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Pairing rotations are the low-energy excitations of finite superfluid systems, connecting systems that differ in
their number of Cooper pairs. This paper presents a model-independent derivation of pairing rotations within
an effective theory that exploits the emergent breaking of U(1) phase symmetries. The symmetries are realized
nonlinearly and the Nambu-Goldstone modes depend only on time because the system is finite. Semimagic nuclei
exhibit pairing rotational bands while the pairing spectrum becomes an elliptical paraboloid for open-shell nuclei.
Model-independent relations between double charge-exchange reactions and α particle capture or knockout in
open-shell nuclei are in analogy to the pair transfer reactions in a single superfluid. Odd semimagic nuclei are
described by coupling a fermion to the superfluid. The leading-order theories reproduce data for pairing rotational
bands within uncertainty estimates.
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I. INTRODUCTION

Atomic nuclei are finite superconductors. Hallmarks of
nuclear pairing are excitation gaps in even-even nuclei [1],
reduced moments of inertia due to superfluidity [2], odd-
even staggerings in many observables, and pairing vibrations
[3] and rotations [4–7] (see Ref. [8] for an overview). Pair-
ing rotational spectra are the analog to rotational bands in
deformed nuclei; they are quadratic in the difference of
Cooper pairs and are associated with the Nambu-Goldstone
mode of a broken U(1) phase symmetry [9–11]. They ex-
plain why two-nucleon transfer is enhanced between nuclei
within a pairing-rotational band [7,12–16]. Pairing rotational
modes have been studied via pairing models, see, e.g.,
Refs. [6,7,17,18], and in Hartree-Fock-Bogoliubov [19,20]
and relativistic mean-field computations [21].

In this paper I revisit pairing rotations in the framework
of effective field theory [22–30]. This brings simplicity and
model independence to an old subject. The approach requires
one to be conscious about the breakdown scale, and the
power counting allows one to estimate or quantify [31,32]
uncertainties. Open-shell nuclei are described as two inter-
acting superfluids starting from the most general Lagrangian
compatible with the symmetry breaking. As we will see, the
model-independent approach yields relations between dou-
ble charge-exchange reactions and two-nucleon transfer, and
these can be tested experimentally.

The approach presented in this work differs from that by
Furnstahl et al. [25]. That work proposed an effective field
theory for dilute Fermi systems. Here I merely exploit the
dynamics of Nambu-Goldstone modes corresponding to the
emergent breaking of phase symmetries in finite systems.
Then quantum field theory reduces to quantum mechanics
[33] and a fermion only appears in odd systems.

This paper is organized as follows: Section II present the
effective field theory for even and odd semimagic nuclei,
respectively. The theory for open-shell even-even nuclei is
derived in Sec. III. The theory is confronted with data in
Sec. IV. The summary in Sec. V discusses the main results.

II. EFFECTIVE THEORY FOR A SINGLE SUPERFLUID

A. Even semimagic nuclei

1. Leading-order Hamiltonian

I consider a finite superfluid of a single fermion species
with spin 1/2 and assume that all fermions are in Cooper
pairs. Examples are even isotopes of tin or lead, or even
isotones with neutron number N = 82. The corresponding
nuclear ground states must be invariant under U(1) phase
transformations which are generated by

g(α) = eiαn̂. (1)

Here α is the phase angle and n̂ is the operator that yields
the number of pairs. A finite system displays emergent rather
than spontaneous symmetry breaking [34]. Nevertheless, one
can follow the standard approach to spontaneous symmetry
breaking via nonlinear realizations [35–38], and the Nambu-
Goldstone mode parametrizes the coset U(1)/1 ∼ U(1) of the
broken symmetry. For finite systems, however, a tremendous
simplification occurs because the Nambu-Goldstone “field”
α = α(t ) depends only on time [33,39], and quantum field
theory thus reduces to quantum mechanics. In the present
case, the phase velocity

α̇ ≡ ∂tα (2)

is the only quantity that can enter the Lagrangian.
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The leading-order Lagrangian then becomes

LLO = a

2
α̇2 + n0α̇. (3)

Here, a and n0 are low-energy constants. The constant a is
akin to a mass term while n0 is a constant gauge potential. A
Legendre transformation yields the Hamiltonian

HLO = 1

2a
(pα − n0)2. (4)

Here,

pα ≡ ∂L

∂α̇
(5)

is the canonical momentum. Clearly, pα is a constant of
motion. The interpretation of pα as the number of pairs
n becomes clear when considering phase transformations
g(β )g(α) = g(α + β ). The phase α changes to α + β and this
is a nonlinear realization of the phase symmetry. Applying
Noether’s theorem to infinitesimal phase transformations then
yields that pα is conserved and therefore must be identified
with the number of pairs.

One quantizes the Hamiltonian (4) as usual via

pα → p̂α = −i∂α, (6)

(and of course also identifies the pair number operator as
n̂ = −i∂α .) Thus, the Hamiltonian is

H = 1

2a
(−i∂α − n0)2

= 1

2a
(n̂ − n0)2. (7)

Requiring that the wave function ψ (α) is single-valued un-
der gauge transformations ψ (α) → ψ ′(α) = eiλαψ (α) with
constant λ then shows that n0 must be an integer. Eigenfunc-
tions are

ψn(α) = 〈α|n〉 = 1√
2π

einα, (8)

and these describe a system of n pairs. The corresponding
energies

εn = 1

2a
(n − n0)2 (9)

are in a pairing rotational band.
Let us consider time-reversal invariance. The pair-number

operator n̂ = p̂α is even under time reversal. This implies
that the phase α is odd. As α̇ is even under time reversal,
higher-order contributions to the effective theory can also
contain odd powers of the phase velocity. Under time rever-
sal, the eigenfunction ψn(α) → ψn(−α) = ψ∗

n (α) = ψ−n(α).
Formally, one could admit negative pair numbers n (and neg-
ative n0), and the spectrum is invariant under this change. In
this case, one would interpret n as the number of hole pairs.

Besides the number operator n̂, the other operator of inter-
est is the pair-removal operator P̂ with matrix elements

〈α′|P̂|α〉 = P0e−iαδ(α′ − α). (10)

Here, P0 is a constant that denotes the overall strength. Clearly
P̂|n〉 = P0|n − 1〉, and P̂†|n〉 = P∗

0 |n + 1〉. The effective the-
ory then predicts that 〈n + 1|P̂†|n〉 = P∗

0 , i.e., pair transfer
within the nuclei of a pairing rotational band is independent
of the number of pairs in a given nucleus. This hallmark of
pairing rotations has been confirmed experimentally in two-
nucleon transfer reactions, see Refs. [7,12,14].

Pairing vibrations fall outside the scope of the effective
theory presented in this paper. To include them, one would
need to add another degree of freedom that accounts for two-
quasiparticle excitations at fixed pair number: Simple models
of pairing vibrations consist of two j shells (while pairing
rotations result already from a single j shell) [8].

2. Power counting

Effective theories exploit a separation of energy scales and
organize the Hamiltonian by a power counting. In the present
case, the Lagrangian (3) is postulated to be of the low-energy
scale ξ . One thus assigns the scalings

a ∼ ξ−1, (11)

α̇ ∼ n0ξ, (12)

and it is implied that the two terms of the Lagrangian (3)
combine (or cancel) to yield the low-energy scale ξ . Then the
Hamiltonian (4) is also of order ξ , but its size is really about
ξ (n − n0)2, which quickly can become large. Below we will
see that 1/(2a) ≈ 0.4 MeV for tin (Z = 50) isotopes, 0.25
MeV for lead isotopes (Z = 82), and 1.0 MeV for N = 82
isotones. The comparison of tin and lead isotopes on the one
hand and the N = 82 isotones on the other hand also shows
that neutron pairing is associated with a lower energy scale
than proton pairing.

In effective field theories, corrections to the leading-order
are due to neglected physics at high energy. This introduces
the breakdown energy scale �b, and a corresponding break-
down pair number, nb = √

2a�b via Eq. (9). I will thus
assume that shell closures determine the breakdown of pair-
ing. Then |n − n0| cannot be larger than the number of pairs in
a major shell, i.e., nb ≈ 15 or 20 in heavy nuclei. This would
suggest that �b/ξ ≈ n2

b � 1, and the scale separation should
be large.

The subleading correction to the Lagrangian (3) contains
the term α̇3, and at next-to-leading order the Hamiltonian can
be written as

HNLO = HLO + g

3
(n̂ − n0)3. (13)

Here, the factor 1/3 is introduced for convenience. Energies
are obtained by replacing the number operator with its eigen-
values, i.e.

ε̃n = 1

2a
(n − n0)2 + g

3
(n − n0)3. (14)

An estimate for the low-energy constant g results from
the assumption that—at the breakdown scale—the correc-
tion proportional to g is clearly visible, i.e., it is as large
as the leading-order energy spacing |Enb+1 − Enb | ≈ |nb −
n0|/a. This yields the estimate |g| ≈ 3/[a(nb − n0)2]. To make
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this estimate independent of n0 one replaces (nb − n0)2 by its
average n2

b/3, taken over the shell. This then yields

|g| ≈ 9

an2
b

, (15)

and the uncertainty estimate for leading-order results is

�εn ≈ 3|n − n0|3
an2

b

. (16)

Below the breakdown energy, the term proportional to g is
then suppressed by a factor 1/nb � 1 compared with the
leading term.

It is clear how to generalize this approach to even higher
orders: The Lagrangian is expanded in powers of the phase
velocity α̇, and the Hamiltonian becomes an expansion in
powers of (n̂ − n0); subsequent orders are suppressed by in-
creasing factors of

√
ξ/�b ∼ n−1

b .
The assumptions underlying the power counting can be

tested by extracting the low-energy coefficients (2a)−1 and
g from data. In analogy to rotations of deformed nuclei, one
can also think about subleading corrections in the framework
of a variable moment of inertia [40]. This introduces the n-
dependent pairing rotational constant as

1

2

∂2ε̃n

∂n2
= 1

2a
+ g(n − n0). (17)

This expression will be used below to extract g from data.

B. Odd semimagic nuclei

Pairing rotations in odd systems were previously consid-
ered in Ref. [41] using a BCS state within a pairing model.
Within the effective theory they can be described as a spin-1/2
fermion coupled to the superfluid.

The Lagrangian is

L = a

2
α̇2 + n0α̇ + Lχ + Lint. (18)

The fermion Lagrangian is

Lχ =
∫

d3rχ̂†(r)

(
i∂t + h̄2�r

2m
− V

)
χ̂ (r), (19)

and the interaction Lint will be specified shortly. Here, I have
introduced the two-component fermion field

χ̂ (r) =
(

χ̂+ 1
2
(r)

χ̂− 1
2
(r)

)
, (20)

and its adjoint. The operators χ̂†
s (r) and χ̂s(r) create and

annihilate a fermion with spin projection s = ±1/2 at the po-
sition r, respectively. They fulfill the usual anticommutation
relations. In Eq. (19) the potential is denoted as V and the
fermion’s mass as m. I neglected fermion-fermion interactions
because the interest is in a single fermion coupled to a super-
fluid.

The fermion-pair number operator is

n̂χ = 1

2

∫
d3rχ̂†(r)χ̂ (r), (21)

and this operator couples the fermion to the superfluid via

Lint = −n̂χ α̇. (22)

The superfluid-fermion interaction (22) is so simple because
(i) the coupling of the fermion to the superfluid must be via
the phase velocity (as one deals with a Nambu-Goldstone
mode) and (ii) it can only happen in gauge space, i.e., via
the fermion-pair number operator (21). The sign is chosen
for convenience. As n̂χ has half integer eigenvalues, the wave
function ψ (α) of the superfluid is double-valued, i.e., it goes
over into itself after a rotation by 4π in gauge space. (This is in
analogy to Wigner D functions at half-integer angular momen-
tum.) Furthermore, the choice of the coupling (22) ensures
that the wave function of the superfluid remains double-valued
under gauge transformations ψ → eiλαψ .

The canonical momentum of the superfluid is pα = ∂L
∂α̇

, and
the behavior of the superfluid under phase transformations is
as before. Under phase transformations with an infinitesimal
angle δβ, the fermion field changes by

eiδβn̂χ χ̂s(r)e−iδβn̂χ = χ̂s(r) − iδβχ̂s(r). (23)

Introducing the fermion canonical momenta

�̂s(r) ≡ δL

δ∂tχs(r)
= iχ̂†

s (r) (24)

and applying Noether’s theorem to the coupled system then
shows that the total number of pairs,

n̂tot = pα + n̂χ , (25)

is conserved under phase rotations. This is as expected. After
the quantization (6) the eigenstates of n̂tot are products of a
superfluid state |n〉 with n pairs and a fermion state. I denote
the latter as |q j jz〉 where j denotes the fermion’s total angular
momentum, jz denotes its projection onto an arbitrary axis,
and q accounts for any other quantum numbers. Thus

n̂tot|n〉|q j jz〉 = (
n + 1

2

)|n〉|q j jz〉, (26)

with half integer numbers of pairs ntot = n + 1/2.
A Legendre transform yields the Hamiltonian

Ĥ = 1

2a
(−i∂α + n̂χ − n0)2 + Ĥχ

= 1

2a
(n̂tot − n0)2 + Ĥχ , (27)

with

Ĥχ =
∫

d3rχ̂†(r)

(
− h̄2�r

2m
+ V

)
χ̂ (r). (28)

The eigenstates (26) of the total pair-number operator are also
eigenstates of the Hamiltonian (27). Using

Ĥχ |q j jz〉 = eq, j |q j jz〉 (29)

yields the spectrum

εntotq j = 1

2a
(ntot − n0)2 + eq j . (30)

This shows that one also has pairing rotational bands in odd-
mass nuclei. These connect states that differ by the number of
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pairs but have equal spin and parity. In contrast with pairing-
rotational bands in even-even nuclei, these are not necessarily
ground states. The Hamiltonian (27) must reduce to Eq. (7)
when acting onto the fermion vacuum. Thus, n0 is an integer.
Except for the uninteresting constant eq j the pairing rotational
bands in odd and even nuclei have the same parabolic form.
As in the case of even isotopes, the theory for odd nuclei also
predicts that pair transfer and removal is equal in strength for
states of a pairing rotational band. Subleading corrections are
similar to those for even nuclei, i.e., one has an expansion of
the Hamiltonian in powers of (ntot − n0).

C. Adjustment of low-energy constants

The spectra (9) and (30) relate superfluid systems in the
vicinity of integer n0 pairs to each other. Before one can apply
the effective theory of pairing rotations to nuclei, however,
the dominant energy contributions to nuclear states must be
included. These consist of an overall constant and a term
linear in the number of pairs.

Let us consider even nuclei first. Adding the contributions
En0 + S(n̂ − n0) to the Hamiltonian (7) yields the energy spec-
trum

En = En0 − Sn0 (n − n0) + εn. (31)

Here, En0 is the ground-state energy of the nucleus with n0

pairs, and Sn0 denotes the pair removal energy, and εn is
from Eq. (9). As En0 ≈ −8A MeV for a nucleus with mass
number A and Sn0 ≈ 16 MeV for heavy nuclei, the pairing
rotation energies εn only yield a small correction [except
when (n − n0)2 � 1] because the low-energy scale ξ is much
smaller than Sn0 .

The expansion (31) presents a challenge for theories about
pairing [40]. One could generally argue that the ground-state
energy En can be expanded around n0 in powers of (n − n0).
Then, the leading-order theory for pairing would be just one
contribution to the quadratic term, and other contributions are
hard to pin down without a microscopic theory. However,
the leading-order effective theory predicts that the pairing
rotational constant a in Eq. (9) does not depend on which
nucleus (identified by the number of pairs n0) the band is
centered. Within the effective theory, any variation of a must
be attributed to subleading corrections, see Eq. (17). Thus,
when exploring pairing rotational bands, one can vary n0 and
find out if any observed variation of a is consistent with the
size of subleading contributions.

This suggests the following approach. I will assume that
pairing yields the dominant quadratic term in the energy ex-
pansion and adjust the low-energy constants En0 , Sn0 , and a to
the binding energies of the nuclei with n0 and n0 ± 1 pairs via

Sn0 = 1
2 (En0−1 − En0+1),

a−1 = En0+1 − 2En0 + En0−1. (32)

Clearly, Sn0 is the average of two two-nucleon separation en-
ergies, while the rotational constant is a three-point difference
of even nuclei. When adjusting a this way it becomes an
n0-dependent quantity, and the variations of a with n0 indicate
the size of subleading corrections.

FIG. 1. Pairing rotational constants for even isotopes of tin (as a
function of pairs above neutron number N = 50), of N = 82 isotones
(as function of pairs above proton number N = 50) and lead (as a
function of pair holes below the neutron number N = 126).

Figure 1 shows the pairing rotational constant (2a)−1, com-
puted via Eq. (32), for even isotopes of tin (as a function of
pairs above neutron number N = 50), of N = 82 isotones (as
function of pairs above proton number N = 50) and lead (as
a function of pair holes below the neutron number N = 126).
Clearly, the pairing rotational constant is approximately inde-
pendent of n0 for isotopes of lead while the N = 82 isotones
and the isotopes of tin exhibit more variations. This suggests
that higher-order corrections are significant in those nuclei.
One also sees that the variations are not smooth as the number
of pairs (or pair holes in lead) changes. This suggests that
the (smooth) subleading contributions discussed in Sec. II A 2
are only part of the corrections beyond quadratic order. The
nonsmooth fluctuations are outside the scope of the effective
theory. They also prevent one from adjusting subleading low-
energy constants locally, i.e., in a vicinity of a given n0.

Therefore, I consider global adjustments of g in Eq. (14)
and check the power counting. The average slopes of the lines
in Fig. 1 are small compared with the rotational constants, and
this suggests that the smooth subleading correction could be
systematic. Using Eq. (17) one identifies the average slope as
g. Table I presents the average values of the rotational constant
(2a)−1 and g for the tin and lead isotopes and the N = 82
isotones. Also shown is the maximum number of pairs for the
major shell corresponding to the nuclei of interest, and the
estimate 3/(〈a〉n2

b) from Eq. (15) for the size of the coupling
g. The theoretical estimates correctly identify the scale of 〈|g|〉
(they are about twice of what was extracted from data), and
this gives one confidence in the power counting proposed in
Sec. II A 2.

Thus, the uncertainty estimate (16) is expected to capture
the smooth corrections to the leading-order pairing rotational
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TABLE I. Average values of pairing rotational constants (2a)−1

and the absolute average scale |〈g〉| for subleading correction (both
in MeV) for isotopes of tin and lead, and N = 82 isotones. Also
shown are the maximum number of pairs nb in the relevant major
shell, and—in the last column—the estimate (15) for the size of the
low-energy constant g (in MeV).

〈(2a)−1〉 |〈g〉| nb 9/(〈a〉n2
b )

Sn 0.38 0.016 16 0.027
Pb 0.26 0.0057 22 0.0097
N = 82 0.97 0.038 16 0.068

bands. In what follows I assume that pairing yields the dom-
inant quadratic contribution to the expansion (31), limit the
discussion to the leading-order theory, and use the uncertainty
estimate (16).

For odd nuclei, one expands the pairing rotational contribu-
tion as (ntot − n0)2 = (ntot − n0 − 1/2)2 + [ntot − n0 − 1/4].
The constant and linear terms [ntot − n0 − 1/4] can then be
absorbed in an expansion of the energy (31). Thus, I employ
Eqs. (31) and (32) for even nuclei (by using integer n0) and for
odd nuclei (by using half integer n0). Inspection shows that the
pairing rotational constants for the odd nuclei are close to their
even neighbors. This allows me to use the data in Table I also
for uncertainty estimates in odd nuclei.

III. EFFECTIVE THEORY FOR TWO SUPERFLUIDS

A. Even-even nuclei

In heavy open-shell nuclei, neutrons form isovector pairs
and so do protons, and both superfluids interact. In what
follows, I will not consider proton-neutron pairing but will
include interactions between proton and neutron pairs. The
effective theory is based on the emergent symmetry break-
ing from U(1) × U(1) → 1, and the coset is isomorph to
U(1) × U(1). The phases α(t ) and β(t ) denote the Nambu-
Goldstone modes corresponding to neutron and proton pairs,
respectively. The most general Lagrangian up to quadratic
terms in phase velocities is

L = 1

2
(α̇, β̇ )M̂

(
α̇

β̇

)
+ (n0, z0)

(
α̇

β̇

)
. (33)

Here, n0 and z0 are low-energy constants and M̂ is a symmetric
2 × 2 “mass” matrix with three parameters, and I employed a
matrix-vector notation. The off-diagonal elements of M̂ intro-
duce an interaction between the two superfluids. Introducing
the canonical momenta pα ≡ ∂L

∂α̇
and pβ ≡ ∂L

∂β̇
, and perform-

ing a Legendre transform yields the Hamiltonian

H = 1

2
(pα − n0, pβ − z0)M̂−1

(
pα − n0

pβ − z0

)
. (34)

Quantization proceeds as in the previous section, and single-
valuedness of the wave function under simple gauge trans-
formations requires that n0 and z0 are integers. The resulting
Hamiltonian is

H = 1

2
(n̂ − n0, ẑ − z0)M̂−1

(
n̂ − n0

ẑ − z0

)
, (35)

where n̂ ≡ −i∂α and ẑ ≡ −i∂β count the conserved number
of pairs in each superfluid. Energies are obtained by replacing
these number operators by their eigenvalues, i.e.,

εn,z = 1

2a
(n − n0)2 + 1

2b
(z − z0)2 + 1

c
(n − n0)(z − z0).

(36)
Here, the constants 1/a, 1/b, and 1/c are the diagonal and off-
diagonal entries of M̂−1, respectively. One sees that all even-
even nuclei in an entire region are connected via pairing, and
the spectrum is an elliptical paraboloid; any section of this
paraboloid is a pairing rotational band, and the sections are
not limited to keeping neutron or proton numbers fixed.

It is interesting to use the isospin projection T = n + z and
mass number A = 2(n + z) as independent variables (and sim-
ilarly introduce T0 and A0). Then the spectrum (36) becomes

ε(T, A) =
(

1

2a
+ 1

2b
− 1

c

)(
T − T0

2

)2

+
(

1

2a
+ 1

2b
+ 1

c

)(
A − A0

4

)2

+
(

1

a
− 1

b

)
(T − T0)(A − A0)

8
. (37)

The spectrum (36) recovers the results of
Refs. [17,19,40,42]. The effective theory thus supports the
recent proposal by Hinohara and Nazarewicz [10] to employ
the pairing rotational tensor M̂−1 as a model-independent
indicator for pairing. Its eigenvectors are expected to
point into the directions of the valley of β stability and
perpendicular to it; the corresponding eigenvalues are
expected to be small and large in magnitude, respectively.

The eigenstates of the Hamiltonian (35) are product states
|n, z〉 that specify the number of pairs in each fluid, i.e.,

n̂|n, z〉 = n|n, z〉,
ẑ|n, z〉 = z|n, z〉. (38)

Analogous to the case of one superfluid [see Eq. (10)] one can
introduce pair removal (or pair addition) operators for each
superfluid via

P̂ = P0e−iα,

Q̂ = Q0e−iβ. (39)

Thus,

P̂|n, z〉 = P0|n − 1, z〉,
Q̂|n, z〉 = Q0|n, z − 1〉. (40)

Double charge-exchange reactions are then governed by the
nuclear matrix elements

〈n − 1, z + 1|P̂Q̂†|n, z〉 = P0Q∗
0,

(41)
〈n + 1, z − 1|P̂†Q̂|n, z〉 = P∗

0 Q0,

while the transfer or removal of α particles involves the nu-
clear matrix elements

〈n − 1, z − 1|P̂Q̂|n, z〉 = P0Q0,

〈n + 1, z + 1|P̂†Q̂†|n, z〉 = P∗
0 Q∗

0. (42)
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Thus, the leading-order theory of pairing predicts that four
different reactions involve the same absolute squared nuclear
matrix element, which is independent of n and z. As pair trans-
fer in single superfluid systems, these are testable predictions
for two coupled superfluids.

I briefly discuss subleading corrections of the Hamiltonian
(35). These are in powers of (n̂ − n0)k (ẑ − z0)l with k + l =
3. Alternatively, and with view on Eq. (37), one could also
include powers (T − T0)k (A − A0)l . Following the steps in
Sec. II A 2 that led to Eq. (15) one can also here estimate the
uncertainties and finds

�εn,z0 ≈ 3|n − n0|3
an2

b

,

�εn0,z ≈ 3|z − z0|3
bz2

b

,

(43)

�ε(T, A0) ≈ 3

4

(
1

2a
+ 1

2b
− 1

c

) |T − T0|3
min

(
z2

b, n2
b

) ,

�ε(T0, A) ≈ 3

32

(
1

2a
+ 1

2b
+ 1

c

) |A − A0|3
min

(
z2

b, n2
b

) ,

for pairing rotational bands in isotopes, isotones, isobars, and
nuclei with the isospin projection, respectively, of the nucleus
with n0 neutron and z0 proton pairs.

The effective field theory can also be extended to odd and
to odd-odd nuclei, and one can easily write down the leading-
order result. However, in practical applications, it is difficult
to trace how states with nonzero spins evolve as neutron and
proton numbers are changed, and this is particularly so for
odd-odd nuclei. For this reason, such extensions of the theory
are not pursued in this paper.

B. Adjustment of low-energy constants

As was the case for a single superfluid, one has to add
the dominant contributions En0,z0 − Sn0 (n̂ − n0) − Sz0 (ẑ − z0)
to the Hamiltonian (35) and finds the energy spectrum

En,z = Eno,z0 − Sn0 (n − n0) − Sz0 (z − z0) + εn,z. (44)

Here, εn,z is from Eq. (36) and contains the low-energy con-
stants a, b, and c and Sn0 and Sz0 are (approximately) pair
separation energies. I adjust the parameters Sn0 and a (and
Sz0 and b) similarly as in the case of a single superfluid [see
Eq. (32)] and use

Sn0 = 1
2 (En0−1,z0 − En0+1,z0 ),

a−1 = En0+1,z0 − 2En0,z0 + En0−1,z0 ,

Sz0 = 1
2 (En0,z0−1 − En0,z0+1),

b−1 = En0,z0+1 − 2En0,z0 + En0,z0−1. (45)

One more datum is needed to determine c and I choose the
symmetric expression

c−1 = 1
4 (En0+1,z0+1 − En0+1,z0−1

+ En0−1,z0−1 − En0−1,z0+1). (46)

FIG. 2. Pairing rotational bands in tin isotopes, centered on
nuclei with N0 neutrons as indicated. Experimental data En −
En0 + Sn0 (n − n0 ) is compared with the theory prediction εn = (n −
n0 )2/(2a) for nuclei with n pairs around n0. Error bars are uncer-
tainty estimates from omitted subleading terms. Bands are shifted by
multiples of 25 MeV as N0 = 2n0 is increased from 54 to 78. In each
band, the energies with |N − N0| � 2 have been adjusted to data.

IV. APPLICATIONS

A. Single superfluid: Semimagic nuclei

Figure 2 shows the pairing rotational band in tin isotopes
centered on neutron number N0 as indicated. Different bands
are shifted by 25 MeV as N0 is increased from 54 to 78.
The number of pairs is n = N/2 and n0 = N0/2. Experimental
data En − En0 + Sn0 (n − n0) are compared with the theory
prediction εn, see Eq. (31). Here and in what follows, the y
axis is simply labeled as ε. Error bars show the uncertainty
estimates (16) using the average value of a from Table I. The
theory describes data accurately within error bars. For each
band, the three lowest-energy points with −2 � N − N0 � 2
have been adjusted to data.

Figure 3 shows the pairing rotational bands in lead isotopes
centered on neutron number N0 as indicated. Different bands
are shifted by 25 MeV as N0 is increased from 98 to 122.
Error bars again show the uncertainty estimates (16) using
the average value of a from Table I. Theory describes data
accurately within the uncertainty estimates.

Figure 4 shows the pairing rotational bands in N = 82 iso-
tones centered on nuclei with proton number Z0 as indicated.
Different bands are shifted by 25 MeV as Z0 is increased from
52 to 68. The number of pairs is n = Z/2 and n0 = Z0/2.
Uncertainty estimates are based on Eq. (16) and the value of
a from Table I. Again, theory describes data accurately within
uncertainties.

In summary, the leading-order Hamiltonian (7) yields
an accurate description of pairing rotational bands within
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FIG. 3. Pairing rotational bands in lead isotopes centered on
nuclei with neutron number N0 as indicated. Experimental data
En − En0 + Sn0 (n − n0 ) are compared with the theory prediction
1

2a (n − n0)2 for nuclei with n pairs around n0. Error bars are uncer-
tainty estimates for omitted subleading terms. Bands are shifted by
multiples of 25 MeV as N0 = 2n0 is increased from 98 to 122. In each
band, the energies with |N − N0| � 2 have been adjusted to data.

FIG. 4. Pairing rotational bands in N = 82 isotones, centered
on nuclei with proton number Z0 as indicated. Experimental data
En − En0 + Sn0 (n − n0 ) are compared with the theory prediction
1

2a (n − n0)2 for nuclei with n pairs around n0. Uncertainties estimate
the omitted contributions from subleading terms. Bands are shifted
by 25 MeV as Z0 = 2n0 is increased from 52 to 68. In each band, the
energies with |Z − Z0| � 2 have been adjusted to data.

FIG. 5. Pairing rotational bands in odd (blue squares) and even
(red circles) tin isotopes. The odd nuclei have spin and parity Jπ =
7/2+ with 115Sn (N0 = 65) at the center, while the even nuclei are
centered at 114Sn. Data are shown as black crosses. In each band, the
central three points are adjusted to data

uncertainty estimates. This gives confidence in the power
counting and the underlying separation of scales in even
semimagic nuclei.

B. Odd semimagic nuclei

The ground-state spin of odd semimagic nuclei typically
evolves across an isotopic or isotonic chain, and I therefore
focus on low-lying states with constant spin and parity. The
excitation energies of such states must be added to the ground-
state energies En in Eq. (32) when computing the low-energy
constants.

In the odd tin isotopes, the Jπ = 7/2+ state is low in
energy and the pairing rotational band can be centered on the
nucleus with neutron number N0 = 65. The results are shown
in Fig. 5 and compared with a pairing rotational band in the
neighboring even isotopes (centered at N = 64 and shifted by
10 MeV). The uncertainty estimates (16) with a from Table I
reflect the scale of deviations from data but do not capture
them quantitatively for the larger values of N − N0.

The agreement between theory and experiment is better in
N = 82 isotones. In the odd isotones I focus on the Jπ = 5/2+
and 7/2+ states that are low in energy and can easily be
traced across the chain, taking Z = 59 (element Pr) as the
central nucleus of the pairing rotational band. The results are
shown in Fig. 6 and compared with the pairing rotational band
in even isotones, centered at the Nd nucleus (Z = 60). The
uncertainty estimate (16) uses the value of a from Table I and
captures the differences between theory and data.

In lead nuclei an isomeric Jπ = 13/2+ state is known in
odd isotopes lighter than 208Pb, although its exact spacing
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FIG. 6. Pairing rotational bands in odd (blue squares) and even
(red circles) N = 82 isotones. Two bands connecting odd nuclei in
with spin and parity as indicated are centered on the Pr nucleus
(Z = 59) and compared with the even ground-state band with the
Nd nucleus (Z = 60) at its center. Data are shown as black crosses.
In each band, the central three points are adjusted to data. Bands are
shifted by multiples of 5 MeV.

with respect to the ground state is only known for 195Pb and
heavier isotopes; I use tentative spin assignments for more
neutron-deficient isotopes and take 197Pb as the center for
the computation of the pairing rotational band. The results
are shown in Fig. 7 and compared with an even isotope. The
uncertainty estimate (16) with a from Table I captures the
discrepancies between data and theory.

Overall, the results of this section show that the effective-
field theory also delivers accurate results for pairing rotational
bands in odd semimagic nuclei. In particular, the pairing rota-
tional bands for even and odd semimagic nuclei have the same
pairing rotational constant to a very good approximation.

C. Two superfluids: Open-shell nuclei

I take 166Yb as the (Z0 = 70, N0 = 96) nucleus in the
center of the rare-earth region and adjust the low-energy
constants from Eqs. (45) and (46) to its immediate even-
even neighbors. This yields the pairing rotational constants
1/(2a) ≈ 0.30 MeV, 1/(2b) ≈ 0.94 MeV, 1/c ≈ −0.95 MeV.
The proton and neutron pairing rotational constants are con-
sistent with those presented in Table I for Pb isotopes and
N = 82 isotones, respectively. The size of the off-diagonal
coupling 1/c shows that the interaction of the two superfluids
is strong [10,19,43]. The curvature is small for pairing at
constant isospin projection and large for isobars [see Eq. (37)].

Figure 8 shows the proton-pairing rotational bands (shifted
by multiples of 12 MeV) for fixed neutron number N . Overall,
theory and data agree reasonably well, and only for large

FIG. 7. Pairing rotational bands in odd (blue squares) and even
(red circles) lead isotopes. The bands connecting odd nuclei with spin
and parity Jπ = 13/2+ are centered on 197Pb and compared with the
even ground-state band with 112Pb at its center. Data are shown as
black crosses. In each band, the lowest three points are adjusted to
data. Bands are shifted by 10 MeV.

FIG. 8. Proton-pairing rotational bands as sections of a pairing
elliptical paraboloid. Bands for neutron numbers as indicated in the
rare-earth region around 166Yb (Z0 = 70, N0 = 96). Experimental
data are compared with the theory prediction. A total of six low-
energy constant has been adjusted for all shown bands. Different
bands are shifted by multiples of 12 MeV.
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FIG. 9. Neutron-pairing rotational bands as sections of a pairing
elliptical paraboloid for proton numbers as indicated in the rare-earth
region around 166Yb (Z0 = 70, N0 = 96). Experimental data are com-
pared with the theory prediction. A total of six low-energy constant
has been adjusted for all shown bands. Different bands are shifted by
multiples of 12 MeV.

values of |Z − Z0|, and significant away from N = 96 there
is disagreement. The error estimates are based on �εn0,z from
Eqs. (43). They are too small to capture the deviations for
large N and small Z .

Figure 9 shows the neutron-pairing rotational bands
(shifted by multiples of 12 MeV) for fixed charge number
Z . Also, here, theory describes the data fairly well, and
deviations become more pronounced as |N − N0| or |Z −
Z0| becomes large. The uncertainty estimates �εn,z0 from
Eqs. (43) reflect some of the deviations but are too small for
small Z .

The coupling between the two superfluids makes it interest-
ing to also study other “directions” of pairing rotational bands
[19], e.g., the isobar section and the section of constant isospin
projection Tz of the pairing elliptical paraboloid (36). The
former section consists of nuclei that are connected via double
charge-exchange reactions, while the latter section describes
nuclei that are linked by α particle capture or removal. The
nucleus 166Yb is kept at the center. Figure 10 shows the iso-
bar section. Uncertainty estimates, taken as �ε(T, A0) from
Eqs. (43), capture the scale of the difference to data but are
not quantitatively correct.

Figure 11 shows the section with constant isospin pro-
jection. Here, the uncertainties are taken as �ε(T0, A) from
Eqs. (43). They capture well the scale of differences between
theory and data.

The comparison of the isobar and constant Tz pairing rota-
tional bands with the N = 96 proton pairing band of Fig. 8
and the Z = 70 neutron pairing band of Fig. 9 shows that
the rotational constants differ considerably for each section of

FIG. 10. Isobaric rotational band of A = 166 nuclei as a sec-
tion of the pairing elliptical paraboloid centered at the nucleus 166Yb
(Z0 = 70, N0 = 96). Experimental data are compared with the theory
prediction.

the elliptical paraboloid. Diagonalization of the mass matrix
yields eigenvalues 0.09 and 2.4 MeV, and the corresponding
eigenvectors have an angle of 28◦ and 118◦ with the neutron
axis on the Segrè chart, respectively. (This is essentially along

FIG. 11. Pairing rotational band with fixed isospin projection
T = 13 as a section of the pairing elliptical paraboloid centered at the
nucleus 166Yb (Z0 = 70, N0 = 96). Experimental data are compared
with the theory prediction.
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the valley of β stability and perpendicular to it.) Consistent
with this, the neutron pairing bands and the constant-Tz pair-
ing band have the smallest curvature because they are oriented
mainly along the valley of β stability.

D. Estimating energy gains from particle number projection

There is another interesting application of Eq. (44). Cal-
culations based on nuclear energy density functionals [44,45]
or Hamiltonians [46,47] often do not employ particle number
projections. Then, one really computes a symmetry-breaking
state (with a fixed orientation in gauge space), which consists
of a superposition of states with different numbers of pairs.
Such a localized state clearly has too much kinetic energy in
gauge space, and the formula (36) allows one to estimate this.
Using 〈N̂〉 = N0 and �N2 ≡ 〈(N̂ − N0)2〉, and similar for Ẑ ,
one finds

�E = 1

8a
〈�N2〉 + 1

8b
〈�Z2〉 + 1

4c
〈�N�Z〉. (47)

Here, the coefficients a, b, and c may be determined from
computations or data via Eqs. (45) and (46).

As an example, I take the computation of semimagic
64Ni within Bogoliubov many-body perturbation theory in
Ref. [48]. The number variance is about �N2 ≈ 16 (see
Fig. 9 of that work), and (2a)−1 ≈ 0.72 MeV [from data using
Eq. (32)]. This yields �E ≈ 2.9 MeV.

V. SUMMARY

This paper revisited pairing rotations in a model-
independent way within an effective field theory. It followed
the standard approach to emergent symmetry breaking via
a nonlinear realization of the broken phase symmetry. This
led to pairing rotational bands in semimagic nuclei and to a
pairing elliptical paraboloid in systems where paired protons
and neutrons interact. Coupling a fermion to the superfluid
extends the theory to odd semimagic nuclei. The expansion
of the effective Hamiltonians is in powers of differences of
Cooper-pair numbers, and subleading corrections are sup-
pressed by inverse powers of the maximum number of pairs
in a shell. The key input for the effective field theory con-
sist of the matrix containing the pairing rotational constants.
The eigenvalues of this model-independent quantity are given
by the curvatures of the nuclear ground-state energies as a
function of proton and neutron numbers. A comparison with
data shows that the leading-order theory is accurate (within
uncertainty estimates) for heavy semimagic nuclei and for
nuclei sufficiently far away from shell closures.

The theory predicts that pair transfer is constant for nuclei
in a pairing rotational band. For nuclei on a pairing ellipti-
cal paraboloid, the nuclear matrix element for pair transfer,
double charge-exchange reactions, and α particle knockout or
capture are nucleus independent and related to each other.

It is interesting to compare the effective theory of this
work with the those for deformed nuclei [27,39,49–51]. For
axially symmetric deformations, one exploits the emergent
symmetry breaking of rotational SO(3) down to axial SO(2).
Then the coset spaces is the two-sphere and Nambu-Goldstone
modes parametrize that manifold. Finite ground-state spins
and fermions introduce couplings to gauge potentials (which
usually are referred to as Coriolis forces). The treatment of
pairing is technically somewhat simpler than deformation be-
cause the broken-symmetry groups are Abelian. Otherwise,
however, one follows the same path.

One could combine both approaches, simultaneously cap-
turing deformation and superfluidity. Then, the low-energy
physics of nuclei away from shell closures becomes extremely
simple: The pattern of the emergent symmetry breaking—
from a product of rotational SO(3) times pairing U(1) × U(1)
down to axial SO(2)—is all that matters. The symmetries
are realized nonlinearly, and low-lying excitations are the
quantized excitations of the corresponding Nambu-Goldstone
modes in finite systems. Each nucleus exhibits a ground-state
rotational band and pairing rotations connect ground-state
energies of different nuclei. While there are, of course, many
nuclear models that break symmetries or incorporate the
effects of symmetry breaking, the effective field theory ap-
proach makes it front and center, is aware about its breakdown
scale, and allows one to make systematic improvements and
uncertainty estimates.
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