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Insights into the possible existence of a soft dipole mode in 8He
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With an extreme neutron-to-proton ratio of N/Z = 3, 8He provides an ideal laboratory for the study of a
variety of exotic phenomena, such as the emergence of a soft dipole mode that is dominated by transitions into
the continuum. In this contribution, a covariant density-functional theory (DFT) framework is used to compute
ground-state properties and the dipole response of 8He. Although 8He is admittedly too light for DFT to be
applicable, the great merit of the approach is that the spurious contamination associated with the center-of-mass
motion is guaranteed to decouple from the physical response. Given that a strong mixing between the isoscalar
and isovector dipole modes is expected for a system with such a large neutron-proton asymmetry as 8He, the
narrow structures that emerged at low energies in the isovector dipole response are attributed to the shift of the
spurious strength to zero (or near zero) excitation energy. Thus, the theoretical framework implemented here
disfavors the emergence of a soft dipole mode in 8He.
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I. INTRODUCTION

Which combinations of neutrons and protons can form a
bound atomic nucleus is one of the overarching questions
animating nuclear science today [1]. A core mission of nu-
clear science is to map the neutron drip line, which requires
the identification of the most neutron-rich element in an iso-
topic chain that remains stable against particle decay. So far,
the neutron drip line has been mapped up to an including
fluorine and neon [2]—a challenging experimental task that
took almost two decades since the confirmation of 24O as
the Z = 8 dripline nucleus [3,4]. In the case of helium, the
last stable isotope is 8He—an exotic nucleus with an extreme
neutron-to-proton ratio of N/Z = 3; see Ref. [5] and refer-
ences therein. Among the novel behavior that emerges at the
limits of stability is the development of neutron halos and
neutron skins, due to either a low neutron separation energy or
a large neutron-proton asymmetry. Besides the development
of extended spatial distributions, weakly bound nuclei often
give rise to soft modes of excitation that involve transitions
into the continuum.

An early experiment using the Coulomb excitation of 8He
identified a soft dipole resonance at an excitation energy of
about 4 MeV [6,7]. Later on, Golovkov, Grigorenko, and
collaborators populated the low-lying spectrum of 8He via a
transfer reaction and confirmed the existence of a soft dipole
mode, albeit at a slightly lower energy of about 3 MeV
[8,9]. In contrast, one of the main findings of the dissociation
experiment on 8He performed at Michigan State University
concluded that an insignificant fraction of no more than 3%
of the energy-weighted sum rule is exhausted by the low-
energy mode [10]. This result has been validated by the recent
inelastic proton-scattering experiment that concluded that the
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measured angular distribution is not consistent with a dipole
excitation [11]. It is anticipated that the high statistics exper-
iment already finalized at the RIKEN facility in Japan will
settle the issue [12].

From the theoretical perspective, ground-state properties of
8He have been computed using a variety of state-of-the-art ab
initio methods [11,13–15]. However, to our knowledge, it is
only the very recent ab initio work by Bonaiti, Bacca, and
Hagen [15] that addresses the possible existence of a soft
dipole mode in 8He. The authors have merged the coupled-
cluster framework to the Lorentz-integral-transform approach
[16] to report on the emergence of low-energy dipole strength
around 5 MeV, in agreement with Refs. [6–9], but in disagree-
ment with Refs. [10,11].

In this paper I offer an alternative theoretical perspec-
tive based on density-functional theory. Density-functional
theory (DFT) is a powerful technique developed by Kohn
and collaborators [17,18], whose great merit is that the
exact ground-state energy and one-body density of a com-
plicated many-body system is obtained by minimizing a
suitable energy density functional (EDF). To make the prob-
lem tractable, Kohn and Sham demonstrated how the complex
interacting many-body system can be made equivalent to a
system of noninteracting electrons moving in an external—
mean-field-like—potential [18]. Among the advantages of the
Kohn-Sham formulation is that self-consistent problems of
this kind are routinely solved in many fields, including nuclear
physics. Indeed, nuclear EDFs, although not always known as
such, have a long and successful history in nuclear physics;
see Ref. [19] and references therein. The widely used density-
dependent Skyrme forces were developed almost a decade
before the inception of density-functional theory [20,21]. In
this paper a covariant formulation of DFT is implemented that
is based on an extension of the work by Walecka, Serot, and
many others [22]. For details of the particular implementation
used in this work, see the recent review published in Ref. [23].
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Advocating in favor of mean-field-like approaches for light
systems such as 8He may come as a surprise. Although not a
problem in the case of electrons bound to a heavy nucleus, the
main problem with self-bound systems such as atomic nuclei
is the absence of a natural external potential and a proper
treatment of the center of mass (COM). Indeed, as pointed
out by Engel [24], without a proper decoupling of the COM,
the ground state of a self-bound system has a—manifestly
incorrect—density that is uniformly distributed over space
[19,24]. Among the treatments dealing with the removal of
the COM contribution to the energy is an approach based on a
harmonic-oscillator approximation. This prescription, which
falls down slowly with mass number [25], makes a significant
contribution to the energy of light nuclei—especially for those
at the drip line. As such, large COM corrections to the energy
hinder any meaningful prediction of the ground-state energy
of light systems. However, the situation improves consider-
ably when dealing with the linear response of the system.
More than six decades ago in a seminal paper, Thouless
showed how, in a self-consistent formulation, the spurious
state associated with a uniform translation of the center of
mass separates out cleanly from the physical modes by having
its strength shifted to zero excitation energy [26]. This result
is particular relevant for isoscalar dipole excitations that share
the same quantum numbers as the center of mass. However,
for neutron-rich nuclei such as 8He, one expects a strong
mixing between isoscalar and isovector dipole modes. It is the
main goal of the present contribution to examine the impact of
such a mixing on the emergence—or lack thereof—of a soft
dipole mode in 8He.

The paper has been organized as follows: In Sec. II a brief
description of the covariant random-phase approximation
(RPA) formalism used in this work is presented, paying spe-
cial attention to the treatment of the continuum and the mixing
between isoscalar and isovector modes. Self-consistent results
are then presented in Sec. III for the ground-state properties
and distribution of isovector dipole strength of 8He. Finally,
Sec. IV contains a summary of the main results.

II. FORMALISM

The energy density functional used in this work is based
on the nonlinear model introduced in Ref. [27], supplemented
by an isoscalar-isovector term that influences the dynamics
of neutron-rich matter [28]. Although previously discussed in
great detail elsewhere, see, for example, Ref. [29] and refer-
ences therein, the interacting Lagrangian density is displayed
for completeness:

Lint = ψ̄
[
gsφ −

(
gvVμ + gρ

2
τ · bμ + e

2
(1 + τ3)Aμ

)
γ μ

]
ψ

− κ

3!
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4!
(gsφ)4 + ζ

4!
g4

v(VμV μ)2

+
v
(
g2

ρ bμ · bμ
)(

g2
vVνV ν

)
, (1)

where the isodoublet nucleon field ψ interacts through the
exchange of photons (Aμ) and three “mesons” of diverse
spin-isospin character: a scalar-isoscalar (φ) a vector-isoscalar
(V μ), and a vector-isovector (bμ) [27]. Furthermore, to

FIG. 1. Diagrammatic representation of the RPA equations. The
bubble with the thick lines represents the fully correlated polarization
tensor, while the one depicted with the thin lines is the uncorrelated
polarization. The residual interaction denoted with the wavy line
must be identical to the one used to generate the ground-state. The
arrow in the figure indicates that the RPA bubble contains mixed
contribution of various isospin and Lorentz structures.

improve the predictive power of the model, various self-
interacting meson terms have been added. Ground-state
properties of the system—namely, single-particle energies
and Dirac orbitals, one-body densities, and mean-field-like
potentials—are obtained from a self-consistent solution of the
Kohn-Sham equations [23].

Given that the Kohn-Sham equations may be derived from
a variational approach, one can examine the small oscillations
around the ground state. The consistent linear response of
the ground state to an external perturbation is encapsulated
in the RPA formalism that ensures that important symmetries
are preserved [30,31]. Particularly critical to this work is the
decoupling of the spurious state associated with a uniform
translation of the center of mass [26].

The first step in generating the RPA response is the cal-
culation of the uncorrelated polarization tensor, depicted by
the thin (blue) bubble in Fig. 1. The spectral content of the
uncorrelated polarization is both simple and illuminating: it
contains simple poles at the single-particle excitations of the
system with the associated transition densities obtained from
the residues at the pole [30]. One obtains the RPA polarization
tensor, depicted by the thick (black) bubble in Fig. 1, by
iterating the uncorrelated polarization to all orders. If many
particle-hole pairs with the same quantum numbers are in-
volved, then the RPA response is strongly collective and one
“giant resonance” tends to dominate, namely, the resonance
exhausts most of the classical sum rule [32].

The diagrammatic structure of the RPA equations is de-
picted in Fig. 1. Two aspects of the RPA equations are
particularly important. First, the wavy lines in the figure de-
note the residual particle-hole interaction. It is only by using
a residual particle-hole interaction consistent with the inter-
action used to generate the mean-field ground state that the
spurious strength associated with a uniform translation of
the center of mass is decoupled from the physical response.
Second, the variety of isospin and Lorentz structures of the
residual interaction leads to a highly complex set of RPA
equations. In particular, for nuclei with large neutron excess,
the mixing of isoscalar and isovector modes is strong [31].
This is illustrated by the arrow in the figure that indicates that
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the RPA bubble contains mixed isoscalar-isovector contribu-
tions. It is precisely such strong isoscalar-isovector mixing
that will become critical in our interpretation of the emer-
gence, or lack-thereof, of a soft dipole mode in 8He.

I conclude this section by relating the distribution of
isovector dipole strength R(ω) to the photoabsorption cross
section and by defining various moments of the distribution.
As shown in Ref. [33], R(ω) may be obtained from the dy-
namic longitudinal response, which is a function of both the
excitation energy ω and the momentum transfer. In turn, the
product ωR(ω) is directly proportional to the photoabsorption
cross section, namely,

σabs(ω) = 16π3

9

e2

h̄c
ωR(ω). (2)

Often used in the literature are moments of the distribution of
strength which are defined as follows:

mn =
∫ ∞

0
ωnR(ω)dω. (3)

In particular, the energy-weighted sum m1 satisfies a classical
sum rule [32], whereas the inverse energy-weighted sum m−1

is proportional to the electric-dipole polarizability αD[34]—a
physical observables that has been shown to be a good isovec-
tor indicator [35,36]. That is,

m1 = 9h̄2

8πM

(NZ

A

)
≈ 14.8

(NZ

A

)
fm2 MeV, (4a)

αD = h̄c

2π2

∫ ∞

0

σabs(ω)

ω2
dω = 8πe2

9
m−1. (4b)

III. RESULTS

Following the organizational scheme of Ref. [15], one
starts this section by presenting results for the ground-state
properties of 8He followed by a discussion on the distribution
of dipole strength. Predictions are made using three covariant
energy density functionals: RMF016 (also known as “FSUG-
arnet”), RMF022, and RMF028 (or “FSUGold2”) [37]. All
three EDFs are identical in the isoscalar sector but differ in
their isovector properties. Specifically, the EDFs were cali-
brated assuming different values for the (at the time) unknown
value of the neutron skin thickness of 208Pb. In particular,
RMF016 was calibrated assuming a neutron skin thickness
of 0.16 fm, RMF022 of 0.22 fm, and RMF028 of 0.28 fm.
Based on the result published by the PREX Collaboration
[38], namely, R208

skin = 0.283 ± 0.071 fm, the RMF016 predic-
tion falls within the two-sigma interval.

One should note that within the context of covariant DFT,
all three accurately calibrated EDFs have been successful in
describing a host of physical observables, such as ground-
state properties of medium- to heavy-mass nuclei, their linear
response, and the structure of neutron stars. Moreover, such
EDFs have also been used to explore the evolution of the
ground-state energy of the oxygen isotopes [37]. Whereas
no lighter system than oxygen has been studied with this set
of EDFs, it is interesting to explore their predictions for the
isovector dipole response of 8He, primarily due to the critical
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FIG. 2. Single-particle spectrum for 8He as predicted by the co-
variant energy density functional FSUGarnet = RMF016. The blue
(red) lines denote occupied (empty) orbitals and the thin arrows
indicate discrete excitations into bound states. In turn, the thick arrow
indicates that low-energy strength is expected to emerge from the ex-
citation of the weakly bound neutron p3/2 orbital into the continuum.

role that self-consistency plays in eliminating any spurious
contamination.

A. Ground-state properties

Self-consistent predictions for the bound single-particle
spectrum of 8He are displayed in Fig. 2, with the blue
(red) lines indicating the occupied (vacant) single-particle
orbitals. The two thin arrows indicate the two lowest “sharp”
dipole transitions on the proton side. In contrast, all dipole
excitations on the neutron side involve transitions into the
continuum. Within the DFT framework employed here, the
soft-dipole excitations indicated by the thick arrow involve
the transition of the weakly bound p3/2 orbital into the sd
shell, which lies entirely in the continuum. These low-energy
excitations will be discussed in greater detail in Sec. III B.

Listed in Table I are energies and root-mean-square radii
(rms) for 8He as predicted by the three models introduced
earlier. The second column lists the single-particle energy of
the p3/2 neutron orbital, which displays a significant model
dependence that is attributed to the difference in the isovector
properties of the models. As shown in Fig. 3, the model with
the stiffest symmetry energy (RMF028) generates the most
attractive neutron potential at the large distances of relevance
to the weakly bound p3/2 orbital. Indeed, as indicated in the
inset to Fig. 3, the p3/2 orbital peaks at a distance of about
3.7 fm where the neutron potential generated by the RMF028
model is about 2 MeV deeper than the one generated by the
model with the softest symmetry energy (RMF016). Note that
the neutron potential is an effective Schrödinger-like potential
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TABLE I. Predictions of a few ground-state properties of 8He for the three models used in this work. The binding energy of the neutron p3/2

orbital is compared against the experimental one-neutron separation energy listed in the National Nuclear Data Center database. The quoted
experimental energy per nucleon was obtained from Refs. [39–41], the experimental charge radius from Ref. [42], while the derived quantities
for Rp and Rn were extracted from Ref. [43].

Model ε(p3/2) (MeV) E/A (MeV) Rp (fm) Rn (fm) Rn − Rp (fm) Rch (fm) Rwk (fm)

RMF016 1.714 2.241–3.764 1.897 3.206 1.309 1.998 3.354
RMF022 2.740 2.521–4.044 1.883 3.023 1.140 1.981 3.175
RMF028 3.784 2.785–4.308 1.876 2.904 1.028 1.970 3.060
Experiment 2.535(8) 3.925 1.807(28) 2.73(9) 0.92(10) 1.929(26)

obtained from a linear combination of the relativistic scalar
and vector potentials [22].

The third column in Table I displays the binding energy
per nucleon and makes abundantly clear one of the problems
of using DFT for a light, self-bound system such as 8He.
The lower value listed on the table does not include any
center-of-mass correction, while the higher value includes a
significant COM correction of 1.52 MeV, obtained by assum-
ing a harmonic-oscillator approximation [25]. Note that the
lightest nucleus that was used in the calibration of the three
covariant EDFs was 16O [29,37], twice as heavy as 8He.

The rest of the columns in Table I are predictions for rms
radii. Based on the statistical analysis carried out in Ref. [29],
an error of at least 0.03 fm should be attached to all the-
oretical predictions. Although several “experimental” values
are listed in the table, only the charge radius of 8He can be
regarded as a model-independent determination [39,42,44].
Instead, the proton radius Rp quoted in Table I requires the
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FIG. 3. Effective “Schrödinger-like” neutron potential for the
three models considered in this work. The inset shows the two bound
neutron orbitals in 8He supported by the RMF016 = FSUGarnet
potential and illustrates the large spatial extent of the p3/2 orbital.

unfolding of the finite proton size [43]. However, as indicated
in Eq. (19) of Ref. [45], the charge radius includes spin-orbit
contributions that go above and beyond the finite size of the
proton. In the case of the experimental neutron radius quoted
in Table I, it was obtained from both Rp and a determination of
the matter radius from an elastic proton-scattering experiment
[43]. However, besides the inherent uncertainties involved in
the determination of nuclear radii using hadronic probes [46],
the determination of Rn is also hindered by the uncertainties
in the extraction of Rp mentioned above.

Within the context of density-functional theory and the
Kohn-Sham equations, one has access to the entire spatial
distributions, from which radii—as well as any other mo-
ment of the distribution—may be computed. Proton, neutron,
charge, and weak-charge densities are displayed in Fig. 4(a)
as predicted by FSUGarnet = RMF016. Note that both the
charge and weak-charge densities incorporate spin-orbit cor-
rections as outlined in Ref. [45]. In all four cases the spatial
distribution can be accurately fit by a one-parameter Gaussian
form. For example, in the case of the charge density and its
associated form factor one obtains

ρch(r) =
(

3Z

2πR2
ch

)3/2

e−3r2/2R2
ch , (5a)

Fch(q) = e−q2R2
ch/6, (5b)

where Z is the nuclear charge, Rch is the charge radius of
the distribution, and the form factor has been normalized to

FIG. 4. (a) Proton, neutron, charge, and weak-charge densities
for 8He as predicted by the relativistic FSUGarnet density functional.
The dots represent a one-parameter Gaussian fit to the charge density.
(b) Ground-state densities suitably scaled so that the area under the
curve equals the mean-square radius of the distribution.
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Fch(q = 0) = 1. The Gaussian fit to the charge density is dis-
played with the small circles in Fig. 4(a). Plotted in Fig. 4(b) is
a quantity for which the area under the curve equals the mean-
square radius. The circles in the figure denote the cumulative
(or running) sum of the charge distribution and converges to
R2

ch ≈ (2 fm)2.
So what can be concluded from comparing the experi-

mental results against a theoretical framework that is likely
being pushed beyond its limits of applicability? Insofar as
the energy per nucleon is concerned, the violation of trans-
lation symmetry inherent to any mean-field-like description
results in a center-of-mass correction that makes a significant
contribution to the total energy of the system, calling into
question the relevance of the predictions. However, COM
corrections to the charge radius are relatively small [47] and
comparable to the statistical error obtained in the calibration
of the functional. Furthermore, the experimental value quoted
in Table I is only one of three experimental determinations of
the charge radius of 8He. Taking into account all the measure-
ments to date [39,42,44], one obtains at the one-sigma level
an estimate of the charge radius of 8He that lies in the in-
terval 1.903 � Rch(fm) � 1.975. This, together with the 0.03
fm theoretical uncertainty, yields a prediction for the charge
radius that appears to be in reasonably good agreement with
experiment. Finally, an inescapable consequence of the small
one-neutron separation energy is the emergence of low-energy
dipole strength in the uncorrelated (single-particle) response.
How the dipole strength rearranges as a result of the inclusion
of RPA correlations is the main topic of the next section.

B. Dipole response

In the previous section several ground-state properties of
8He were discussed. As alluded to earlier, a self-consistent
solution to the Kohn-Sham equations yields (a) single-particle
energies and Dirac orbitals, (b) ground-state densities, and (c)
the self-consistently determined mean-field (or Kohn-Sham)
potential. Critical to the consistency of the formalism is that
the potential so determined must be used without modification
to generate the single-nucleon propagator from which the un-
correlated polarization tensor is obtained [31,48]. Moreover,
to avoid any reliance on artificial cutoffs and truncations, the
nucleon propagator (depicted by the thin line in Fig. 1) is
computed nonspectrally by using Green’s function methods
[30].

The uncorrelated dipole response R(ω), weighted by the
excitation energy ω, is displayed in Fig. 5. Clearly visible in
the figure are the two sharp proton transitions involving the
excitation of the s1/2 orbital into the bound p3/2-p1/2 spin-
orbit partners, in perfect agreement with the single-particle
spectrum displayed in Fig. 2. Also shown in the figure is the
emergence of low-energy dipole strength resulting from the
excitation of the p3/2 neutron orbital into the continuum. Note
that among the advantages of displaying the energy-weighted
dipole response is that the area under the curve is directly re-
lated to “classical” energy-weighted sum rule (EWSR) given
in Eq. (4a) [32]. That is,

m1 ≈ 14.8
(NZ

A

)
MeV fm2

8He−−→ 22.2 MeV fm2. (6)
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FIG. 5. Uncorrelated energy-weighted dipole response for 8He
for the three models considered in the text. The uncorrelated response
is made up of individual particle-hole excitations with the correct
quantum numbers. The arrows indicate the location of the proton
excitations based on the single-particle spectrum displayed in Fig. 2.

For the uncorrelated response displayed in Fig. 5, the energy-
weighted sum is predicted to be equal to 22.4, 22.6, and
22.8 MeV fm2 for RMF016, RMF022, and RMF028, respec-
tively in excellent agreement with the classical EWSR.

One now proceeds to discuss the RPA response, which
represents the consistent linear response of the ground state to
an external perturbation [30]. As depicted in Fig. 1, the RPA
response goes beyond the single-particle response by build-
ing collectivity through the coherent contribution of many
particle-hole pairs. Although large center-of-mass corrections
preclude meaningful prediction of the ground-state energy of
8He, the self-consistent RPA response offers a unique and
powerful solution to the center-of-mass problem: spurious
states associated with a uniform translation of the center
of mass decouple from the physical modes by having their
strength shifted to zero excitation energy [26]. This is particu-
larly relevant to the distribution of isoscalar dipole (Jπ = 1−,
T = 0) strength that shares the same quantum numbers as the
center of mass. But given that, for nuclei with a significant
neutron excess such as 8He, a significant mixing between
the isoscalar and isovector modes is expected, the possible
emergence of a soft dipole mode will undoubtedly be affected
by the decoupling of the spurious center-of-mass mode.

To investigate the mixing between modes, the distribution
of isovector dipole strength obtained from a self-consistent co-
variant RPA calculation is displayed (on a logarithmic scale)
on Fig. 6(a). Also shown is the distribution of isoscalar dipole
strength predicted by the RMF028 model. As argued by Thou-
less [26], the spurious state associated with the translation of
the center of mass is shifted to zero excitation energy. Indeed
it appears that most (if not all!) of the uncorrelated isoscalar
dipole strength shown in Fig. 5 is shifted to zero energy;
note that the uncorrelated response is identical in both the
isoscalar and isovector channels. Given the anticipated strong
mixing between the isoscalar and isovector dipole modes,
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FIG. 6. (a) Correlated (RPA) dipole response for 8He for the
three models considered in the text. Also shown is the isoscalar
dipole response to illustrate the migration of the spurious mode to
zero excitation energy. (b) The narrow structures appearing at low
energies in the energy-weighted RPA response are associated with
the spurious center-of-mass mode.

it is reasonable to identify the narrow structures appearing
at low energies in the isovector dipole response—best seen
in Fig. 6(b)—as contaminants associated with the spurious
center-of-mass mode. Thus, the theoretical formalism imple-
mented here disfavors the emergence of a soft dipole mode in
8He—in agreement with the conclusions from Refs. [10,11].

In an effort to remove the spurious contribution from the
isovector dipole response, a smooth extrapolation to zero fre-
quency is implemented in Fig. 7. By doing so, one can now
provide estimates for the various moments of the distribution
as listed in Table II. One should underscore that the estimates
listed in Table II are based on the removal of the spurious
strength in favor of a smooth extrapolation to zero excita-
tion energy. This largely ad hoc procedure has a particularly
strong effect on the electric-dipole polarizability, which is
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FIG. 7. Correlated (RPA) energy-weighted dipole response for
8He as predicted for the three models considered in the text. The
solid lines at low excitation energy represent an ad hoc attempt to
remove the spurious strength in favor of a smooth extrapolation to
zero excitation energy.

TABLE II. Estimates for various moments of the isovector dipole
response of 8He, as defined in Eq. (3). Also shown is the electric-
dipole polarizability αD. All these estimates are based on the smooth
extrapolation to zero excitation energy depicted in Fig. 7.

Model m1 (fm2 MeV) m0 (fm2) m−1 (fm2/MeV) αD (fm3)

RMF016 16.37 0.829 0.065 0.262
RMF022 16.70 0.849 0.060 0.242
RMF028 16.84 0.852 0.055 0.220

particularly sensitive to the low-energy part of the response
because of the ω−1 weighting. In the case of the energy-
weighted sum, the estimates are now significantly reduced
relative to the classical EWSR quoted in Eq. (4a). Finally,
although the information encapsulated in the various moments
is valuable, there is no substitute for a direct comparison be-
tween theory and experiment of the entire dipole distribution.

IV. CONCLUSIONS

The fascinating dynamics of exotic neutron-rich nuclei has
led to a paradigm shift in nuclear structure. Besides provid-
ing unique insights into the limits of nuclear existence and
the production of heavy elements in the cosmos, the study
of nuclei with large isospin asymmetries offers meaningful
experimental constraints on the isovector sector of the nu-
clear interaction. In this paper the possible emergence of
low-energy dipole strength in 8He was investigated, a drip-line
nucleus with the largest neutron-to-proton ratio known to date.

The possible existence of a soft dipole mode in 8He has
been a highly controversial issue, with some experiments
identifying low dipole strength at an excitation energy of
about 3–4 MeV [6–9] and others refuting those claims [10,11].
From the theoretical perspective, a recent ab initio approach
that merges the Lorentz integral transform with coupled-
cluster theory reports a dipole response that shows strength
at about 5 MeV.

In this contribution, a theoretical formalism based on co-
variant density-functional theory was used to examine the
emergence of low-energy dipole strength. Admittedly, using
such a formalism for the study of a nucleus as light as 8He
is questionable. Indeed, given that center-of-mass corrections
fall down slowly with mass number, they make an appreciable
contribution to the total energy of 8He, limiting the value of
most theoretical predictions. However, the strength of DFT
lies in its self-consistency. Whereas COM corrections to the
ground-state energy may be large, any spurious contamination
from the COM is guaranteed to decouple from the physical
isoscalar dipole response [26]. This has important conse-
quences for the isovector dipole response because the mixing
between the isoscalar and isovector modes is anticipated to be
strong for neutron-rich systems like 8He. Hence, the narrow
structures that emerged at low energies in the isovector dipole
response were attributed to the shift of the spurious strength
to zero—or close to zero—excitation energy. Based on this
interpretation, one concludes that the emergence of a soft
dipole mode in 8He is disfavored by the adopted theoretical
framework.
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