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Finite amplitude method on the deformed relativistic Hartree-Bogoliubov theory in continuum: The
isoscalar giant monopole resonance in exotic nuclei

Xuwei Sun
State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China

Jie Meng *

State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
and Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

(Received 5 January 2022; accepted 1 April 2022; published 15 April 2022)

Finite amplitude method based on the deformed relativistic Hartree-Bogoliubov theory in continuum
(DRHBc-FAM) is developed and applied to study isoscalar giant monopole resonance in exotic nuclei. Validation
of the numerical implementation is examined for 208Pb. The isoscalar giant monopole resonances for even-even
calcium isotopes from 40Ca to the last bound neutron-rich nucleus 80Ca are calculated, and a good agreement with
the available experimental centroid energies is obtained for 40–48Ca. For the exotic calcium isotopes, e.g., 68Ca
and 80Ca, the DRHBc-FAM calculated results are closer to the energy weighted sum rule than the calculations on
the harmonic oscillator basis, which highlights the advantages of DRHBc-FAM in describing giant resonances
for exotic nuclei. In order to explore the soft monopole mode in the exotic nuclei, the giant monopole resonance
for the deformed exotic nucleus 200Nd is investigated, where the prolate shape and the oblate shape coexist. A
soft monopole mode near 6.0 MeV is found in the prolate case, and another one near 4.5 MeV is found in the
oblate case. The transition density of the soft monopole mode shows in-phase or out-of-phase vibrations near the
surface region, which is generated by quadrupole vibrations.
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I. INTRODUCTION

The new generation of radioactive ion beam facilities de-
veloped worldwide have provided more and more nuclei far
from the stability valley and extended our knowledge of nu-
clear physics from stable nuclei to exotic ones. The exotic
nuclei, in particular those near the drip-line, are loosely bound
with very extended spatial density distributions. The coupling
between the bound state and the continuum by pairing correla-
tions and the possible deformation make it difficult to describe
exotic nuclei properly.

The relativistic continuum Hartree-Bogoliubov (RCHB)
theory [1,2], which takes into account pairing and continuum
effects in a self-consistent way, has proven to be successful
in describing the ground state properties in exotic nuclei.
The RCHB theory has achieved success in reproducing and
interpreting the the neutron halo in 11Li [1], predicting the
giant halo in zirconium isotopes [3], extending the boundary
of nuclear chart [4], etc. To provide a proper description
of deformed exotic nuclei, the deformed relativistic Hartree-
Bogoliubov theory in continuum (DRHBc) was developed
[5–7], with the deformed relativistic Hartree-Bogoliubov
equations solved in a Dirac Woods-Saxon basis [8]. The inclu-
sion of deformation facilitates the applications of DRHBc, for
example, in the predicting of the shape decoupling between
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the core and the halo in 44Mg [5], and in the seeking for
possible bound nuclei beyond the drip line [9,10].

In order to investigate the excitations of exotic nuclei,
many-body approaches beyond the mean-field approximation
should be adopted [11]. For the widely used random phase
approximation (RPA) method [12–14], calculating and diag-
onalizing the RPA matrix are extremely time-consuming for
deformed exotic nuclei. Instead, the finite amplitude method
(FAM) [15] is equivalent to RPA but numerically feasible.
FAM avoids the calculation of the matrix elements of two-
body residual interactions and has been implemented on
Skyrme density functionals [16–18] and relativistic density
functionals [19–22]. The applications of FAM include the
study of giant monopole resonance [23], exotic excitation
mode like pygmy dipole resonance [24] and soft monopole
mode [25], β decay half-lives [26], and collective inertia in
spontaneous fission [27], etc.

As one of the fundamental excitations in a nucleus, giant
resonances are small-amplitude collective vibration modes
[11,28]. In particular, because of its close correlation with
the nuclear incompressibility, the isoscalar giant monopole
resonance (ISGMR), i.e., the breathing mode of a nucleus,
has been one of the most intriguing topics in nuclear physics
and astrophysics [29]. The nuclear incompressibility is a key
parameter in nuclear equation of state (EoS), which has im-
portant impacts on the heavy ion collision dynamics [30]
as well as astrophysical events like supernova explosions
[31].
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For exotic nuclei with a large neutron excess, a soft
monopole mode may emerge, which brings new insights into
the nuclear incompressibility and has become the goals for
both experimental and theoretical investigations. For instance,
it has been observed experimentally in 11Li [32] and 68Ni
[33], and is predicted in the neutron-rich magnesium [34],
calcium [35], nickel [25], tin [36], and lead [36] isotopes.
However, for heavy and deformed exotic nuclei, the structure
and mechanism of the soft monopole mode are not clear.

Coupling to continuum is important to nuclear giant
resonances, which has been shown in previous continuum
RPA calculations with relativistic density functional [37] and
Skyrme density functional [38], as well as the continuum
quasiparticle RPA calculations [39,40]. The DRHBc theory
roots in the relativistic density functional which has attracted
wide attention for many attractive advantages [41,42], and
describes a variety of nuclear phenomena in nuclear physics
successfully [43–49]. Combining the advantages of DRHBc
in describing exotic nuclei and the feasibility of FAM will
provide a powerful tool to investigate the impacts of deforma-
tion, pairing, and continuum effects on the giant resonances
in exotic nuclei. This paper is devoted to implementing the
finite amplitude method on the deformed relativistic Hartree-
Bogoliubov theory in continuum (DRHBc-FAM) and study
the isoscalar giant monopole resonance in exotic nuclei, with
special attention paid on the soft monopole mode for de-
formed exotic nuclei. The paper is organized as follows.
Section II briefly presents the formalism for DRHBc and
FAM. The numerical details will be given in Sec. III. In
Sec. IV, the ISGMRs for even-even calcium isotopes will be
calculated and the continuum effects will be highlighted. In
Sec. V, DRHBc-FAM will be applied to the deformed loosely
bound nucleus 200Nd, focusing on the soft monopole mode.
Conclusions and remarks will be given in Sec. VI.

II. FORMALISM

A. Deformed relativistic Hartree-Bogoliubov theory in
continuum

In relativistic density functional theory (RDFT) [43], the
energy of a nucleus at the state |�〉, which is the expectation
value of Hamiltonian, can be expressed as a functional of the
density ρ̂,

ε[ρ̂] = 〈�|
∫

d3rH|�〉. (1)

For point-coupling type RDFT, the Hamiltonian density H is
obtained from the Lagrangian density L [50],

L = ψ̄ (iγμ∂μ − M )ψ − 1

4
FμνFμν − eψ̄γ μ 1 − τ3

2
Aμψ

− 1

2
αs(ψ̄ψ )(ψ̄ψ ) − 1

2
αV (ψ̄γμψ )(ψ̄γ μψ )

− 1

2
αTV (ψ̄ �τγμψ )(ψ̄ �τγ μψ ) − 1

3
βs(ψ̄ψ )3

− 1

4
γs(ψ̄ψ )4 − 1

4
γV [(ψ̄γμψ )(ψ̄γ μψ )]2

− 1

2
δV ∂ν (ψ̄γμψ )∂ν (ψ̄γ μψ )

− 1

2
δTV ∂ν (ψ̄ �τγμψ )∂ν (ψ̄ �τγ μψ ), (2)

in which ψ and Aμ, respectively, represent the nu-
cleon field and photon field, the coupling constants
{αs, αV , αTV , βs, γs, γV , δV , δTV } are determined by the
masses and radii of selected finite nuclei.

The single-particle Hamiltonian is the derivative of the
energy functional respect to the density,

ĥ = δε

δρ
= α(p − V ) + β(m + S) + V, (3)

which contains a scalar potential S = 
s, and a vector poten-
tial V μ ≡ (V,V ) = 
μ + τ3


μ
TV ,


s = αsρs + βsρ
2
s + γsρ

3
s + δs�ρs,


μ = αV jμV + γV
(

jμV
)3 + δV � jμV + 1 − τ3

2
Aμ,



μ
TV = αTV jμTV + δTV � jμTV .

(4)

The pairing interaction is a zero-range pairing force,

V pp(r1, r2) = V0
1

2
(1 − Pσ )δ(r1, r2)

(
1 − ρ(r1)

ρsat

)
, (5)

which leads to the pairing potential

�(r) = V0

(
1 − ρ(r)

ρsat

)
κ (r) (6)

with the pairing tensor κ (r) given in the following.
The details of the DRHBc theory with meson-exchange

and point-coupling density functionals can be found in
Refs. [5–7]. In the DRHBc theory, the relativistic Hartree-
Bogoliubov (RHB) equation reads(

h − λ �

−�∗ −h∗ + λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
(7)

with the quasiparticle energy Ek and corresponding spinors
Uk and Vk as well as the chemical potential λ taken care of
the particle number conservation. The density, current, and
pairing tensor used in Eqs. (4) and (6) can be calculated as

ρs(r) =
∑

k

V †
k (r)γ0Vk (r),

jμV (r) =
∑

k

V †
k (r)γ0γ

μVk (r),

jμTV (r) =
∑

k

V †
k (r)τ3γ0γ

μVk (r),

κ (r) =
∑

k

V †
k (r)Uk (r).

(8)

In DRHBc theory [5], the RHB equation (7) is solved by
expanding quasiparticle spinors with the Dirac Woods-Saxon
(DWS) basis [8],

ϕnκm(rs) = 1

r

(
iGnκY l

jm(r̂s)
−FnκY l̃

jm(r̂s)

)
, (9)
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in which n is the principal quantum number, κ =
π (−1) j+1/2( j + 1/2) is a combination of the parity π and the
angular momentum j, m represents the projection of the angu-
lar momentum, Gnκ and Fnκ are, respectively, the radial wave
functions for large and small components of Dirac spinors,
and Y l

jm and Y l̃
jm are, respectively, the spin spherical harmonics

with l = j + 1
2 sgn(κ ) and l̃ = 2 j − l . In order to describe the

nucleus with axial deformation, the potentials and densities
are expanded in terms of the Legendre polynomials [8]

f (r) =
∑

λ

fλ(r)Pλ(cos θ ) (10)

with

fλ(r) = 2λ + 1

4π

∫
d� f (r)Pλ(cos θ ). (11)

B. Finite amplitude method

The random-phase approximation (RPA) equation is
known to be equivalent to the time-dependent Hartree-Fock
(HF) equation in the small-amplitude limit [11]. The Finite
amplitude method is a practical method for solving the RPA
equation in the self-consistent HF and density-functional the-
ory [15]. The derivation and the implementation of FAM for
the relativistic density functionals can be found in Ref. [19].

For a nucleus slightly perturbed by an external field F (t )
with the frequency ω, its generalized density R(t ) and Hamil-
tonian H(t ) will respectively oscillate around the equilibrium
R0 and H0, in the small amplitude limit,

R(t ) = R0 + δR(ω)e−iωt + H.c.,

H(t ) = H0 + δH (ω)e−iωt + H.c..
(12)

In RPA, the induced density δR(ω) takes the contributions
from creating (‘20’) and annihilating (‘02’) two quasiparticles
[11],

δR(ω) =
∑
μν

{Xμν (ω)β†
μβ†

ν + Yμν (ω)βνβμ}, (13)

in which β† and β are, respectively, the quasiparticle creating
and annihilating operator, and Xμν (ω) and Yμν (ω) are the
forward and the backward transition amplitudes relating to the
quasiparticle pair μν.

Similarly, the induced Hamiltonian has the form

δH (ω) = 1

2

∑
μν

{
δH20

μν (ω)β†
μβ†

ν + δH02
μν (ω)βνβμ

}
, (14)

where δH02
μν (ω) and δH02

μν (ω) are, respectively, the matrix el-
ement of the induced Hamiltonian. As the term β†β has no
contribution at the RPA level, it is omitted here.

According to the equation of motion, iṘ(t ) = [H(t ) +
F (t ),R(t )], the following linear response equation can be
obtained:

(Eμ + Eν − ω)Xμν (ω) + δH20
μν (ω) = −F 20

μν ,

(Eμ + Eν + ω)Yμν (ω) + δH02
μν (ω) = −F 02

μν .
(15)

Here, the quasiparticle energy Eμ is the eigenvalue of H0 and
F 20

μν and F 02
μν denote the matrix element of the external field.

The induced Hamiltonian δH02 and δH02 can be calculated
from the variation of the single-particle Hamiltonian δh, the
variation of the paring field δ� and δ�∗, and the quasiparticle
wave function U and V obtained in Eq. (7),

δH20 = U †δhV ∗ − V †δhT U ∗ − V †δ�∗V ∗ + U †δ�U ∗,

δH02 = U T δhT V − V T δhU − V T δ�V + U T δ�∗U .

(16)

The above equation is nothing but a representation trans-
formation between a quasiparticle basis and a single particle
basis. Applying the same transformation to the induced den-
sity leads to

δρ = UXV T + V ∗YU †,

δκ = UXU T + V ∗YV †,

δκ∗ = −V XV T − U ∗YV †,

(17)

where δρ, δκ , and δκ∗ are, respectively, the variation of the
single-particle density and the variation of the pairing tensor.
For the external field, the transformation reads

F 20 = U † f V ∗ − V † f U ∗,

F 02 = U T f V − V T f U .
(18)

In FAM, the variation δh (δ� and δ�∗) are calculated
from the single-particle Hamiltonian (the pairing field) at the
perturbed density and the equilibrium ρ0 (κ0 and κ∗

0 ),

δh = 1

η
(h[ρ0 + ηδρ] − h[ρ0]),

δ� = 1

η
(�[κ0 + ηδκ] − �[κ0]),

δ�∗ = 1

η
(�∗[κ∗

0 + ηδκ∗] − �∗[κ∗
0 ]),

(19)

where η is a small number used in the differentiation.
Starting with an initial guess X 0

μν (ω) and Y 0
μν (ω), Eqs. (15)

to (19) can be solved iteratively till convergence. The con-
verged amplitudes Xμν (ω) and Yμν (ω) are used to get the
strength function

SF (F̂ , ω) = − 1

π
Im

∑
μν

{
F 20∗

μν Xμν (ω) + F 02∗
μν Yμν (ω)

}
. (20)

III. NUMERICAL DETAILS

The relativistic density functional PC-PK1 [51] is used for
the particle-hole channel, which is well calibrated and gives
accurate estimations of nuclei masses [9,52,53], and shows
excellent predicting power in a lot of nuclear phenomena
like toroidal states [54], magnetic rotations [55–57], antimag-
netic rotations [58], multiple chirality in nuclear rotation [59],
quadrupole moments [60], nuclear shape phase transitions
[61], and collision reactions [62], etc.

In the DRHBc calculation, the numerical details suggested
in Ref. [7] are followed. A density-dependent zero-range pair-
ing force with the strength V0 = −325 MeV is used for the
particle-particle channel, The relativistic Hartree-Bogoliubov
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FIG. 1. Strength functions of the ISGMRs for 208Pb calculated
by expanding on DWS basis (circles) and HO basis (solid line).

equation is solved by expansion on a Dirac Woods-Saxon
(DWS) basis [8]. The DWS basis is constructed with a box
size Rmax = 16 fm, and the mesh size �r = 0.1 fm. The
energy cutoff is Ecut = 120 MeV.

In the FAM calculations, the same numerical conditions are
used. With the efficiency of the FAM, a full two-quasiparticle
(2qp) configuration space is constructed without any trunca-
tion. For ISGMR, this means that the residual interactions
among all the 2qp pairs with Kπ = 0+ are considered. To
avoid possible singularity in Eq. (15), a smearing width is
added in the excitation energy, ω → ω + i �

2 . If not mentioned
otherwise, the smearing width is 2 MeV. The parameter η in
Eq. (19) to induce the numerical difference is set to 10−6. The
linear response FAM equation is solved iteratively. The initial
amplitudes X 0

μν and Y 0
μν are set to be zero and the iteration is

accelerated by the modified Broyden mixing method [63]. The
numerical tolerance (max{|δX/X |, |δY/Y |}) for the iteration is
10−8. The typical number of iterations varies from 20 to 50,
depending on the excitation energy and the smearing width �

adopted.
In order to check the validity for the numerical implemen-

tation, the ISGMR strength function for 208Pb is calculated
and presented in Fig. 1, in comparison with the result calcu-
lated in a harmonic oscillator (HO) basis with 20 shells by the
code developed in [25]. Perfect agreements are achieved. In
both calculations, there are no truncation for the 2qp configu-
ration space.

IV. ISGMR FOR THE EVEN-EVEN CALCIUM ISOTOPES

In the following, the DRHBc-FAM is applied to the
even-even calcium isotopes 40–80Ca to study effects of the
continuum on the ISGMRs.

The kth energy weighted moment relating to the monopole
operator r2 is defined as

Sk =
∫

SF (r2, ω)ωkdω. (21)

TABLE I. Calculated centroid energies (in MeV) of ISGMRs
for 40−48Ca by DWS basis and HO basis, in comparison with the
experimental data of RCNP [65] and TAMU [66–68].

FAM calculations experimental data

Nucl. DWS HO RCNP TAMU

40Ca 20.79 20.80 20.2+0.1
−0.1 [65] 19.2+0.40

−0.40 [66]
42Ca 20.56 20.61 19.7+0.1

−0.1 [65] –
44Ca 20.21 20.31 19.5+0.1

−0.1 [65] 19.50+0.35
−0.33 [67]

46Ca 19.86 19.95 – –
48Ca 19.66 19.66 19.5+0.1

−0.1 [65] 19.9+0.2
−0.2 [68]

In particular, the energy weighted sum rule (EWSR) S1 can be
proved to be [64]

S0
1 = 2h̄2

m
A〈r2〉 (22)

with A the mass number and 〈r2〉 the mean-square radius.
From the energy weighted moment, the centroid energy,

Ec = S1

S0
, (23)

which evaluates the position of a resonance peak, can be
calculated.

In Table I, the centroid energies of ISGMRs for the even-
even calcium isotopes 40–48Ca are calculated and compared
with the experimental data from Research Center for Nuclear
Physics at Osaka University (RCNP) [65] and Cyclotron Insti-
tute at Texas A&M University (TAMU) [66–68]. For the mass
dependence of the centroid energies, the data from RCNP
and TAMU show different trends. Generally the calculated
centroid energies are very close to the experimental data. For
42,44,46Ca, the calculated centroid energies with DWS basis
are slightly smaller than the calculations with HO basis. For
40Ca and 48Ca, they are almost identical. Since the centroid
energy is related to the compression modulus [29], Ec ∼ √

KA,
an increasing Ec with mass implies a positive value for the
isospin asymmetry part of the incompressibility Kτ , and vice
versa. The trend of the calculated results agrees with the
RCNP data, i.e., the centroid energy decreases with the mass
number. Therefore, current calculations suggest a negative Kτ ,
the same as the data from RCNP.

Unlike the GMR for 208Pb which concentrates in a single
collective peak, the response functions of GMR for calcium
isotopes are fragmented, thus are more dependent on the
details of single-particle wave functions. As respectively illus-
trated in Figs. 2(a) and 2(b) for 68Ca and 80Ca, the details of
the response functions show differences between calculations
with DWS basis and HO basis. Because, although the single-
particle wave functions for the bound states are the same in
both calculations, those for the continuum are different. In the
inset of Fig. 2(b), the energy weighted sum rule for ISGMR in
Eq. (22) is examined in even-even calcium isotopes 40–80Ca.
The calculated results by DWS basis (circles) and by HO basis
(squares) are presented. The difference between the calculated
S1 and the model-independent S0

1 are negligible. For instance,
for 72Ca, 98.2% of the EWSR is exhausted below 45 MeV
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FIG. 2. Monopole strength functions for 68Ca (a) and 80Ca
(b) calculated with DWS basis (solid line) and HO basis (dotted line).
In the inset, energy weighted sum rule for ISGMR is examined by
the calculation up to 45 MeV with DWS basis (circles) and HO basis
(squares) for even-even calcium isotopes 40−80Ca.

for DWS basis, and 96.8% is for HO basis. For the loosely-
bound nuclei, calculations with DWS basis give slightly larger
EWSR than that with HO basis because the coupling between
the bound state and the continuum starts to work. The spatial
density distributions in exotic nuclei can hardly be described
by HO basis unless extremely huge number of shells are
used. In contrast, the DRHBc on the DWS basis with correct
asymptotic behavior at the large distance from the center of
the nucleus can achieve an equivalent performance as the
calculations in the coordinate space [8] for nuclear ground
state properties. Therefore, the calculations on DWS basis can
take into account the continuum effects, and produces a value
close to the EWSR. Another consequence of applying the HO
basis to loosely bound nuclei is that the spatial extension of
the density at large radius is not well described, thus a too
compact surface may be predicted. As a result, the energy
of the soft monopole mode, which relates directly to the
compression property of a nucleus near the surface, would be
overestimated. For example, as presented in Fig. 2(b) for 80Ca,
the calculation with HO basis predicts a higher soft monopole
mode than that with DWS basis.

V. ISGMR FOR DEFORMED AND SUPERFLUID EXOTIC
NUCLEUS 200Nd

To demonstrate the power of DRHBc-FAM, it is inter-
esting to investigate the giant resonances in deformed and
superfluid exotic nuclei. We take the exotic nucleus 200Nd
with 60 protons and 140 neutrons as an example. With the
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FIG. 3. (a) Potential energy curve in 200Nd; (b) Strength function
of the ISGMR built on the prolate isomer (solid line) and on the
ground state (dotted line) in 200Nd calculated by DRHBc-FAM.

neutron chemical potential λn = −0.94 MeV [7], the pairing
correlation, deformation, and the continuum effect interplay in
200Nd, and should be considered simultaneously. In DRHBc
calculations of such heavy deformed exotic nucleus, the box
size of DWS basis is Rmax = 20 fm, the energy cutoff is Ecut =
150 MeV, the angular momentum cutoff is Jcut = 23/2h̄ [7].

The exotic nucleus 200Nd locates at the prolate-oblate
transition region in the neodymium isotopes with E =
−1380.43 MeV at β = 0.22 and E = −1380.52 MeV at β =
−0.25 in the potential energy curve, as shown in Fig. 3(a).

The giant monopole resonances for 200Nd calculated by
DRHBc-FAM are presented in Fig. 3(b). The strength func-
tions are calculated up to 25 MeV with a step of 0.25 MeV,
using a smearing parameter � = 1 MeV. The main peaks of
the ISGMR built on the prolate and on the oblate minima
respectively locate around 12.5 MeV and 12.0 MeV. Both
ISGMRs are slightly broadened by the quadrupole deforma-
tions due to the well-known monopole-quadrupole coupling
[69,70]. The strength function shows a bump around 10 MeV
at the low energy side of the main peak for the prolate case and
a bump around 15 MeV at the high energy side for the oblate
case, which turns out to coincide with the position of ISGQR
(K = 0) peak in the corresponding case. For both prolate and
oblate cases, soft monopole modes emerge at the low energy
side of the strength function around 4.5–6 MeV. For 200Nd,
DRHBc-FAM calculations predict the soft monopole mode at
6.0 MeV for the prolate case, and at 4.5 MeV for the oblate
case. In the following, the structures of the soft monopole
modes will be discussed.
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A straightforward reflection of the nucleus vibration is the
transition density defined as

δρ̃(ω, r⊥, z) = ηIm
∑

m

∑
nκ,n′κ ′

ϕ†
nκm(r)δρm

nκ,n′κ ′ (ω)ϕn′κ ′m(r),

(24)
in which δρm

nκ,n′κ ′ (ω) denotes the matrix element of the in-
duced single-particle density in the DWS basis. In Fig. 4, the
normalized transition densities of the soft monopole mode
for 200Nd are illustrated for neutrons (a) and protons (b) at
6.0 MeV in the prolate case, as well as for neutrons (c) and
protons (d) at 4.5 MeV in the oblate case. Because of the
deformation, the transition densities are anisotropy in the in-
trinsic frame of reference. The nucleus vibrates differently in
the z direction and in the r⊥ direction. The root-mean-square
radii of 200Nd are, respectively, 5.90 fm for the prolate case,
and 5.93 fm for the oblate case. Near the surface, the nucleons
may vibrate in a different phase with respect to the nucleons
in the core. For neutrons in the prolate case in Fig. 4(a), the
out-of-phase vibrations can be identified in the z direction.
For neutrons in the oblate case in Fig. 4(c), it occurs in the
r⊥ direction. The situations for proton transition density are
similar to their corresponding neutron cases but with smaller
amplitudes.

In axial deformed case, the total angular momentum J is
no longer a good quantum number. The mixing between the
monopole vibration with J = 0 and the quadrupole vibration
with J = 2, or even higher order multipole vibrations may
occur. To investigate the structure of the soft monopole mode,
the contribution from different J components to the transition
density are analyzed in the following. The angular momentum
projection of the intrinsic transition density can be performed
as [20]

δρJ (ω, r) = δρJ (ω, r)YJK (�), (25)

where the radial projected transition density is defined as

δρJ (ω, r) =
∫

d�δρ̃(ω, r⊥, z)YJK (�). (26)

For ISGMR, the z component of the angular momentum K =
0.
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FIG. 5. Radial distributions of the projected transition densities
for the soft monopole modes in 200Nd, in the prolate case for neutrons
(a) and protons (b), and in the oblate case for neutrons (c) and
protons (d).

In Fig. 5, the radial distributions of the transition densi-
ties in the prolate and oblate cases for neutrons and protons
are presented. In general, the contributions from J = 0 and
J = 2 dominate in the transition density, especially in the core
region. The components with J = 4 and J = 6 make minor
contributions and are not negligible. For example, in the oblate
case, the contribution of J = 4 part counteracts with that of the
J = 2 part at r ≈ 3 fm. The vibration of neutrons surpasses
that of protons in the inner part of the nucleus, and extends
to larger distance. To be specific, the vibrations of neutrons
in Fig. 5(a) and 5(c) extend as far as 15 fm, while those of
protons in Fig. 5(b) and 5(d) decay quickly around 8 fm.
The long tail of the neutron transition density manifests the
loosely bound nature of 200Nd. Thanks to the DRHBc which
describes the asymptotic behavior of the wave functions at
large r and treats the continuum more accurately, the long tail
of the neutron transition density is well described.

Comparing the soft monopole modes built on the prolate
shape isomer and on the oblate ground state, obvious distinc-
tions exist between their behaviors in the surface region at
r ≈ 6 fm. In the prolate case, the J = 2 and the J = 0 neutron
transition densities are out of phase. In the oblate case, the
J = 2 and the J = 0 neutron transition densities are in phase.
Although the J = 4 and J = 6 parts counteract with J = 2
part, but they are much smaller in amplitude. Therefore, the
quadrupole part with J = 2 dominates the vibrations near the
surface, and generates the in-phase or out-of-phase vibrations
for the neutrons near the surface.

VI. CONCLUSION

In this work, finite amplitude method is implemented
on deformed relativistic Hartree-Bogoliubov theory in con-
tinuum. The DRHBc-FAM is validated by comparing the
calculated ISGMR for 208Pb with the result by the exist-
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ing code on HO basis. The ISGMRs for even-even calcium
isotopes are calculated, and a good agreement with the exper-
imental centroid energies is obtained. For the loosely bound
calcium isotopes like 68Ca and 80Ca, the DRHBc-FAM calcu-
lated results are closer to the EWSR than the calculations on
HO basis.

As both the continuum effect and deformation are consid-
ered simultaneously in DRHBc-FAM, an illustrative example
is presented for the deformed exotic nucleus 200Nd. For 200Nd,
the prolate shape and the oblate shape coexist and a soft
monopole mode near 6.0 MeV is found in the prolate case,
and another one near 4.5 MeV is found in the oblate case.
For the soft monopole mode of 200Nd, the vibration of neu-
trons is much stronger than that of protons. Since 200Nd is
loosely bound, the neutron transition density extends to very
far. Near the surface region, J = 0 part and J = 2 part neutron

transition densities are destructive in the prolate case, and are
constructive in the oblate case.
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