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Operator overlaps in harmonic oscillator bases with different oscillator lengths
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A recently developed formalism is used to carry out generator coordinate method calculations using a set
of Hartree-Fock-Bogoliubov wave functions, where each of the members of the set can be expanded in an
arbitrary basis. In this paper it is assumed that the HFB wave functions are expanded in harmonic oscillator
(HO) bases with different oscillator lengths. General expressions to compute the required matrix elements of
arbitrary operators are given. The application of the present formalism to the case of fission is illustrated with an
example.
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I. INTRODUCTION

Based on previous results published in Ref. [1], I developed
in a recent publication [2] (denoted by I in the following)
a formulation of the generalized Wick’s theorem to com-
pute overlaps between Hartree-Fock-Bogoliubov (HFB) wave
functions expressed in different bases not connected by uni-
tary transformations. In this paper, I apply the formalism to
the common situation where one deals with two finite har-
monic oscillator (HO) bases with different oscillator lengths.
The present results could be of interest to carry out genera-
tor coordinate method (GCM) calculations and/or symmetry
restoration [3–6] in fission; see [7,8] for a recent review and
for a recent application. In fission one has to consider a set
of HFB wave functions usually labeled in terms of the axial
quadrupole moment |φ(q20)〉 to study fission dynamics. The
set of HFB states |φ(q20)〉 span a large and rich set of nuclear
shapes (from deformed ground states to configurations with
a thin neck ending up finally in scission configurations) and
therefore the oscillator lengths of the HO bases used have
to adapt to the corresponding shape to reduce/optimize ba-
sis size. Typically, the oscillator lengths for each quadrupole
moment are determined by minimizing the HFB energy, and
the range of values obtained in a typical fission path can
be rather large. As a consequence of the different oscillator
lengths used for each q20 value, the bases used to express
the corresponding HFB wave functions are not connected
by unitary transformations (as a consequence of being finite
dimensional). Therefore calculation of norm and Hamiltonian
overlaps between the different configurations cannot be car-
ried out with the traditional formulas [9,10] as they assume
bases connected by unitary transformation, and therefore a
generalization of Wick’s theorem for overlaps between gen-
eral HFB states is required. At this point it has to be mentioned
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that the evaluation of overlaps between Slater determinants
[11] is properly handled even if the bases are not connected
by unitary transformation. The most straightforward solution
to this problem would be to use a common basis (with the
same oscillator lengths) for all the HFB states in the fis-
sion path, but this solution demands huge harmonic oscillator
bases and huge computational resources. At this point the
reader might also wonder if it would not be better to use n
unique, large enough basis for all the relevant HFB states, as
is usually done in calculations in the mesh. This alternative
is, however, impractical for all kind of interactions except
for those of zero range with trivial local exchange terms. In
order to find a practical solution to the above problems a
generalization of the method used in [9,10] was formulated
in Ref. [1]. The solution to all these problems relies on the
formal extension of the original bases to make them complete
and therefore unitarily connected. The basis states to be added
come with zero occupancy. This approach has been pursued
in Refs. [12,13] for unitary transformations and in Ref. [1]
for general canonical ones. Years later, the Pfaffian formula
for the proper calculation of the norm overlaps, including
their sign [14,15], was subsequently generalized to consider
different bases [16]. The inconvenience of the formulation
of Ref. [1] is that additional considerations are required to
come to the final formulas. Recently, in Ref. [2], I reformu-
lated the work of Ref. [1] to simplify the expressions for the
contractions entering the Hamiltonian and other operators’
overlaps. The main advantage of the new formulation is that
now it becomes evident that the operator’s overlap can be
obtained in terms of what is usually refereed to as “intrinsic
quantities” (i.e., quantities that can be solely computed within
the given finite bases). In this paper, I apply the formalism
to the above mentioned situation of HO bases with differ-
ent oscillator lengths. The required overlap matrix between
the two HO bases with different lengths is explicitly built
as well as its lower upper (LU) decomposition that plays a
central role in the final expressions of Ref. [2]. The main
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application of the present formulation is to carry out GCM cal-
culations or restore spatial symmetries in a fission framework.
The new formulas could also be used to provide a more robust
and precise formulation of the time dependent GCM. This
will definitely help to improve our understanding of fission
fragment properties and fission dynamics.

II. THE GENERALIZED WICK THEOREM FOR
ARBITRARY BASIS

Recently [2], a convenient formalism to evaluate the over-
lap of general multi-body operators between arbitrary HFB
wave functions

〈φ0|Ô|φ1〉
〈φ0|φ1〉 (1)

was laid down. In it, each of the HFB states entering the
overlap are expanded in different bases not connected by
unitary transformations (i.e., not expanding the same subspace
of the whole Hilbert space). First, I establish the notation
and then present the main results. The bases and associated
creation operators are denoted by B0 = {c†

0,k, k = 1, . . . , N0}
in the case of |φ0〉 and B1 = {c†

1,k, k = 1, . . . , N1} in the case
of |φ1〉. Both bases satisfy canonical fermion antcommuta-
tion relations (CAR), i.e., {c†

i,k, ci,k′ } = δkk′ , and are connected

by an overlap matrix {c†
0,k, c1,l} = 0〈k|l〉1 = Rkl . For sim-

plicity, I assume in the following N0 = N1 = N , but note
that the most general case can be easily accommodated
in the formalism. One can also introduce the complement
of the two bases B̄0 = {c†

0,k, k = N + 1, . . . ,∞} and B̄1 =
{c†

1,k, k = N + 1, . . . ,∞} such that B0 ∪ B̄0 = {c†
0,k}∞ and

B1 ∪ B̄1 = {c†
1,k}∞ expand the whole separable Hilbert space

and therefore represent bases connected by a unitary (infinite
dimensional) transformation matrix R (not to be confused with
R). Let me also introduce the quasiparticle annihilation oper-
ators αiμ (i = 0, 1), which annihilate |φi〉. They are written
in terms of the complete bases {c†

i,k}∞ through the standard
definition

αiμ =
∑

k

(U ∗
i )kμci,k + (V ∗

i )kμc†
i,k .

The Bogoliubov amplitudes Ui and Vi have a block structure,

Vi =
(

V̄i 0
0 0

)
, Ui =

(
Ūi 0
0 di

)
,

where V̄i and Ūi are the N × N matrices characterizing |φi〉.
In this way, the set of N quasiparticle operators αiμ with μ =
1, . . . , N , correspond to the quasiparticle operators expanded
in the truncated bases Bi. The di are arbitrary unitary matrices
that play no role in the final expressions. It is also convenient
to express the unitary matrix R connecting B0 ∪ B̄0 with B1 ∪
B̄1 as a block matrix,

R =
(
R S
T U

)
.

The matrix R is just the representation of the unitary opera-
tor T̂01 connecting the two complete bases T̂01c†

0,k T̂
†

01 = c†
1,k

whereas R is the restriction of this operator to the bases

B0 and B1. In the present case, where one is dealing with
HO bases differing in their oscillator lengths, T̂01 is just the
dilatation operator. As discussed in Appendix A, it is the
exponential of a one-body operator. As shown in Ref. [2], the
calculation of the overlap of Eq. (1) simplifies enormously if
the operator Ô is written in second quantization form in terms
of both bases {c†

0,k}∞ and {c†
1,k}∞ . One-body operators are

expressed in the form

Ô =
∑

kl

O01
kl c†

0,kc1,l (2)

with

O01
kl = 0〈k|Ô|l〉1.

In the same way a two-body operator will be expressed as

Ô = 1

4

∑
k1k2l1l2

υ̃01
k1k2l1l2 c†

0k1
c†

0,k2
c1,l2 c1,l1 , (3)

where the antisymmetrized two body matrix element is given
by υ̃01

k1k2l1l2
= υ01

k1k2l1l2
− υ01

k1k2l2l1
, and υ01

k1k2l2l1
= 0〈k1k2|υ̂|l1l2〉1

are the interaction’s matrix elements. The extension to higher
order operators is straightforward. The sums in Eqs. (2) and
(3) extend over the complete bases {c†

0,k}∞ or {c†
1,k}∞ to faith-

fully represent the operators. As shown in I, the overlaps of
those operators can be obtained by using the standard rules of
Wick’s theorem but using the elementary contractions

ρ01
lk = 〈φ0|c†

0,kc1,l |φ1〉
〈φ0|φ1〉 (4)

=
{[

V̄ ∗
1 A−1V̄ T

0

]
lk, l ⊂ B0, k ⊂ B1,

0, otherwise,

κ̄01
k1k2

= 〈φ0|c†
0,k1

c†
0,k2

|φ1〉
〈φ0|φ1〉 (5)

=
{−[

(RT )−1Ū ∗
1 A−1V̄ T

0

]
k1k2

, k1 ⊂ B0, k2 ⊂ B0,

0, otherwise,

κ10
l1l2 = 〈φ0|c1,l1 c1,l2 |φ1〉

〈φ0|φ1〉 (6)

=
{[

V̄ ∗
1 A−1Ū T

0 (RT )−1
]

l1l2
, l1 ⊂ B1, l2 ⊂ B1,

0, otherwise,

and therefore all the indices in the sums are restricted to the
subspace spanned by B0 or B1. Although not obvious from
the expressions in the right-hand side of Eqs. (5) and (6) the
quantities κ̄01

k1k2
and κ10

l2l1
are skew-symmetric matrices. In the

above expressions, the matrix A is given by

A = Ū T
0 (RT )−1Ū ∗

1 + V̄ T
0 RV̄ ∗

1 . (7)

Using the above contractions the overlap of a one-body oper-
ator is given by

〈φ0|Ô|φ1〉
〈φ0|φ1〉 =

N∑
k,l=1

O01
kl ρ

01
lk = Tr

[
O01ρ01

]
, (8)
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whereas for a two-body matrix element one obtains

〈φ0|Ô|φ1〉
〈φ0|φ1〉 = 1

4

N∑
k1,k2,l1,l2=1

υ̃01
k1k2l1l2

[
ρ01

l1k1
ρ01

l2k2

−ρ01
l1k2

ρ01
l2k1

+ κ̄01
k1k2

κ10
l2l1

]
. (9)

Please remember that, contrary to the standard method, the
matrices O01

kl , ρ01
lk , and υ̃01

k1k2l1l2
are not Hermitian but the ma-

trices κ̄01
k1k2

and κ10
l1l2

are still skew-symmetric. The overlap of
the two HFB wave functions is

〈φ0|φ1〉 =
√

det A det R. (10)

In Ref. [2] a subsequent lower-upper (LU) decomposition of
R was introduced,1

R = L∗
0LT

1 , (11)

where L0 and L1 are both lower triangular matrices. The de-
composition introduces implicitly a biorthogonal basis |k)1 =∑

(LT
1 )−1

jk | j〉1 and 0(l| = ∑
0〈i|(L∗

0 )−1
li such that 0(l|k)1 = δlk .

The LU decomposition of the overlap matrix suggests the
definitions

Ũ0 = (L∗
0 )−1Ū0L+

0 , Ṽ0 = L+
0 V̄0L+

0 , (12)

Ũ1 = (L∗
1 )−1Ū1L+

1 , Ṽ1 = L+
1 V̄1L+

1 (13)

that turn out to be very useful to define handy quantities not
depending explicitly on R, for instance,

Ã = Ũ T
0 Ũ ∗

1 + Ṽ T
0 Ṽ ∗

1 = L∗
0ALT

1 . (14)

The overlap is now written as

〈φ0|φ1〉 =
√

det Ã. (15)

It is also convenient to introduce the contractions

ρ̃01
lk = [

Ṽ ∗
1 Ã−1Ṽ T

0

]
lk = LT

1 ρ01L∗
0, (16)

˜̄κ01
k1k2

= −[
Ũ ∗

1 Ã−1Ṽ T
0

]
k1k2

= L+
0 κ̄01L∗

0, (17)

κ̃10
l1l2 = [

Ṽ ∗
1 Ã−1Ũ T

0

]
l1l2

= LT
1 κ01L1. (18)

Using them and the matrix elements Õ = (L∗
0 )−1O01(LT

1 )−1

one gets Tr(Õρ̃01) for the overlap of a one-body operator.
Please note that Õlk are the matrix elements of the operator Ô
in the biorthogonal basis 0(l| and |k)1, i.e., Õlk = 0(l|Ô|k)1 =∑

i j (L
∗
0 )li−1

0
〈i|Ô| j〉1(LT

1 )−1
jk . Similar considerations apply to

the overlap of two-body operators. Introducing the two-body
matrix element in the biorthogonal basis υB

i jkl = 0(i j|υ̂|kl )1,
related to υ01

i jkl by

υB = (L∗
0 )−1(L∗

0 )−1υ01
(
LT

1

)−1(
LT

1

)−1
,

1According to theorem 3.5.7 of [17] any nonsingular matrix A has
a LU decomposition A = PLU where P is a permutation matrix, and
L (U ) lower (upper) triangular nonsingular matrices. In the present
development, the permutation matrix is omitted for simplicity as it is
not required, but it can be easily considered in other cases.

one can define the HF potential �̃01
ik = 1

2

∑
υ̃B

i jkl ρ̃
01
l j and pair-

ing field 	̃01
i j = 1

2

∑
υ̃B

i jkl κ̃
01
kl to write

〈φ0|υ̂|φ1〉
〈φ0|φ1〉 = 1

2
Tr[�̃01ρ̃01] − 1

2
Tr[	̃01 ˜̄κ01], (19)

which is again the standard expression but defined in terms
of Eqs. (16)–(18) and the definitions above. The advantage
of the definitions in Eqs. (14), (16)–(18) is that they have
exactly the same expression as the formulas available in the
literature for complete bases but expressed in terms of the
“tilde” U and V matrices of Eqs. (12) and (13). There is an
additional advantage in the fact that Ã is a “more balanced”
matrix, being less affected by the near singular character of
the overlap matrix R.

III. APPLICATION TO HO BASES WITH DIFFERENT
OSCILLATOR LENGTHS

To apply the above formalism to the case of HO bases
with different oscillator lengths one just needs to compute the
overlap matrix Rkl = 0〈k|l〉1 and the overlap matrix elements
O01

kl = 0〈k|Ô|l〉1 and 0〈k1k2|υ̂|l1l2〉1 for the harmonic oscil-
lator bases with different oscillator lengths. To simplify the
discussion, I will restrict to the case of a HO basis tensor prod-
uct of one-dimensional (1D) states ϕn(
r) = ∏3

i=1 ϕni (xi, bi )
with ϕni (xi, bi ) = e−1/2x2

i /b2
i ϕ̄ni (xi, bi ) the product of a Gaus-

sian factor times a polynomial

ϕ̄ni (xi, bi ) = 1
/√√

π2ni ni!bi Hni (xi/bi )

proportional to the Hermite polynomial Hn of degree n. As
any polynomial of degree n can be written as a linear com-
bination of n + 1 polynomials of degree n or less, one can
express ϕ̄n(x, b0) in terms of ϕ̄n(x, b1) by means of a finite-
dimensional lower triangular transformation matrix Lnm(q01)
that depends on the ratio q01 = b1/b0 (see Appendix B):

ϕ̄n(x, b0) =
n∑

m=0

Lnm(q01)ϕ̄m(x, b1).

Due to the lower triangular structure of the matrix L, both
its inverse and determinant can be obtained analytically (see
Appendix B). It is now straightforward to compute the 1D
overlaps

Rnm =
∫

dx ϕ∗
n (x, b0)ϕm(x, b1)

=
∫

dx e− x2

B2 ϕ̄∗
n (x, b0)ϕ̄m(x, b1)

=
∑

r

L∗
nr (q0)Lmr (q1),

where the new oscillator length B is given by

1/B2 = 1
2

(
1/b2

0 + 1/b2
1

)
(20)

and one has introduced the parameters q0 = B/b0 and q1 =
B/b1. The matrices L(qi ) are the ones transforming ϕ̄m(x, bi )
into ϕ̄m(x, B). The full overlap matrix is then given by

Rnm = 0〈n|m〉1 = (L∗(q0)LT (q1))nm (21)
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with

Lnm(q0) = Lnxmx (q0x )Lnymy (q0y)Lnzmz (q0z ). (22)

It is obvious that the matrices L(qi ) have to be identified with
the Li introduced in Eq. (11). The matrix Lnm(q0) can be also
arranged as a triangular matrix if one takes the standard order-
ing n = (nx, ny, nz ) with nx = 0, . . . , Nx, ny = 0, . . . , Ny(nx ),
and nz = 0, . . . , Nz(nx, ny). With this ordering the inverse ma-
trix L−1

nm (q0) can also be written in analytical form in terms of
the inverse of the 1D quantities given in Appendix B,

L−1
nm (q0) = L−1

nxmx
(q0x )L−1

nymy
(q0y)L−1

nzmz
(q0z ). (23)

The determinant of R is given by the product of the determi-
nant of two lower triangular matrices

det R = ( det[L(q0)])∗ det[L(q1)].

Given the lower triangular structure of the L(qi ) matri-
ces, their determinant is just the product of the elements
in the diagonal det[L(qi )] = ∏′

nx,ny,nz
qnx+1/2

ix q
ny+1/2
iy qnz+1/2

iz ,
where the product is restricted to those values of nx, ny,
and nz compatible with the definition of the basis (typically,
some energy condition,

∑
nx,ny,nz

h̄ωx(nx + 1/2) + h̄ωy(ny +
1/2) + h̄ωz(nz + 1/2) < E0). The explicit form of the LU
decomposition of the 1D R immediately suggests the intro-
duction of the biorthogonal states

〈x|m)1 = e− x2

2B2 ϕ̄m(x, B) = e− x2

2B2

∑
m′

L−1
mm′ (q1)ϕ̄m′ (x, b1)

(24)
and

0(n|x〉 = e− x2

2B2 ϕ̄∗
n (x, B) = e− x2

2B2
∑

n′
L∗−1

nn′ (q0)ϕ̄∗
n′ (x, b0) (25)

such that 0(n|m)1 = δnm. Clearly, bras and kets of the
biorthogonal states turn out to be connected by Hermitian
conjugation and therefore they form a unique set of orthogonal
states thanks to the special properties of the HO states. This
unique set is just a set of HO wave functions with oscillator
length B.

The matrix elements of one-body momentum-independent
operators Ô can be expressed in terms of the matrix elements
computed with the orthogonal basis with oscillator length B =
(Bx, By, Bz ) :

0〈n|Ô|m〉1 = (L∗(q0)OBLT (q1))nm. (26)

Here OB is the matrix of the matrix elements of Ô computed
with the HO basis with lengths B. In the case of two-body
momentum independent operators like the central or Coulomb
potentials the generalization is again straightforward:

0〈nm|υ̂|pq〉1 =
∑
rstu

L∗(q0)nrL∗(q0)ms〈rs|υ̂|tu〉B (27)

L(q1)pt L(q1)qu, (28)

where 〈rs|υ̂|tu〉B are the matrix elements of the two-body
potential computed with HO states with length B.

For the evaluation of momentum dependent operators like
the kinetic energy or the spin-orbit potential the easiest way is

to use recursion relations like
∂

∂x
ϕ̃n(x) = 1√

2B

(
q2

0

√
nϕ̃n−1(x) − q2

1

√
n + 1ϕ̃n+1(x)

)
(29)

and

∂2

∂x2
ϕ̃n(x) = 1

2B2

(
q4

0

√
n(n − 1)̃ϕn−2(x)

− q2
0q2

1(2n + 1)̃ϕn(x)

+ q4
1

√
(n + 1)(n + 2)̃ϕn+2(x)

)
, (30)

where ϕ̃n(x) = e
− x2

2b2
1 ϕ̄n(x, B). For instance, the matrix ele-

ments of the one-body kinetic energy operator are given by

0〈n|T̂ |m〉1 = (L∗(q0)TBLT (q1))nm,

where the matrix elements TB are computed in the tradi-
tional way, using HO with oscillator lengths B but using
the recursion relations of Eqs. (29) and (30) instead of the
traditional ones. The same recursion relations can be used
in the evaluation of the matrix elements of the two-body
spin-orbit potential. Note that the corresponding formulas for
the two-dimensional HO wave functions often used in axially
symmetric codes can be found in Appendix C.

In the application of the present formalism to the case
where density dependent interactions like Skyrme or Gogny
are used one has to use a prescription for the density depen-
dent term [12,18–20]. The prescription used is the so-called
overlap prescription that amounts to using the density

ρov(
r) = 〈φ0|ρ̂(
r)|φ1〉
〈φ0|φ1〉 =

N∑
k,l=1

ϕ∗
k (
r; b0)ϕl (
r; b1)ρ01

lk

in the density dependent term of the interaction.
As mentioned in the previous section [Eqs. (12) and (13)]

it is convenient to introduce the matrices

Ṽi = L+(qi )V̄iL(qi ), (31)

Ũi = [L∗(qi )]
−1ŪiL(qi ), (32)

and

Ã = Ũ T
0 Ũ ∗

1 + Ṽ T
0 Ṽ ∗

1 = LT (q0)AL∗(q1). (33)

They allow one to simplify the expression of the overlap to

〈φ0|φ1〉 =
√

det Ã. (34)

This formula is not only simpler than the original one but
allows one to avoid a common problem in typical applications:
the exceedingly large or small values of det L(q) can overflow
or underflow the floating point computer representation of real
numbers. This problem is discussed in the following section.
Using the definitions of Eqs. (31) and (32) one can also intro-
duce the density matrix contraction of Eq. (16) to express the
overlap of one-body operators in Eq. (8) as

〈φ0|Ô|φ1〉
〈φ0|φ1〉 =

N∑
k,l=1

O01
kl ρ

01
lk = Tr[OBρ̃01], (35)

given in terms of the matrix elements of the operator in the
HO basis with oscillator lengths B = (Bx, By, Bz ), i.e., there

044317-4



OPERATOR OVERLAPS IN HARMONIC OSCILLATOR … PHYSICAL REVIEW C 105, 044317 (2022)

is no need to consider additional formulas for matrix element
overlap. The same applies to the calculation of two-body
terms like the overlap of the potential energy, Eq. (9). so that
one can write finally

〈φ0|υ̂|φ1〉
〈φ0|φ1〉 = 1

2
Tr[�̃01ρ̃01] − 1

2
Tr[	̃01 ˜̄κ01] (36)

with the HF potential

�̃01
ik = 1

2

∑
υ̃B

i jkl ρ̃
01
l j (37)

and pairing field

	̃01
i j = 1

2

∑
υ̃B

i jkl κ̃
01
kl (38)

computed with matrix elements of the potential in the HO
basis with lengths B [except for the momentum dependent
terms of the potential where, additionally, one has to use the
modified recursion relations of Eqs. (29) and (30)]. For the
spatial overlap density one finally obtains

ρov(
r) =
N∑

k,l=1

ϕ∗
k (
r; B)ϕl (
r; B)ρ̃01

lk .

To summarize this section, the calculation of overlaps of
operators between HFB states expressed in HO basis with
different oscillator lengths involves

(1) Computing matrix elements of the operators with a set
of HO functions with oscillator length parameters B
given by Eq. (20).

(2) Computing the Ũi and Ṽi Bogoliubov amplitudes (31)
and (32) and Ã in Eq. (33).

(3) Computing the density matrix and pairing tensor con-
tractions of Eqs. (16)–(18).

(4) Evaluating the HF potential (37) and pairing field (38).
(5) Evaluate overlaps for one-body operator (35) and two-

body operator (36).

Please note that Eqs. (33), (16)–(18) have the traditional
form but in terms of Ũi and Ṽi Bogoliubov amplitudes (31) and
(32). Therefore, the modifications required to implement the
formalism described in an existing computer code are minimal
and easy to implement.

IV. APPLICATION OF THE METHOD

In this section the formalism will be used to compute the
overlaps between the members of the set of wave functions
|φ(q20)〉 entering the fission path of the nucleus 238Pu. Tra-
ditionally, those wave functions are computed in a HO basis
with oscillator lengths tailored to the deformation q20 and
obtained by minimizing the HFB energy as a function of the
oscillator lengths. The results will be compared to the ones
obtained by a blind application of the standard formulas. To
motivate the discussion, I display in Fig. 1 the potential energy
surface (PES) obtained as a function of the axial quadrupole
moment q20 with the Gogny force D1M* [21,22]. In the
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FIG. 1. In the lower panel, the potential energy surface (includ-
ing the rotational energy correction) of 238Pu is depicted as a function
of the quadrupole moment q20 (in barns). The energy has been shifted
by 1800 MeV. In the middle panel the particle-particle (pairing)
correlation energies are shown for both protons and neutrons. In the
upper panel, the octupole q30 and hexadecapole q40 moments are
given as a function of q20. The multipole moments are defined, for
instance, in [23].

calculation I use an axial HO basis with 18 shells in the
perpendicular direction and 27 shells in the z direction.

In Fig. 1, apart from the HFB energy plus the rota-
tional correction [panel (a)], other relevant quantities like
the particle-particle pairing energies for protons and neu-
trons [panel (b)] and the octupole and hexadecapole moments
[panel (c)] are shown. One is dealing with a standard actinide
with a deformed ground state, a fission isomer at q20 = 44 b,
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FIG. 2. Oscillator lengths b⊥ and bz for each HFB configuration
|φ(q20)〉.

and two barriers (inner and outer). At q20 = 50 b, the HFB
solution starts breaking reflection symmetry and a nonzero
octupole moment develops.

The oscillator lengths b⊥ and bz obtained by minimizing
the HFB energy for each value of the quadrupole moment q20

are depicted in Fig. 2. The abrupt changes observed at some
q20 values are due to coexisting minima in the HFB energy
EHFB(q20) as a function of b⊥ and bz. I could have chosen the
oscillator lengths as to obtain a smoother curve in Fig. 2, but
I have preferred to leave it that way because this is the typical
outcome of an automatized procedure. As shown in Fig. 2, bz

increases monotonically with q20 whereas b⊥ remains roughly
constant in the whole interval. It is also evident that there are
large variations in bz depending on the value of the quadrupole
moment.

To illustrate the results obtained with the present formal-
ism, I have chosen three emblematic values of q20, namely 40,
80, and 120 b, and varied the corresponding optimal oscillator
lengths by ±0.05 fm to obtain different HFB solutions. Those
solutions have roughly the same energy and other observables
as the starting one, indicating that the HFB wave function is
essentially the same in all the cases. However, as the oscillator

length parameters have slightly changed, the HFB amplitudes
must be slightly different to absorb the changes in the basis
parameters. As a consequence, one expects the traditional
formula for the overlap (i.e., the one not taking into account
that the bases are different) to give values differing from 1. On
the other hand, the formalism introduced here should provide
an overlap close to 1. The results obtained are summarized in
Table I. They clearly show how the traditional overlap formula
is wrong whereas the present formalism provide the expected
results, namely overlaps very close to 1.

To finalize this section, consider now the overlaps
〈φ(q20)|φ(q(0)

20 )〉 with q(0)
20 = 40, 60, and 80 b as a

function of q20. They are plotted in logarithmic scale
in Fig. 3 as a function of (q20 − q(0)

20 )2, motivated by
the fact that in the Gaussian overlap approximation
〈φ(q20)|φ(q(0)

20 )〉 ≈ exp[−γ (q20)(q20 − q(0)
20 )2]. The exact

overlaps computed with Eq. (34) are represented with a
solid line whereas the wrong ones, computed with the
Onishi-Yoshida formula [9], are plotted using dotted lines.
There are several salient features worth mentioning. First,
the overlaps given by the Onishi-Yoshida formula are almost
always larger than the correct ones. The reason is that, as
the oscillator lengths are adapted to the quadrupole moment,
the basis is partially responsible for generating quadrupole
deformation and therefore the Bogoliubov amplitudes of
neighboring configurations change less than if the oscillator
lengths of the basis were kept constant. The feature shows
some exceptions in a limited q20 region in the q(0)

20 = 60 b case
where the oscillator lengths as a function of q20 show a less
smooth behavior than in the other cases. Second, the overlap
decreases faster with Eq. (34) than with the Onishi-Yoshida
formula except in a limited q20 range in the q(0)

20 = 60 b case.
Third, in the q(0)

20 = 60 b case Eq. (34) provides far more
smooth results than the Onishi-Yoshida formula, indicating
that Eq. (34) is able to absorb the changes is the oscillator
lengths taking place in this case. Fourth, the Gaussian overlap
formula seems to be rather inaccurate in the q(0)

20 = 40 b and
60 b cases as the behaviors of the overlap in the given scales
depart from the expected straight line. Finally, I briefly discuss
the large and small values of det Li found in the calculation
of the overlaps. As a typical example, consider q(0)

20 = 40 b
and q20 = 60 b. In this case, det L0 = 1.88 × 10186 and
det L1 = 6.81 × 10−208, giving det R = 1.28 × 10−21.

TABLE I. Overlaps between different HFB solutions obtained with slightly different oscillator lengths. The optimal oscillator lengths
(b⊥, bz ) are (1.75, 2.25), (1.75, 2.75), and (1.80,2.95) for q20 = 40, 80, and 120 b, respectively. The column denoted as “Trad.” corresponds to
the traditional calculation of the overlaps without taking into account the effect of the bases (Onishi-Yoshida formula [9]).

q20 = 40 b q20 = 80 b q20 = 120 b

Config. EHFB Eq. (34) Trad. EHFB Eq. (34) Trad. EHFB Eq. (34) Trad.

Optimal −1792.104 1.0 1.0 −1788.366 1.0 1.0 −1792.883 1.0 1.0
bz + 0.05 −1792.040 0.999 0.721 −1788.317 0.999 0.747 −1792.841 0.999 0.766
bz + 0.10 −1791.931 0.998 0.279 −1788.216 0.997 0.322 −1792.746 0.998 0.354
bz − 0.05 −1792.064 0.998 0.709 −1788.324 0.999 0.735 −1792.841 0.999 0.755
bz − 0.10 −1791.838 0.993 0.243 −1788.155 0.994 0.283 −1792.841 0.996 0.315
b⊥ + 0.05 −1792.099 0.999 0.820 −1788.360 0.999 0.830 −1792.873 0.999 0.803
b⊥ − 0.05 −1792.099 0.999 0.813 −1788.366 0.999 0.824 −1792.868 0.999 0.797
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FIG. 3. Overlaps 〈φ(q20)|φ(q(0)
20 )〉 for q20 � q(0)

20 are plotted as a
function of (q20 − q(0)

20 )2 for different representative values of q(0)
20 .

Full lines are obtained with Eq. (34) and dotted ones obtained with
the Onishi-Yoshida formula [9].

At q20 = 64 b, det R = 1.2 × 10−30, but the overlap for
protons is still relatively relevant with a value of 2.03 × 10−4.

However, at q20 = 66 b, det L1 underflows the 64 bit floating
point representation used in the calculations, and det R = 0 to
machine accuracy. A bit further, at q20 = 68 b the determinant
det L0 is the one that overflows and the computer value for
det R is undefined. However, using Eqs. (14) and (15) the
evaluation of the overlap proceeds smoothly and, what is
more important, unattended.

V. SUMMARY AND CONCLUSIONS

Formulas are given to compute correctly overlaps of op-
erators between HFB states expressed in bases which are
not unitarily equivalent. They allow for an efficient imple-
mentation of the GCM in cases where the relevant shapes

involved are very different, like in fission, and require HO
bases with very different values of the oscillator lengths.
The present results open up the possibility of implementing
the time dependent GCM to understand fission dynamics.
The generalization to cases requiring symmetry restoration
is straightforward and only requires the calculation of the
corresponding overlap matrix between the elements of the
bases.
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APPENDIX A: THE DILATATION OPERATOR

The dilatation operator in 1D, T̂ (a), satisfies 〈x|T̂ (a) =
〈ax|, where |x〉 is an eigenstate of the position operator. There-
fore, for an arbitrary state vector |�〉, one has 〈x|T̂ (a)|�〉 =
�(ax). In one dimension, the operator is given by

T̂ ′(a) = eτx∂x

with a = eτ . As it stands, the operator is not unitary as the
exponent is not an anti-Hermitian operator. As can be easily
checked, just adding τ/2 to the exponent will do the trick. The
unitary dilation operator is then given by

T̂ (a) = eτ (x∂x+ 1
2 ).

With this definition T̂ (a) f (x) = eτ/2 f (eτ x). The extra factor
exp(τ/2) is usually absorbed by the normalization constant,
as is the case for the harmonic oscillator wave function

APPENDIX B: TRANSFORMATION COEFFICIENT L IN
ONE DIMENSION

In this Appendix I establish the explicit expression of the
L coefficients in the expansion of the restricted 1D HO wave
functions

ϕ̄n(x, b0) =
n∑

m=0

Lnm(q01)ϕ̄m(x, b1)

with q01 = b1
b0

. They are given by

Lnm(q) = 	n,m

(
n!
m!

)1/2

2(n−m)/2
(

n−m
2

)
!
(q2 − 1)

n−m
2 qm+1/2, (B1)

where 	n,m = 1
2 [1 + (−)n+m] is the “parity” Kronecker sym-

bol. The Lnm also satisfy Lnm = 0 if m > n due to the factorial
in the denominator and therefore they are the matrix elements
of a lower triangular matrix. The expression of Eq. (B1) is eas-
ily obtained by using the generating function of the Hermite
polynomials ∑

n

tn

n!
Hn(x) = e2xt−t2

.
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The inverse of the 1D matrix L can be found by inspection:

L−1
mr (q) = 	m,r

(−)
m−r

2
(

m!
r!

)1/2

2(m−r)/2
(

m−r
2

)
!
(q2 − 1)

m−r
2 q−(m+1/2). (B2)

Due to the triangular form, the determinant of L can also be
computed right away: assuming the dimension of the matrix
is N (i.e., m = 0, . . . , N − 1),

det L =
N−1∏
m=0

qm+1/2 = qN2/2

APPENDIX C: TRANSFORMATION COEFFICIENT L IN
TWO DIMENSIONS

The generalization of the results of Appendix B to the
two-dimensional case that one encounters in the harmonic
oscillator basis with axial symmetry is straightforward. The
2D HO wave function is defined in terms of the n⊥ and m
quantum numbers as

φn⊥m(
r, b) = e− 1
2 r2

⊥ φ̄n⊥m(
r, b)

with

φ̄n⊥m(
r, b) = N⊥

(
r⊥
b

)|m|
L|m|

n⊥

(
r2
⊥

b2

)
eimϕ

and N⊥ = 1
b
√

π
( n⊥!

(n⊥+|m|)! )1/2. The generating function is in this
case

exp

(
2
r
t
b

− t2

)
=

∑
n⊥m

κ∗
n⊥m(
t )φ̄n⊥m(
r, b),

where 
t is a two-dimensional vector and the coefficients in the
linear combination are given by

κ∗
n⊥m(
t ) = (−)n⊥

√
πb

(n⊥!(n⊥ + |m|)!)1/2 t2n⊥+|m|
⊥ e−imϕt .

Expanding the identity

exp

(
2
r
t
b

− t2

)
= exp

(
2
r(q
t )

b′ − q2t2

)
exp[(q2 − 1)t2]

in powers of t⊥ and ϕt and equating equal powers in both
sides, one obtains

φ̄n⊥m(
r, b) =
∑
n′

⊥

L|m|
n⊥n′

⊥
(q)φ̄n′

⊥m(
r, b′)

with

L|m|
n⊥n′

⊥
(q) = q2n′

⊥+|m|+1 (1 − q2)n⊥−n′
⊥

(n⊥ − n′
⊥)!

(
n⊥!(n⊥ + |m|)!
n′

⊥!(n′
⊥ + |m|)!

)1/2

and q = b′/b. It is usually more convenient to express the
quantum numbers in terms of N = 2n⊥ + |m| and m. Using
them, one obtains

L(N,m)(N ′,m′ )(q) = δmm′ (−)
N−N ′

2( (N−N ′ )
2

)
!

( (
N±m

2

)
!(

N ′±m′
2

)
!

)1/2

× (1 − q2)
N−N ′

2 q(N ′+1)

and, for the inverse,

L−1
(N,m)(N ′,m′ )(q) = δmm′ (−)

N−N ′
2( (N−N ′ )

2

)
!

( (
N±m

2

)
!(

N ′±m′
2

)
!

)1/2

× (1 − q2)
N−N ′

2 q−(N+1),

as can be easily obtained by inspection. In the above formulas
( N±m

2 )! = ( N−m
2 )!( N+m

2 )!.
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