forming an unpaired four component Fermi gas.
Of course, those effectively unpaired nucleons can make these
spin scissors motion, since no force keeps, e.g., two neutrons
locked into a spin-up/spin-down configuration. In order to
underline this picture, we made the following very clarifying
study. We artificially cranked up the pairing force. Then, of
course, the nucleons’ motion will become more and more
irrotational and, thus, the standard scissors should become
more and more preponderant. Well, that is exactly what is
happening. Let us have a look at Fig. 12(a). There we show
the spectrum of the three low-lying scissors states in 164Dy
for nominal pairing strength. As mentioned in Table I, they
almost have equal B(M1) values with the middle state slightly

FIG. 13. (a, b) Flow patterns for the 2.87-MeV state with nom-
inal pairing strength. (c, d) Flow patterns for the adiabatically
connected state of panels (a) and (b) with doubled pairing strength.

sticking out having at the same time a large proportion of the
standard scissors motion. Now on the right panel, the pairing
strength is increased by a factor of 2. Not surprisingly the
middle state has sucked up practically all B(M1) strength with
only a tiny strength remaining for the two satellites. Of course,
the absolute value of the excitation energy has also strongly
increased what is normal, since increased superfluidity makes
the motion faster. We also show in Fig. 13 the flow patterns for
the two situations. We see that in the case of nominal pairing
strength the flows still reveal a good portion of rigid body
motion whereas for the case of increased pairing strength the
motion has become entirely irrotational, that is, bosonic with
strongly bound pairs [40]. This study, therefore, highlights the
fact that the picture of the scissors modes may be quite a bit
more complicated than the usual idea of two counter-rotating
proton and neutron distributions.

C. Spin scissors or spin flip?

A natural question which may arise is the relation of
spin scissors with spin flip. As a matter of fact spin scissors
and spin flip are just different names of the same physical
phenomenon. From the microscopic [random-phase approx-
imation (RPA)] point of view “spin flips” are transitions
between spin-orbital partners. However, in present RPA cal-
culations no analysis was made of what kind of orbital motion
corresponds to these spin flips. Our study shows, that 1+
excitations, described in RPA as spin flips, can be described by
WFM as a counter-rotation of spin-up nucleons with respect
to spin-down nucleons (i.e., spin scissors) because they belong
to counteroscillations of their orbital angular momenta (see
Figs. 9–11 for currents).
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By the way, transitions between spin-orbital partners rep-
resent only the particular case among all possible transitions.
Let us remember, for example, that from the microscopic point
of view the conventional (orbital) scissors also are produced
by transitions between some levels inside of one major shell
(i.e., �N = 0). The scissors-like nature of the considered ex-
citation can be revealed by constructing the picture of currents
or calculating the angular momenta of all four constituents
(spin-up and spin-down protons and neutrons) of the excited
nucleus.

The lines of currents are already produced in the WFM
approach (see Figs. 9–11) Following our analysis, the spin and
orbital low energy M1 excitations are strongly mixed. Accord-
ing to these results the energy area below 2.7 MeV in 164Dy is
mainly of the spin character. The analysis of currents allows
one to conclude that the excitation with E = 2.2 MeV has an
almost purely spin nature. Excitation with E = 2.87 MeV has
a mixed structure: 68% of a spin nature and 32% of an orbital
one. So, it is natural to expect that in the case of splitting of
these two excitations the energy interval between them will be
filled mainly by the excitations of the spin nature.

V. CONCLUSION

In this paper, we have solved the dynamical equations de-
scribing the nuclear collective scissors motion without the
artificial decoupling of the isovector and isoscalar motions,
an approximation we had applied in our previous work. As a
result a new, third, type of nuclear scissors mode was found
for which, however, there is a natural explanation. The three
types of scissors modes can be approximately classified as
isovector spin scalar (conventional), isovector spin vector, and
isoscalar spin vector (see Fig. 2). Actually Fig. 2 is only
a rough schematic view of the real situation. For this it is
better to look at Figs. 9–11 which demonstrate the results
of the calculations. The analysis of currents has shown that
the three low-lying 1+ magnetic excitations, predicted by the
theory (see Table I), represent quite strong mixtures of all
three scissors modes.

Since the motion in superfluid deformed nuclei is only
halfway between rigid rotation and irrotational flow (see, e.g.,
[35]), this means that the pairing force is too weak to bind
all nucleons into Cooper pairs. Therefore, one can consider
(see [35]) that a good portion of the nucleons is still in a
gaseous phase for which the excitation of spin scissors modes
is very possible. On the other hand, we also have shown that
in doubling the strength of the pairing force the flow becomes
totally irrotational, implying that all nucleons are practically
paired up. Not surprisingly, only the standard scissors mode
of all protons swinging against all neutrons survives because
of the very strongly bound Cooper pairs in this case.

A further very appreciable feature of the moment method
should be mentioned: the eigenvalues have, mathematically
speaking, the RPA property of ± degeneracy and show Gold-
stone (zero) modes in the case of spontaneously broken
symmetries. That we obtain analytically a zero mode for
broken rotational symmetry is a very strong sign of the per-
formance of our 44 coupled equations (given in Appendix A),
since otherwise this very sensitive zero mode would not ap-
pear at all. In conclusion, we may say that our second order
moment equations yield an optimally coarse grained image of
the full QRPA spectrum of the scissors modes. This is addi-
tionally born out in the remarkable agreement, seen in Fig. 6,
of our B(M1) transition probabilities with two QRPA results
and with experimental values. A satisfactory agreement is
also achieved for weakly deformed (transitional) nuclei of the
same region by a very modest refit of the spin-orbit strength.
We suppose that fourth order moments and more realistic
interactions are required for the adequate description of tran-
sitional nuclei. The inclusion of (even small) triaxiality may
also have some influence on the low-lying M1 spectra. These
subjects shall be the objective of future work.
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APPENDIX A: DYNAMICAL EQUATIONS

The set of dynamical equations for isovector variables reads

˙̄L+
21 = 1

m
P̄+

21 − [m ω2 + κ0(4αQ00 + (1 + α)Q20)]R̄+
21 − ih̄

η

2
[L̄−

21 + 2L̄↑↓
22 +

√
6L̄↓↑

20 ]

− κ0(4Q̄00 + (1 + α)Q̄20)R+
21︸ ︷︷ ︸

coupling term

,

˙̄L−
21 = 1

m
P̄−

21 −
[

m ω2 + κ0Q20 − h̄2

15
(3χ − χ̄ )

I1

A1A2
(Q00 + Q20/4)

]
R̄−

21 − ih̄
η

2
L̄+

21 + 4

h̄
Iκ�
r p (r′) ¯̃L21

−
[
ακ0Q̄20 − h̄2

15
(3χ + χ̄ )

I1

A1A2
(Q̄00 + Q̄20/4)

]
R−

21 + 4

h̄
Īκ�
r p (r′)L̃21︸ ︷︷ ︸,
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˙̄L↑↓
22 = 1

m
P̄↑↓

22 −
[

m ω2 − 2κ0Q20 − 4h̄2(3χ − χ̄ )
I1

A1A2
(Q20 + Q00)

]
R̄↑↓

22 − ih̄
η

2
L̄+

21

+
[

2ακ0Q̄20 + 4h̄2(3χ + χ̄ )
I1

A1A2
(Q̄20 + Q̄00)

]
R↑↓

22︸ ︷︷ ︸,
˙̄L↓↑

20 = 1

m
P̄↓↑

20 − [
m ω2 + 2κ0Q20

]R̄↓↑
20 + 2

√
2κ0Q20 R̄↓↑

00 − ih̄
η

2

√
3

2
L̄+

21

+ h̄2

15
(3χ − χ̄ )

I1

A1A2
[Q00R̄↓↑

20 + Q20R̄↓↑
00 /

√
2]

−2ακ0Q̄20[R↓↑
20 +

√
2R↓↑

00 ] + h̄2

15
(3χ + χ̄ )

I1

A1A2
[Q̄00R↓↑

20 + Q̄20R↓↑
00 /

√
2]︸ ︷︷ ︸,

˙̄L+
11 = −3(1 − α)κ0Q20 R̄+

21 − ih̄
η

2
[L̄−

11 +
√

2L̄↓↑
10 ] + 3(1 − α)κ0Q̄20 R+

21︸ ︷︷ ︸,
˙̄L−

11 = −
[

3κ0Q20 + h̄2

20
(3χ − χ̄ )

I1

A1A2
Q20

]
R̄−

21 + 4

h̄
Iκ�
r p (r′) ¯̃L11 − h̄

η

2
[iL̄+

11 + h̄F̄↓↑]

−
[

3ακ0Q̄20 + h̄2

20
(3χ + χ̄ )

I1

A1A2
Q̄20

]
R−

21 + 4

h̄
Īκ�
r p (r′)L̃11︸ ︷︷ ︸,

˙̄L↓↑
10 = −h̄

η

2
√

2
[iL̄+

11 + h̄F̄↓↑],

˙̄F↓↑ = −η[L̄−
11 +

√
2L̄↓↑

10 ],

˙̄R+
21 = 2

m
L̄+

21 − ih̄
η

2
[R̄−

21 + 2R̄↑↓
22 +

√
6R̄↓↑

20 ],
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L̄−
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2
R̄+
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˙̄R↑↓
22 = 2
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√
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21 + 6κ0Q20L̄+
11 − ih̄

η

2
[P̄−
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10(eq)R̄+
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˙̄P↓↑
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11︸ ︷︷ ︸ . (A1)

The set of dynamical equations for isoscalar variables reads

L̇+
21 = 1

m
P+

21 − [m ω2 + 2κ0(2Q00 + Q20)]R+
21 − ih̄

η

2
[L−

21 + 2L↑↓
22 +

√
6L↓↑

20 ] − ακ0(2Q̄00 + Q̄20)R̄+
21︸ ︷︷ ︸

coupling term

,

L̇−
21 = 1

m
P−

21 −
[

m ω2 + κ0Q20 − h̄2

15
(3χ + χ̄ )

I1

A1A2
(Q00 + Q20/4)

]
R−

21 − ih̄
η

2
L+

21 + 4

h̄
Iκ�
r p (r′)L̃21

−
[
ακ0Q̄20 − h̄2

15
(3χ − χ̄ )

I1

A1A2
(Q̄00 + Q̄20/4)

]
R̄−

21 + 4

h̄
Īκ�
r p (r′) ¯̃L21︸ ︷︷ ︸,

L̇↑↓
22 = 1

m
P↑↓

22 −
[

m ω2 − 2κ0Q20 − 4h̄2(3χ + χ̄ )
I1

A1A2
(Q20 + Q00)

]
R↑↓

22 − ih̄
η

2
L+

21

+
[

2ακ0Q̄20 + 4h̄2(3χ − χ̄ )
I1

A1A2
(Q̄20 + Q̄00)

]
R̄↑↓

22︸ ︷︷ ︸,

L̇↓↑
20 = 1

m
P↓↑

20 − [m ω2 + 2κ0Q20]R↓↑
20 + 2

√
2κ0Q20 R↓↑

00 − ih̄
η

2

√
3

2
L+

21

+ h̄2

15
(3χ + χ̄ )

I1

A1A2
[Q00R↓↑

20 + Q20R↓↑
00 /

√
2]

−2ακ0Q̄20[R̄↓↑
20 +

√
2R̄↓↑

00 ] + h̄2

15
(3χ − χ̄ )

I1

A1A2
[Q̄00R̄↓↑

20 + Q̄20R̄↓↑
00 /

√
2]︸ ︷︷ ︸,

L̇+
11 = −ih̄

η

2
[L−

11 +
√

2L↓↑
10 ],
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L̇−
11 = −

[
3κ0Q20 + h̄2

20
(3χ + χ̄ )

I1

A1A2
Q20

]
R−

21 + 4

h̄
Iκ�
r p (r′)L̃11 − h̄

η

2
[iL+

11 + h̄F↓↑]

−
[

3ακ0Q̄20 + h̄2

20
(3χ − χ̄ )

I1

A1A2
Q̄20

]
R̄−

21 + 4

h̄
Īκ�
r p (r′) ¯̃L11︸ ︷︷ ︸,

L̇↓↑
10 = −h̄

η

2
√

2
[iL+

11 + h̄F↓↑],

Ḟ↓↑ = −η[L−
11 +

√
2L↓↑

10 ],

Ṙ+
21 = 2

m
L+

21 − ih̄
η

2
[R−

21 + 2R↑↓
22 +

√
6R↓↑

20 ],

Ṙ−
21 = 2

m
L−

21 − ih̄
η

2
R+

21,

Ṙ↑↓
22 = 2

m
L↑↓

22 − ih̄
η

2
R+

21,

Ṙ↓↑
20 = 2

m
L↓↑

20 − ih̄
η

2

√
3

2
R+

21,

Ṗ+
21 = −2[m ω2 + κ0Q20]L+

21 + 6κ0Q20L+
11 − ih̄

η

2
[P−

21 + 2P↑↓
22 +

√
6P↓↑

20 ]

+ 3

8
h̄2χ

I2

A1A2
[(Q20 + 4Q00)L+

21 + 3Q20L+
11] + 4

h̄
Iκ�

pp (r′)P̃21

+ 2ακ0Q̄20(3L̄+
11 − L̄+

21) + 3

8
h̄2χ

I2

A1A2
[(Q̄20 + 4Q̄00)L̄+

21 + 3Q̄20L̄+
11] + 4

h̄
Īκ�

pp (r′) ¯̃P21︸ ︷︷ ︸,
Ṗ−

21 = −2[m ω2 + κ0Q20]L−
21 + 6κ0Q20L−

11 − 6
√

2κ0L−
10(eq)R+

21 − ih̄
η

2
P+

21

+ 3

8
h̄2χ

I2

A1A2
[(Q20 + 4Q00)L−

21 + 3Q20L−
11]

+ 2ακ0Q̄20(3L̄−
11 − L̄−

21) + 3

8
h̄2χ

I2

A1A2
[(Q̄20 + 4Q̄00)L̄−

21 + 3Q̄20L̄−
11] − 6

√
2ακ0L̄−

10(eq)R̄+
21︸ ︷︷ ︸,

Ṗ↑↓
22 = −2[m ω2 − 2κ0Q20]L↑↓

22 − ih̄
η

2
P+

21 + 3

2
h̄2χ

I2

A1A2
(Q20 + Q00)L↑↓

22

+ 4ακ0Q̄20L̄↑↓
22 + 3

2
h̄2χ

I2

A1A2
(Q̄20 + Q̄00)L̄↑↓

22︸ ︷︷ ︸,
Ṗ↓↑

20 = −2[m ω2 + 2κ0Q20]L↓↑
20 + 4

√
2κ0Q20L↓↑

00 − ih̄
η

2

√
3

2
P+

21 + 3

2
h̄2χ

I2

A1A2
[Q00L↓↑

20 + Q20L↓↑
00 /

√
2]

+ 4ακ0Q̄20(
√

2L̄↓↑
00 − L̄↓↑

20 ) + 3

2
h̄2χ

I2

A1A2
[Q̄00L↓↑

20 + Q̄20L̄↓↑
00 /

√
2]︸ ︷︷ ︸,

L̇↓↑
00 = 1

m
P↓↑

00 − m ω2R↓↑
00 + 2

√
2κ0Q20R↓↑

20 + h̄2

4 A1A2

[(
χ + χ̄

3

)
I1 − 9

4
χ I2

]
[(2Q00 + Q20)R↓↑

00 +
√

2Q20R↓↑
20 ]

+ 2
√

2ακ0Q̄20R̄↓↑
20 + h̄2

4 A1A2

[(
χ − χ̄

3

)
I1 − 9

4
χ I2

]
[(2Q̄00 + Q̄20)R̄↓↑

00 +
√

2Q̄20R̄↓↑
20 ]︸ ︷︷ ︸,

Ṙ↓↑
00 = 2

m
L↓↑

00 ,

Ṗ↓↑
00 = −2m ω2L↓↑

00 + 4
√

2κ0Q20L↓↑
20 + 3

4
h̄2χ

I2

A1A2
[(2Q00 + Q20)L̄↓↑

00 +
√

2Q20L̄↓↑
20 ]

+ 4
√

2ακ0Q̄20L̄↓↑
20 + 3

4
h̄2χ

I2

A1A2
[(2Q̄00 + Q̄20)L̄↓↑

00 +
√

2Q̄20L̄↓↑
20 ]︸ ︷︷ ︸,

044323-17



E. B. BALBUTSEV et al. PHYSICAL REVIEW C 105, 044323 (2022)

˙̃P21 = − 1

2h̄
�(r′)P+

21 + 6h̄κ0K0R+
21 − 1

2h̄
�̄(r′)P̄+

21 + 6h̄ακ0K̄0R̄+
21︸ ︷︷ ︸,

˙̃L21 = − 1

2h̄
�(r′)L−

21 − 1

2h̄
�̄(r′)L̄−

21︸ ︷︷ ︸,
˙̃L11 = − 1

2h̄
�(r′)L−

11 − 1

2h̄
�̄(r′)L̄−

11︸ ︷︷ ︸, (A2)

where the terms coupling isovector and isoscalar sets of equations are underlined by the braces and

A1 =
√

2 Req
20 − Req

00 = Q00√
3

(
1 + 4

3
δ

)
, A2 = Req

20/
√

2 + Req
00 = −Q00√

3

(
1 − 2

3
δ

)
, (A3)

Q00 = 3
5 AR2/[(1 + 4

3δ)1/3(1 − 2
3δ)2/3], δ is the deformation parameter, Q20 = 4

3δQ00, Q̄00 = Qn
00 − Qp

00, Q̄20 = Qn
20 − Qp

20, �̄ =
�n − �p, � = �n + �p, R = r0A1/3, r0 = 1.2 fm,

I1 = π

4

∫ ∞

0
dr r4

(
∂n(r)

∂r

)2

, I2 = π

4

∫ ∞

0
dr r2n(r)2, Kτ

0 =
∫

d (r, p)κτ
0 (r, p),

K̄0 = Kn
0 − K p

0 , K0 = Kn
0 + K p

0 , n(r) = n0(1 + e
r−R

a )−1 is nuclear density, and a = 0.53 fm. Further, Iκ�
pp (r, p) =

|V0| r3
p√

π h̄3 e−αp2 ∫
κr (r, p′)[φ0(x) − 4α2 p′4φ2(x)]e−αp′2

p′2d p′, and Iκ�
r p (r, p) = |V0| r3

p√
π h̄3 e−αp2 ∫

κr (r, p′)[φ0(x) −
2αp′2φ1(x)]e−αp′2

p′2d p′, where x = 2αpp′, φ0(x) = 1
x sinh(x), φ1(x) = 1

x2 [cosh(x) − 1
x sinh(x)], and φ2(x) = 1

x3 [(1 +
3
x2 ) sinh(x) − 3

x cosh(x)].
Anomalous density and semiclassical gap equations [15] read

κ (r, p) = 1

2

�(r, p)√
h2(r, p) + �2(r, p)

, (A4)

�(r, p) = −1

2

∫
d3p′

(2π h̄)3
v(|p − p′|) �(r, p′)√

h2(r, p′) + �2(r, p′)
, (A5)

where v(|p − p′|) = βe−α|p−p′ |2 with β = −|V0|(rp
√

π )3 and α = r2
p/4h̄2.

Parameters of pair correlations for WFM calculations read V p
0 = 27 MeV, V n

0 = 23 MeV, rp
p = 1.50 fm, and rn

p = 1.85 fm
for nuclei with A = 150–186. The spin-orbit strength constant κNils = 0.0637 and quenching factor q = 0.7. Exceptions include
V p

0 = 26.5 MeV, V n
0 = 22.6 MeV for Hf and W isotopes, q = 0.57 for 150Sm, rp

p = 1.57 fm, q = 0.78 for 150Nd, V p
0 = 23 MeV,

V n
0 = 20 MeV, rp

p = 2.0 fm, rn
p = 2.4 fm, q = 0.5 for 148Sm and 148Nd, V p

0 = 26.5 MeV, V n
0 = 22.6 MeV, rp

p = 1.7 fm, rn
p = 2.1

fm, κNils = 0.05, and q = 0.57 for Os and Pt isotopes.

APPENDIX B: EXCITATION PROBABILITIES

Excitation probabilities are calculated with the help of the theory of linear response of the system to a weak external field:

Ô(t ) = Ô e−i�t + Ô† ei�t . (B1)

A detailed explanation can be found in [10,11]. We recall only the main points. The matrix elements of the operator Ô obey the
relationship [41]

|〈ψa|Ô|ψ0〉|2 = h̄ lim
�→�a

(� − �a)〈ψ ′|Ô|ψ ′〉e−i�t , (B2)

where ψ0 and ψa are the stationary wave functions of the unperturbed ground and excited states, ψ ′ is the wave function of the
perturbed ground state, and �a = (Ea − E0)/h̄ are the normal frequencies, where the bar means averaging over a time interval
much larger than 1/�.

To calculate the magnetic transition probability, it is necessary to excite the system by the following external field:

Ôλμ = μN

(
gτ

s Ŝ/h̄ − igτ
l

2

λ + 1
[r × ∇]

)
∇(rλYλμ), μN = eh̄

2mc
. (B3)

The free particle g factors are given by gp
l = 1, gp

s = 5.5856 for protons, and gn
l = 0, gn

s = −3.8263 for neutrons. The spin
quenching factor q was applied in the calculations: gτ

s = qgτ free
s . The values used are given in the text after Eq. (A5). The dipole
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operator (λ = 1, μ = 1) in cyclic coordinates looks like

Ô11 =
√

3

4π

[
gτ

s Ŝ1/h̄ − gτ
l

√
2

∑
ν,σ

C11
1ν,1σ rν∇σ

]
μN . (B4)

For the matrix element we have

〈ψ ′|Ô11|ψ ′〉 =
√

3

2π

[
− h̄

2

(
gn

sFn↓↑ + gp
sFp↓↑) − igp

l Lp+
11

]
μN

h̄
=

√
3

8π

[
1

2

(
gp

s − gn
s

)F̄↓↑ + i

h̄
gp

l L̄+
11 + i

h̄

[
gn

s + gp
s − gp

l

]L+
11

]
μN .

(B5)

Deriving (B5) we have used the relation 2iL+
11 = −h̄F↓↑, which follows from the angular momentum conservation [11]. One

has to add the external field (B4) to the Hamiltonian (5). Due to the external field some dynamical equations of (A1) become
inhomogeneous:

˙̄R+
21 = · · · + i

3√
π

μN

2h̄
gp

l Rp+
20 (eq) ei�t ,

˙̄L−
11 = · · · + i

√
3

π

μN

2h̄
gp

l Lp−
10 (eq) ei�t ,

˙̄L↓↑
10 = · · · + i

√
3

2π

μN

2h̄

[
gn

sL
n−
10 (eq) − gp

s Lp−
10 (eq)

]
ei�t . (B6)

For the isoscalar set of equations (A2), respectively, we obtain

Ṙ+
21 = · · · − i

3√
π

μN

2h̄
gp

l Rp+
20 (eq) ei�t ,

L̇−
11 = · · · − i

√
3

π

μN

2h̄
gp

l Lp−
10 (eq) ei�t ,

L̇↓↑
10 = · · · + i

√
3

2π

μN

2h̄

[
gn

sL
n−
10 (eq) + gp

s Lp−
10 (eq)

]
ei�t . (B7)

Solving the inhomogeneous set of equations one can find the required in (B5) values of L+
11, L̄+

11, and F̄↓↑ and calculate B(M1)
factors for all excitations as it is explained in [10,11].

APPENDIX C: CURRENTS

Lς

λ,μ =
∫

d3r{r ⊗ δJς }λμ = 1√
3

(−1)λ
[
A1C

λμ
1μ,10Kς

μ,0 − A2
(
Cλμ

1μ+1,1−1Kς

μ+1,−1 + Cλμ
1μ−1,11Kς

μ−1,1

)]
, (C1)

Kς

−1,−1 = −
√

3Lς

2−2

A2
, Kς

−1,0 =
√

3
(Lς

1−1 + Lς

2−1

)
√

2 A1

, Kς

−1,1 = −
√

3Lς

10 + Lς

20 + √
2Lς

00√
2 A2

,

Kς

0,−1 =
√

3
(Lς

1−1 − Lς

2−1

)
√

2 A2

, Kς

0,0 =
√

2Lς

2,0 − Lς

0,0

A1
, Kς

0,1 = −
√

3
(Lς

11 + Lς

21

)
√

2 A2

,

Kς

1,−1 =
√

3Lς

10 − Lς

20 − √
2Lς

00√
2 A2

, Kς

1,0 =
√

3
(Lς

21 − Lς

11

)
√

2 A1

, Kς

1,1 = −
√

3Lς

22

A2
, (C2)

where Ai are defined by (A3).
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