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β decay and evolution of low-lying structure in Ge and As nuclei
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A simultaneous calculation for the shape evolution and the related spectroscopic properties of the low-lying
states, and the β-decay properties in the even- and odd-mass Ge and As nuclei in the mass A ≈ 70–80
region, within the framework of the nuclear density functional theory and the particle-core coupling scheme,
is presented. The constrained self-consistent mean-field calculations using a universal energy density functional
(EDF) and a pairing interaction determines the interacting-boson Hamiltonian for the even-even core nuclei, and
the essential ingredients of the particle-boson interactions for the odd-nucleon systems, and of the Gamow-Teller
and Fermi transition operators. A rapid structural evolution from γ -soft oblate to prolate shapes, as well as the
spherical-oblate shape coexistence around the neutron subshell closure N = 40, is suggested to occur in the
even-even Ge nuclei. The predicted low-energy spectra, electromagnetic transition rates, and β-decay log f t
values are in a reasonable agreement with experiment. The predicted log f t values reflect the structures of
the wave functions for the initial and final nuclei of β decay, which are, to a large extent, determined by the
microscopic input provided by the underlying EDF calculation.
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I. INTRODUCTION

β decay of the atomic nucleus is a weak-interaction process
that converts protons into neutrons or vice versa, and is one
of the important fundamental nuclear processes that not only
helps to understand the structure of an individual nucleus,
but is also essential for modeling astrophysical phenomena
such as the nucleosynthesis of neutron-rich heavy elements.
Experiments have been carried out at major radioactive-ion-
beam facilities around the world, providing a wealth of new
data on the β-decay half-lives of neutron-rich heavy nuclei
[1–5]. From a theoretical point of view, calculation of the β

decay properties should be sensitive to the nature of the wave
functions of the initial and final nuclei, and hence serves as
a benchmark of theoretical models. A number of theoretical
investigations for the β decay have been made from various
approaches such as the interacting boson and boson-fermion
models (IBM and IBFM) [6–13], the quasiparticle random-
phase approximations [14–21], and the nuclear shell model
[22–25].

Precise measurements and theoretical investigations of the
β-decay properties are also vital for determining matrix el-
ements of double-β (ββ) decay, a process in which two
successive β decays occur between those nuclei with (A, Z )
and (A, Z ± 2). Especially, the zero-neutrino mode of the ββ

decay (0νββ) is not allowed in the standard model of ele-
mentary particles, and the observation of this process would
greatly advance current understandings of the electroweak
fundamental symmetries [26].

*knomura@phy.hr

The nuclei in the germanium (Ge) region around the neu-
tron number N = 40 is among the challenging regions of
the nuclear chart, and has been of great interests for recent
theoretical [27–32] and experimental studies [33–38]. Their
low-lying states are characterized by a rich variety of nuclear
structure phenomena, represented by a rapid shape evolution
from one nucleus to another, which includes the emergence of
the neutron N = 40 subshell closure around 72Ge, the compe-
tition between multiple intrinsic shapes in the vicinity of the
ground state within a single nucleus, i.e., shape coexistence
[35,39], and the triaxial deformation around 76,78Ge [33,36].
The nucleus 76Ge is of special importance, since it is a can-
didate nucleus as the 0νββ decay emitter, and its odd-odd
neighbor 76As is considered a virtual intermediate state of the
ββ decay.

In this paper, the β-decay rates and the evolution of low-
lying collective structure of the even-A and odd-A Ge and the
neighboring arsenic (As) isotopes in the A ≈ 70–80 region
is investigated within a framework of the nuclear density
functional theory and the particle-core coupling scheme. In
this method, first the potential energy surfaces with the triaxial
quadrupole shape degrees of freedom for the even-even nuclei
are computed by means of the constrained self-consistent
mean-field (SCMF) [40] calculations based on a universal
energy density functional (EDF) and a pairing interaction. The
low-lying structure of the even-even core nucleus is described
by the IBM, with the Hamiltonian determined by mapping
the SCMF energy surface onto the expectation value of the
Hamiltonian [41]. The particle-core coupling for the odd-A
and odd-odd systems is modelled within the frameworks of
the IBFM [42,43] and the interacting boson-fermion-fermion
models (IBFFM) [43,44], respectively. The essential ingre-
dients of the particle-boson interaction terms, and of the
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Gamow-Teller and Fermi transition operators are determined
by the same SCMF calculations. This theoretical procedure
allows for a consistent calculation of nuclear β decay and
low-lying structure in a computationally feasible way, and has
been used for studies of the β decays of the odd-A [11] and
even-A [12] Xe, Cs, Ba, and La regions with mass A ≈ 130,
using as a microscopic input the Gogny-type EDF [45].

The paper is organized as follows. In Sec. II the theoret-
ical framework, including the SCMF method, the procedure
to construct the particle-core Hamiltonian, and the electro-
magnetic, Gamow-Teller, and Fermi transition operators, is
described. In Sec. III, the calculated deformation energy sur-
faces and spectroscopic properties of the low-lying states of
the even-even Ge nuclei, and the possible shape coexistence in
72Ge are discussed. The spectroscopic results for the odd-mass
Ge and As, and the odd-odd As nuclei are shown in Secs. IV
and V, respectively. In Sec. VI the f t values for the β decays
between the odd-mass and between the odd-odd nuclei are
shown. Section VII summarizes the main results.

II. THEORETICAL FRAMEWORK

A. Self-consistent mean-field calculations

As the first step, the constrained SCMF calculations for the
even-even 66–78Ge nuclei are performed within the relativis-
tic Hartree-Bogoliubov (RHB) framework [46–48] with the
density-dependent point-coupling (DD-PC1) [49] functional
for the particle-hole channel, and a separable pairing force
of finite range [50] for the particle-particle channel. The con-
straints imposed in the SCMF calculations are on the mass
quadrupole moments, which are related to the polar defor-
mation variables β and γ [51]. The constrained calculations
produce the (β, γ )-deformation energy surfaces.

B. Particle-core Hamiltonian

To compute the spectroscopic observables such as excita-
tion spectra and transition rates, it is required to go beyond the
static SCMF approximation, including the dynamical correla-
tions arising from the restoration of broken symmetries and
fluctuations in the collective coordinates [40].

The spectroscopic calculation is here carried out in terms
of the IBM. In the following, the neutron-proton IBM (IBM-
2) [52] is used, because it is suitable to treat β decay, in
which both proton and neutron degrees of freedom should
be explicitly considered. The IBM-2 consists of the neutron
and proton monopole (sν and sπ ), and quadrupole (dν and
dπ ) bosons. From a microscopic point of view [52,53], the
sν (sπ ) and dν (dπ ) bosons are associated with the collective
Sν (Sπ ) and Dν (Dπ ) pairs of valence neutrons (protons) with
angular momenta J = 0+ and J = 2+, respectively. Here, the
neutron (or proton) major oscillator shell N (or Z ) = 28–50
is taken as the model space of the neutron (or proton) boson
system. Hence for the 66–78Ge nuclei considered in this study,
the number of the neutron bosons, Nν , varies within the range
2 � Nν � 5, while the number of the proton bosons is fixed,
Nπ = 2.

To deal with the even-even, odd-mass, and odd-odd
nuclei simultaneously, both the collective (bosonic) and

single-particle degrees of freedom are treated on the footing,
within the neutron-proton IBFFM (IBFFM-2). The Hamilto-
nian of the IBFFM-2 is given by

Ĥ = ĤB + Ĥ ν
F + Ĥπ

F + V̂ ν
BF + V̂ π

BF + V̂νπ , (1)

where ĤB is the IBM-2 Hamiltonian representing the bosonic
even-even core, Ĥ ν

F (Ĥπ
F ) is the single-neutron (proton) Hamil-

tonian, V̂ ν
BF (V̂ π

BF) represents the interaction between the odd
neutron (proton) and the even-even IBM-2 core, and the last
term V̂νπ is the residual neutron-proton interaction.

For the IBM-2 Hamiltonian the following form is em-
ployed:

ĤB =εd
(
n̂dν

+ n̂dπ

) + κQ̂νQ̂π + κ ′L̂L̂, (2)

where in the first term, n̂dρ
= d†

ρ d̃ρ (ρ = ν or π ) is the d-boson
number operator with εd the single d-boson energy relative
to the s-boson one, and d̃ρμ = (−1)μdρ−μ. The second term
stands for the quadrupole-quadrupole interaction between
neutron and proton boson systems with strength κ , and Q̂ρ =
d†

ρsρ + s†
ρ d̃ρ + χρ (d†

ρ × d̃ρ )(2) is the bosonic quadrupole op-
erator, with the parameter χρ . The last term in Eq. (2) is a
rotational term with strength κ ′, where L̂ = √

10
∑

ρ (d†
ρ ×

d̃ρ )(1) is the bosonic angular momentum operator.
The single-nucleon Hamiltonian Ĥρ

F takes the form

Ĥρ
F = −

∑
jρ

ε jρ

√
2 jρ + 1

(
a†

jρ
× ã jρ

)(0) ≡
∑

jρ

ε jρ n̂ jρ , (3)

where ε jρ stands for the single-particle energy of the odd
neutron (ρ = ν) or proton (ρ = π ) orbital jρ . a(†)

jρ
represents

particle annihilation (creation) operator, with ã jρ defined by
ã jρmρ

= (−1) jρ−mρ a jρ−mρ
. On the right-hand side of Eq. (3),

n̂ jρ stands for the number operator for the odd particle. For the
fermion configuration space, the normal-parity orbitals 2p1/2,
2p3/2, and 1 f5/2, for both neutron and proton are taken.

The boson-fermion interaction V̂ ρ
BF here has a specific form

[43]:

V̂ ρ
BF = 
ρV̂ ρ

dyn + �ρV̂ ρ
exc + AρV̂ ρ

mon. (4)

The first, second, and third terms are dynamical quadrupole,
exchange, and monopole interactions, respectively. By fol-
lowing the microscopic considerations with the generalized
seniority scheme [43,54], these are given as

V̂ ρ
dyn =

∑
jρ j′ρ

γ jρ j′ρ

(
a†

jρ
× ã j′ρ

)(2)
Q̂ρ ′ , (5)

V̂ ρ
exc = −(s†

ρ ′ × d̃ρ ′ )(2)
∑
jρ j′ρ j′′ρ

√
10

Nρ (2 jρ + 1)
β jρ j′ρ β j′′ρ jρ

:
((

d†
ρ × ã j′′ρ

)( jρ ) × (
a†

j′ρ
× s̃ρ

)( j′ρ ))(2)
: +(H.c.), (6)

V̂ ρ
mon = n̂dρ

n̂ jρ , (7)

where the factors γ jρ j′ρ = (u jρ u j′ρ − v jρ v j′ρ )Qjρ j′ρ , and β jρ j′ρ =
(u jρ v j′ρ + v jρ u j′ρ )Qjρ j′ρ with Qjρ j′ρ = 〈�ρ

1
2 jρ‖Y (2)‖�′

ρ
1
2 j′ρ〉 ma-

trix element of the fermion quadrupole operator in the
single-particle basis. Q̂ρ ′ in Eq. (5) is the same boson
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TABLE I. Derived strength parameters for the IBM-2 Hamilto-
nian ĤB for the even-even 66–78Ge nuclei.

Nucleus εd (MeV) κ (MeV) χν χπ κ ′ (MeV)

66Ge 0.061 −0.680 −0.07 0.30 0.015
68Ge 0.091 −0.540 0.20 0.30 0.051
70Ge 0.535 −0.350 0.80 0.50 0.069
72Ge 0.747 −0.180 0.30 0.30 0.050
74Ge 0.950 −0.315 0.30 0.30 0.000
76Ge 0.600 −0.380 −0.90 −0.50 0.000
78Ge 0.620 −0.620 −1.12 −0.87 0.000

quadrupole operator as in the boson Hamiltonian (2). The
notation : (· · · ) : in Eq. (6) stands for normal ordering. Within
the above formalism, the dynamical and exchange terms are
dominated by the interactions between unlike particles, while
the monopole term by like particle ones. In addition, the
single-particle energy ε jρ is replaced with the quasiparticle
energy ε̃ jρ .

For the residual neutron-proton interaction V̂νπ in Eq. (1),
the following form [55] is adopted:

V̂νπ = 4πvdδ(r)δ(rν − r0)δ(rπ − r0)

+ vt

[
3(σνr)(σπr)

r2
− σνσπ

]
, (8)

where the first and second terms are δ and tensor interactions
with strength parameters vd, and vt , respectively. Note that
r = rν − rπ and r0 = 1.2A1/3 fm.

C. Procedure to build the Hamiltonian

To construct the IBFFM-2 Hamiltonian (1), first the IBM-2
Hamiltonian for the even-even core is determined. The param-
eters εd , κ , χν , and χπ are determined by mapping the SCMF
energy surface onto the expectation value of the Hamiltonian
in the boson coherent state [56,57], so that the SCMF and
IBM energy surfaces becomes similar to each other within
the excitation energy of a few MeV with respect to the global
minimum (see Refs. [41,58], for details). The remaining pa-
rameter κ ′ is fixed separately, in such a way [59] that the
cranking moment of inertia calculated in the intrinsic frame of
the boson system at the global minimum becomes equal to the
Inglis-Belyaev [60,61] value calculated by the RHB method.
The derived IBM-2 parameters are listed in Table I.

Second, for each odd-mass nucleus the quasiparticle ener-
gies ε̃ jρ and occupation probabilities v2

jρ of the odd nucleons
are calculated by the RHB method constrained to zero de-
formation β = 0. These quantities are then used for the
single-nucleon Hamiltonian Ĥρ

F (3) and the boson-fermion
interactions V̂ ρ

BF (4)–(6). Here, the fixed values of the strength
parameters are adopted: 
ν = 0.3 MeV, �ν = 0.8 MeV, and
Aν = −0.5 MeV for the odd-N Ge nuclei, and 
π = 0.3
MeV, �π = 0.3 MeV, and Aπ = 0 MeV for the odd-Z As.
These values are determined so as to reasonably reproduce the
experimental data on the low-energy negative-parity excita-
tion spectra for the odd-mass nuclei.

Third, the same strength parameters {
ρ,�ρ, Aρ} as the
ones employed for the neighboring odd-mass nuclei are used

TABLE II. Even-even Ge core, neighboring odd-N Ge, odd-Z
As, and odd-odd As nuclei considered in the present study.

Core odd-N odd-Z odd-odd

66
32Ge34

67
32Ge35

67
33As34

68
33As35

68
32Ge36

69
32Ge37

69
33As36

70
33As37

70
32Ge38

71
32Ge39

71
33As38

72
33As39

72
32Ge40

73
33As40

74
32Ge42

73
32Ge41

75
33As42

74
33As41

76
32Ge44

75
32Ge43

77
33As44

76
33As43

78
32Ge46

77
32Ge45

79
33As46

78
33As45

for the IBFFM-2 calculation on the odd-odd As ones. The
quasiparticle energies and occupation probabilities are newly
calculated. Finally, the fixed values of the strength parameters
for the interaction V̂νπ , vd = 0.8 MeV and vt = 0.02 MeV, are
determined so that an overall reasonable agreement with the
observed low-lying positive-parity states of the odd-odd As
nuclei is obtained.

Table II summarizes the even-even Ge core nuclei, and
the neighboring odd-N Ge, odd-Z As, and odd-odd As nuclei
considered in the present calculation. The ε jρ , ε̃ jρ , and v2

jρ
values of the odd nucleons, obtained from the spherical RHB
calculations, are shown in Fig. 1.

D. Electromagnetic transition operators

The E2 operator T̂ (E2) in the IBFM-2 and IBFFM-2 takes
the form [43]

T̂ (E2) = T̂ (E2)
B + T̂ (E2)

F , (9)

where the first and second terms are the boson and fermion
parts, given respectively as

T̂ (E2)
B =

∑
ρ=ν,π

eB
ρ Q̂ρ, (10)

and

T̂ (E2)
F = − 1√

5

∑
ρ=ν,π

∑
jρ j′ρ

(
u jρ u j′ρ − v jρ v j′ρ

)

×
〈
�ρ

1

2
jρ

∥∥∥∥eF
ρr2Y (2)

∥∥∥∥�′
ρ

1

2
j′ρ

〉(
a†

jρ
× ã j′ρ

)(2)
. (11)

The fixed values for the boson effective charges eB
ν = eB

π =
0.0577 eb are chosen so that the experimental B(E2; 2+

1 →
0+

1 ) value for the well-deformed even-even core nucleus 72Ge
is reproduced. The neutron and proton effective charges eF

ν =
0.5 eb eF

π = 1.5 eb are adopted from the earlier IBFFM-2
calculation on the odd-odd Cs nuclei [62]. The M1 transition
operator T̂ (M1) reads

T̂ (M1) =
√

3

4π

∑
ρ=ν,π

[
gB

ρ L̂ρ − 1√
3

∑
jρ j′ρ

(
u jρ u j′ρ + v jρ v j′ρ

)

× 〈
jρ

∥∥gρ

l l + gρ
s s

∥∥ j′ρ
〉(

a†
jρ

× ã j′ρ

)(1)

]
. (12)
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FIG. 1. The adopted spherical single-particle energies ε jρ (a),
(b), quasiparticle energies ε̃ jρ (c), (d), and occupation probabilities
v2

jρ
(e), (f) for the 2p1/2, 2p3/2, and 1 f5/2 orbitals for (left column)

the odd neutron in the odd-A Ge and even-A As, and (right column)
the odd proton in the odd-A and even-A As nuclei, calculated by the
spherical RHB method.

The empirical g factors for the neutron and proton bosons,
gB

ν = 0 μN and gB
π = 1.0 μN , respectively, are adopted. For

the neutron (or proton) g factors, the standard Schmidt val-
ues gν

l = 0 μN and gν
s = −3.82 μN (gπ

l = 1.0 μN and gπ
s =

5.58 μN ) are used with gρ
s quenched by 30% with respect to

the free value.

E. Gamow-Teller and Fermi transition operators

The Gamow-Teller T̂ GT and Fermi T̂ F transition operators
have the forms

T̂ GT =
∑
jν jπ

ηGT
jν jπ

(
P̂jν × P̂jπ

)(1)
, (13)

T̂ F =
∑
jν jπ

ηF
jν jπ

(
P̂jν × P̂jπ

)(0)
, (14)

respectively, with the coefficients

ηGT
jν jπ = − 1√

3

〈
�ν

1

2
jν

∥∥∥∥σ

∥∥∥∥�π

1

2
jπ

〉
δ�ν�π

, (15)

ηF
jν jπ = −

√
2 jν + 1δ jν jπ . (16)

P̂jρ in Eqs. (13) and (14) is here identified as one of the one-
particle creation operators

A†
jρmρ

= ζ jρ a†
jρmρ

+
∑

j′ρ

ζ jρ j′ρ s†
ρ

(
d̃ρ × a†

j′ρ

)( jρ )

mρ
, (17a)

B†
jρmρ

= θ jρ s†
ρ ã jρmρ

+
∑

j′ρ

θ jρ j′ρ

(
d†

ρ × ã j′ρ

)( jρ )

mρ
, (17b)

and the annihilation operators

Ã jρmρ
= (−1) jρ−mρ Ajρ−mρ

, (17c)

B̃ jρmρ
= (−1) jρ−mρ Bjρ−mρ

. (17d)

Note that the operators in Eqs. (17a) and (17c) conserve the
boson number, whereas the ones in Eqs. (17b) and (17d) do
not. The T̂ GT and T̂ F operators are formed as a combination
of two of the operators in (17a)–(17d), depending on the
type of the β decay under study (i.e., β+ or β−) and on the
particle or hole nature of bosons in the even-even IBM-2 core.
It is also noted that the expressions in Eqs. (17a)–(17d) are
of simplified forms of the most general one-particle transfer
operators in the IBFM-2 [43].

Within the generalized seniority scheme, the coefficients
ζ j , ζ j j′ , θ j , and θ j j′ in Eqs. (17a) and (17b) can be given by
[63]

ζ jρ = u jρ
1

K ′
jρ

, (18a)

ζ jρ j′ρ = −v jρ β j′ρ jρ

√
10

Nρ (2 jρ + 1)

1

KK ′
jρ

, (18b)

θ jρ = v jρ√
Nρ

1

K ′′
jρ

, (18c)

θ jρ j′ρ = u jρ β j′ρ jρ

√
10

2 jρ + 1

1

KK ′′
jρ

. (18d)

The factors K , K ′
jρ , and K ′′

jρ are defined as

K =
⎛
⎝∑

jρ j′ρ

β2
jρ j′ρ

⎞
⎠

1/2

, (19a)

K ′
jρ =

[
1 + 2

(
v jρ

u jρ

)2
〈(

n̂sρ
+ 1

)
n̂dρ

〉
0+

1

Nρ (2 jρ + 1)

∑
j′ρ

β2
j′ρ jρ

K2

]1/2

,

(19b)

K ′′
jρ =

[〈
n̂sρ

〉
0+

1

Nρ

+ 2

(
u jρ

v jρ

)2
〈
n̂dρ

〉
0+

1

2 jρ + 1

∑
j′ρ

β2
j′ρ jρ

K2

]1/2

, (19c)

where n̂sρ
is the number operator for the sρ boson and 〈· · ·〉0+

1

represents the expectation value of a given operator in the
0+

1 ground state of the even-even nucleus. In the expressions
in Eqs. (18a) to (18d), the occupation v jρ and unoccupation
u jρ amplitudes are the same as those used in the IBFM-2 (or
IBFFM-2) calculations for the odd-mass (or odd-odd) nuclei.
Within this framework, no additional phenomenological pa-
rameter is introduced for the GT and Fermi operators.

044306-4



β DECAY AND EVOLUTION OF LOW-LYING … PHYSICAL REVIEW C 105, 044306 (2022)

FIG. 2. SCMF and IBM (β, γ )-deformation energy surfaces for the even-even 66–78Ge nuclei. The energy difference between neighboring
contours is 200 keV. The global minimum is identified by the solid circle.

For a more detailed account on the formalism of the β-
decay operators within the IBFM-2, the reader is referred to
Refs. [7,43,63].

III. EVEN-EVEN NUCLEI

A. Potential energy surfaces

In Fig. 2, the contour plots of the SCMF quadrupole triaxial
energy surfaces for the even-even 66–78Ge nuclei are shown
as functions of the (β, γ ) deformations. The SCMF result
indicates that the potential is generally soft in γ deformation.
The softness implies a substantial degree of shape mixing near
the ground state. The SCMF energy surfaces shown in the fig-
ure suggests a transition from the γ -soft oblate (66,68,70Ge), to
spherical-oblate shape coexistence (72Ge), to γ -soft (74,76Ge),
and to prolate shapes (78Ge). The appearance of the spherical
ground-state minimum at 72Ge reflects the neutron N = 40
subshell gap. A similar trend is obtained when another rela-
tivistic functional DD-ME2 [64] is used. The behavior of the

energy surface as a function of the neutron number is also
consistent with the one for the same even-even Ge nuclei,
obtained in Ref. [30] with the Hartree-Fock-Bogoliubov cal-
culations based on the Gogny-D1M [65] EDF.

The mapped IBM energy surfaces, shown also in Fig. 2,
basically have a similar topology in the vicinity of the global
minimum and systematic trend with N to those for the SCMF
ones. A notable difference is that the IBM energy surface is
rather flat in the region corresponding to large β deformations,
while the SCMF one becomes even more steeper. The differ-
ence arises mainly because the IBM-2 is built on the limited
configuration space consisting of valence nucleon pairs, while
the SCMF model is on all the constituent nucleons [41,58]. It
is also worth noting that the IBM-2 energy surface for 72Ge
does not reproduce the local oblate minimum that is found
in the SCMF counterpart. Within the IBM, such coexisting
minima can be produced, e.g., by the inclusion of the config-
uration mixing between the normal and intruder states [66].
This point will be discussed in Sec. III C.
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FIG. 3. Comparison of theoretical and experimental [67] excita-
tion energies of the (a) 2+

1 , (b) 4+
1 , (c) 0+

2 , and (d) 2+
2 states of the

even-even 66–78Ge nuclei.

B. Spectroscopic properties

Figure 3 shows evolution of the 2+
1 , 4+

1 , 0+
2 , and 2+

2 en-
ergy levels for the considered even-even Ge, obtained from
the diagonalization of the mapped IBM-2 Hamiltonian. In
general, the calculation reproduces fairly well the observed
systematics of the low-lying levels.

For 66,68,70Ge, the calculation gives considerably lower
2+

1 energy level than the experimental one [see Fig. 3(a)].
This reflects the fact that the underlying SCMF energy sur-
face for these nuclei shows a too pronounced deformation,
and then the subsequent IBM-2 calculation produces a rather
rotational-like energy spectrum characterized by the too com-
pressed 2+

1 level. In addition, it should be kept in mind that in
the present theoretical scheme the neutron-proton pair degrees
of freedom are not taken into account both at the SCMF and
IBM levels, which are supposed to play a certain role in those
nuclei with N ≈ Z such as the ones considered here.

In Fig. 3(c), the calculated 0+
2 excitation energies show a

similar overall behavior to the experimental counterparts. The
calculation, however, systematically overestimates the data.
Especially for 72Ge, the observed 0+

2 excitation energy is
rather low (≈0.7 MeV), while the mapped IBM-2 overesti-
mates it by a factor of 2. The emergence of the low-lying 0+

2
state is often attributed to the intruder excitation, which is not
taken into account in the IBM-2 framework described above.

The 2+
2 state is, in most of the cases, considered the

bandhead of the γ -vibrational band. The mapped IBM-2
reproduces the experimental data up to 72Ge, but consider-
ably overestimates the data for 76,78Ge. This is also due to
the fact that the SCMF energy surface shows a pronounced
deformation with a steep valley in both β and γ deforma-
tions. To reproduce this topology, the derived values for the

FIG. 4. Calculated and observed [67] B(E2) values for the tran-
sitions (a) 2+

1 → 0+
1 , (b) 4+

1 → 2+
1 , (c) 0+

2 → 2+
1 , and (d) 2+

2 → 2+
1 .

parameters χν and χπ for 76,78Ge have to have large negative
values, as compared to the ones for 68–74Ge (see Table I).
The resulting IBM-2 spectra for 76,78Ge are rather rotational
like, where both the β- and γ -vibrational bands are generally
high in energy with respect to the ground-state band. The
other reason is that, as one approaches the neutron major shell
closure N = 50, the model space of the IBM, which is built
on the finite number of valence nucleon pairs, becomes even
smaller. For instance, there are only Nν = Nπ = 2 bosons for
the nucleus 78Ge, which might not be large enough to describe
satisfactorily the energy levels of the nonyrast states.

Figure 4 shows the calculated B(E2) values for the transi-
tions (a) 2+

1 → 0+
1 , (b) 4+

1 → 2+
1 , (c) 0+

2 → 2+
1 , and (d) 2+

2 →
2+

1 for the even-even Ge nuclei, compared with the experimen-
tal data [67]. The mapped IBM-2 gives maximal interband
transition strengths in the ground-state band, B(E2; 2+

1 → 0+
1 )

and B(E2; 4+
1 → 2+

1 ), at 70Ge. This nucleus corresponds to
the middle of the major shell N = 38, at which the neu-
tron boson number is maximal Nπ = 5, and thus the largest
quadrupole collectivity is expected. The observed values for
the above B(E2) transition rates, however, show a peak around
74Ge. The calculated B(E2; 0+

2 → 2+
1 ) and B(E2; 2+

2 → 2+
1 )

values show a tendency similar to the observed one. The
present IBM-2 calculation does not reproduce the large ex-
perimental B(E2; 0+

2 → 2+
1 ) rates for 70,72Ge, mainly because

it predicts for these nuclei a rather rotational-like spectrum, in
which case the 0+

2 → 2+
1 transition is weak, and also because

the model space does not include the effect of the configura-
tion mixing between normal and intruder excitations.

C. Shape coexistence

Shape coexistence is expected to occur in some of the con-
sidered even-even Ge nuclei. As an illustrative example, here
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the nucleus 72Ge is considered, for which the spherical global
minimum and an oblate local minimum are suggested to occur
in the corresponding SCMF quadrupole triaxial deformation
energy map.

A method to incorporate the effect of intruder configuration
in the IBM-2 framework was proposed by Duval and Barrett
[68]. In that method, two independent IBM-2 Hamiltonians
that correspond to the normal and intruder configurations are
considered. In the case of proton two-particle–two-hole exci-
tations, for instance, the intruder configuration is regarded as
a system consisting of Nν neutron and Nπ + 2 proton bosons,
under the assumption that the particle-like and hole-like
bosons are not distinguished from each other. The two Hamil-
tonians are then admixed by a specific mixing interaction. The
details about the configuration mixing IBM framework are
found in Ref. [68], and its application to the Ge and Se region
was made in Ref. [69]. The method of Duval and Barrett was
also implemented in the mapped IBM framework, and the
related applications to various mass regions, including the Ge
and Se ones [30], were reported [70–73].

Here, it is assumed the proton 2p − 2h excitations occur
across the Z = 28 major shell. The IBM-2 Hamiltonian con-
figuration mixing (CM) is given by

ĤCM
B = P̂Nπ

ĤNπ

B P̂Nπ

+ P̂Nπ +2
(
ĤNπ +2

B + �
)P̂Nπ +2 + V̂mix, (20)

where ĤNπ +n
B and P̂Nπ+n (n = 0, 2) are the Hamiltonian of and

the projection operator onto the normal or intruder configu-
ration space, respectively. � represents the energy needed to
promote a proton boson across the Z = 28 shell closure. The
form of each unperturbed Hamiltonian ĤNπ +n

B is the same as
the one in Eq. (2), but a specific three-body boson term

κ ′′ ∑
ρ ′ 
=ρ

∑
L

[d†
ρ × d†

ρ × d†
ρ ′ ](L)[d̃ρ ′ × d̃ρ × d̃ρ](L) (21)

is added to the Hamiltonian for the intruder configuration. The
mixing interaction V̂mix in Eq. (20) is given as

V̂mix = ω(s†
π s†

π + d†
πd†

π ) + (H.c.) (22)

with ω mixing strength.
The coherent state for the configuration-mixing IBM is

given as the direct sum of the coherent state for each un-
perturbed configuration. The energy surface is, in general,
expressed as the 2 × 2 coherent-state matrix [66]. Here the
lower eigenvalue of the matrix is taken as the IBM energy
surface. The parameters for each unperturbed Hamiltonian is
determined by associating it to each mean-field minimum:
the 0p-0h Hamiltonian for the spherical global minimum, and
the 2p-2h one for the oblate local minimum for 72Ge. The
off-set energy � and the mixing strength ω are determined
so that the energy difference between the two mean-field
minima and the barrier height for these minima are repro-
duced. The derived parameters are as follows: εd = 1.6 MeV,
κ = −0.22 MeV, χν = 0.30, χπ = 0.30, κ ′ = κ ′′ = 0 MeV
for the 0p-0h configuration, εd = 0.9 MeV, κ = −0.21 MeV,
χν = 0.30, χπ = 0.22, κ ′ = 0 MeV, κ ′′ = 0.11 MeV for the
2p-2h configuration, � = 1.82 MeV, and ω = 0.13 MeV.

FIG. 5. Comparison of energy surfaces for 72Ge calculated with
the SCMF method based on the DD-PC1 functional and mapped
IBM-2 that includes configuration mixing (CM).

Figure 5 compares the energy surface for the mapped IBM-
2 that includes configuration mixing with the one obtained
by the SCMF method. The IBM-2 surface now includes the
oblate local minimum, consistent with the SCMF one. The
resultant energy spectra in the cases where the configura-
tion mixing is and is not performed are compared in Fig. 6.
With the configuration mixing, the 0+

2 energy level is sig-
nificantly lowered, being close to the observed 0+

2 level. In
the configuration-mixing IBM-2 framework, the E2 transition
operator is also extended as

T̂ (E2) =
∑

n=0,2

∑
ρ

P̂Nπ +neρ
B,Nπ +nQ̂Nπ+nP̂Nπ+n. (23)

If one uses the effective charges 0.05 eb and 0.06 eb
for the normal and intruder configurations, respectively, the
B(E2; 0+

2 → 2+
1 ) value for 72Ge is calculated to be 50 W.u.

This is much greater than the value of 9.4 W.u., which is
obtained without the configuration mixing, and is closer to the
experimental data 89.0 ± 1.5 W.u. [67].
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FIG. 7. Comparison of the calculated and experimental [67] low-
lying negative-parity excitation spectra of the odd-N Ge nuclei.

The following discussion will be, however, based on the
formalism without the configuration mixing and the higher-
order boson terms, since the current versions of the IBFM and
IBFFM codes do not handle these effects. It remains, there-
fore, an open question whether the configuration mixing, as
well as the higher-order boson terms, plays a role in describing
the low-lying states of the neighboring odd-mass and odd-odd
nuclei, and the β-decay properties.

IV. ODD-A GE AND AS NUCLEI

Figure 7 shows evolution of the low-energy negative-parity
spectra of the odd-N Ge isotopes as functions of the mass
number A. Both the observed and predicted low-lying level
structure near the ground state rapidly changes from 67Ge
to 71Ge, represented by the change in the ground-state spin.
There appears to be a significant structural change from 69Ge
to 73Ge. This reflects the shape transition in the neighboring
even-even core Ge nuclei, particularly the neutron N = 40
subshell effect around 72Ge. As shown in Figs. 1(c) and 1(e),
the quasiparticle energies and occupation probabilities of the
odd neutron also exhibit a sudden change from 71Ge to 73Ge.

Figure 8 gives the low-lying levels for the odd-Z As nu-
clei. The predicted energy levels are more stable against the
mass number A, especially in the region A � 73, than in the
case of the odd-N Ge isotopes. One also notices that the
ground-state spin is predicted to be I = 3/2 for all the As
nuclei, which disagrees with the observed one I = 5/2− for
67,69,71As. These features appear because the calculated ε̃ jπ
and v2

jπ values for the proton orbitals only gradually change
with A [see Figs. 1(d) and 1(f)], and also because of the use of
the constant boson-fermion strengths. Similarly to the odd-N
Ge nuclei, a notable structural change in the low-lying levels
is predicted to occur around 75,77As, which corroborates the
rapid shape evolution in the even-even Ge core nuclei (see
Fig. 2). The situation is slightly different for the observed
spectra, which suggest the change in the ground-state spin
from 71As to 73As.

FIG. 8. Same as Fig. 7, but for the odd-Z As nuclei.

In Fig. 9, some predicted B(E2) and B(M1) transition
strengths between the low-lying states for the odd-N Ge are
shown. Both the calculated B(E2) and B(M1) values show an
abrupt change within the range 69 � A � 73, indicating that
the structure of the relevant IBFM-2 wave functions change.
Note that the neighboring even-even Ge nuclei also undergoes
rapid structural evolution between prolate and oblate shapes.

FIG. 9. Calculated B(E2) and B(M1) transition rates (in W.u.)
between low-lying negative-parity states of odd-N Ge isotopes. The
available experimental data, taken from Ref. [67], are also shown.
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FIG. 10. Same as Fig. 9, but for the odd-Z As nuclei.

In most cases, the calculated results shown in Fig. 9 are in a
reasonable agreement with the experimental data.

Figure 10 shows the B(E2) and B(M1) transitions
between low-lying negative-parity states of the odd-Z
As nuclei. One observes an irregular systematic in the
predicted B(E2; 1/2−

1 → 5/2−
1 ), B(E2; 1/2−

1 → 3/2−
1 ), and

B(M1; 1/2−
1 → 3/2−

1 ) values. The last two quantities are par-
ticularly large at 71As. The occurrence of the irregularity
indicates that the structure of the 1/2−

1 wave function ob-
tained for 71As happens to be different from the ones for the
neighboring nuclei. Furthermore, both the predicted E2 and
M1 rates for the 5/2−

1 → 3/2−
1 transition are negligibly small,

implying that the 3/2−
1 and 5/2−

1 have completely different
structures in the IBFM-2.

Table III compares the calculated and experimental spec-
troscopic electric quadrupole Q(I ) and magnetic dipole μ(I )
moments. In most cases, the present IBFM-2 results are in a
reasonable agreement with the observed Q(I ) and μ(I ) mo-
ments, including the sign.

To help interpreting the nature of the low-lying states in
the considered odd-A systems, Fig. 11 shows the fractions
of the 2p1/2, 2p3/2, and 1 f5/2 single-particle configurations
in the IBFM-2 wave functions for the 1/2−

1 , 3/2−
1 , and 5/2−

1
states of the odd-N Ge and odd-Z As nuclei. For 67,69Ge, two
or three single-particle configurations make sizable (>10%)
contributions to the 1/2−

1 and 3/2−
1 wave functions. For the

Ge nuclei with A � 71, the three states 1/2−
1 , 3/2−

1 , and 5/2−
1

TABLE III. Comparison of calculated and available experimen-
tal data for the electric quadrupole Q(I ) (in eb) and magnetic dipole
μ(I ) (in μN ) moments of the negative-parity states with spin I for the
odd-mass Ge and As nuclei. The data are taken from Ref. [74].

Nucleus Moments Th. Exp.

67Ge μ(5/2−
1 ) 0.84

69Ge μ(5/2−
1 ) 0.79 0.735 ± 0.007

71Ge μ(1/2−
1 ) 0.45 +0.547 ± 0.005

μ(5/2−
1 ) 0.52 +1.018 ± 0.010

73Ge μ(5/2−
1 ) 0.76

75Ge μ(1/2−
1 ) 0.45 +0.510 ± 0.005

77Ge μ(5/2−
1 ) 1.22

69As μ(5/2−
1 ) 1.35 +1.58 ± 0.16

71As μ(5/2−
1 ) 1.31 (+)1.674 ± 0.02

Q(5/2−
1 ) 0.004 −0.017 ± 0.010

73As μ(5/2−
1 ) 1.38 +1.63 ± 0.10

Q(5/2−
1 ) −0.02 0.356 ± 0.012

75As μ(3/2−
1 ) 2.85 +1.43948 ± 0.00007

Q(3/2−
1 ) −0.03 +0.30 ± 0.05

μ(3/2−
2 ) 0.91 +1.0 ± 0.2

μ(5/2−
1 ) 1.38 +0.92 ± 0.02

Q(5/2−
1 ) 0.03 0.30 ± 0.10

77As μ(3/2−
1 ) 2.40 +1.2946 ± 0.0013

μ(5/2−
1 ) 1.35 +0.74 ± 0.02

Q(5/2−
1 ) 0.06 <0.75

are almost entirely made of the neutron 2p1/2 configurations.
This is evident from Fig. 1(c), in which there is a larger energy
gap between the 2p1/2 and the 2p3/2 and 1 f5/2 quasineutron
energies for the odd-A Ge with A � 73 than for the ones with
A � 71. The 3/2−

1 and 5/2−
1 states of the odd-Z As nuclei are

mostly accounted for by the proton 2p3/2 and 1 f5/2 configura-
tions, respectively. This explains the vanishing B(E2; 5/2−

1 →
3/2−

1 ) and B(M1; 5/2−
1 → 3/2−

1 ) rates, shown in Figs. 10(d)
and 10(f). As seen in Fig. 11(b), for the odd-Z As nuclei the
largest contribution (≈60%) to the 1/2−

1 wave function is from
the 2p3/2 configuration, while either the 2p1/2 or 1 f5/2 con-
figuration constitutes about 30% of the wave function. Also,
the 1/2−

1 wave function for 71As has a different composition
from the ones for the neighboring isotopes, and this explains
the irregular behavior of those calculated B(E2) and B(M1)
values that involve the 1/2−

1 state [see Figs. 10(a), 10(c), and
10(e)].

V. ODD-ODD AS NUCLEI

Figure 12 shows the results for the low-energy positive-
parity spectra for the odd-odd As nuclei, obtained with the
IBFFM-2. For those nuclei with mass A � 72, the observed
ground-state spin of I = 1+ is reproduced. The corresponding
IBFFM-2 1+

1 wave functions for these nuclei are dominated
(approximately 80%) by the neutron-proton pair compo-
nent [νp1/2 ⊗ π p3/2]J=1+

coupled to the even-even boson
core nuclei. This configuration plays a less important role
in the predicted 1+

1 ground states for 68,70As. Instead, sev-
eral configurations are admixed in these nuclei, with the
major contributions coming from the components [ν f5/2 ⊗
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FIG. 11. Fractions of the 2p1/2, 2p3/2, and 1 f5/2 single-particle
configurations in the IBFM-2 wave functions for the 1/2−

1 , 3/2−
1 ,

and 5/2−
1 states of the odd-N Ge and odd-Z As nuclei.

π p3/2]J=3+
(40%), [νp3/2 ⊗ π p3/2]J=2+

(16%), and [ν f5/2 ⊗
π p3/2]J=1+

(13%) for 68As, and [ν f5/2 ⊗ π p3/2]J=1+
(44%),

[νp1/2 ⊗ π p3/2]J=1+
(12%), and [ν f5/2 ⊗ π p3/2]J=3+

(10%)
for 70As.

Here, the IBFFM-2 does not reproduce for 68As and 70As
the observed ground state spins of I = 3+ and 4+, respec-
tively. For 68As, main contributions to the IBFFM-2 wave
function of the 3+

1 state come from the pair components
[ν f5/2 ⊗ π p3/2]J=3+

(70%), and [ν f5/2 ⊗ π f5/2]J=3+
(11%).

For both 68As and 70As, [ν f5/2 ⊗ π f5/2]J=4+
constitutes ap-

proximately 75% of the 4+
1 wave function. For the A � 72

Ge nuclei, the configuration [νp1/2 ⊗ π f5/2]J=3+
accounts for

≈70% of the wave functions for both the 3+
1 and 4+

1 states.
Table IV lists the calculated Q(I ) and μ(I ) moments for the

odd-odd As nuclei, as compared with the available experimen-
tal data [74]. The observed moments, especially their sign, are
reasonably reproduced by the IBFFM-2.

VI. β DECAY

The f t values for the β decays of the odd-A As into Ge
nuclei, and of the even-A As into Ge nuclei, and vice versa,

FIG. 12. Same as Fig. 7, but for the low-energy positive-parity
states of odd-odd As nuclei.

are computed by the formula

f t = K

|M(F)|2 + ( gA

gV

)2|M(GT)|2
, (24)

where the constant K = 6163 sec, and M(F) and M(GT)
are the reduced matrix elements of the Fermi T̂ F (14) and
Gamow-Teller T̂ GT (13) operators, respectively. The free val-
ues of the vector and axial vector coupling constants gV = 1
and gA = 1.27, respectively, are used.

A. β decays between odd-A nuclei

Figure 13 shows the calculated log f t values for the
electron-capture (EC) decays of the 5/2−

1 and 3/2− states
of the odd-A As nuclei, and for the β− decays of the
1/2−

1 state of the odd-A Ge nuclei. The behaviours of
the predicted log f t values reflect evolution of the un-
derlying nuclear structure. A characteristic kink is ob-
served at A = 71 in the calculated log f t values for the
�I = 0 decays As (5/2−

1 ) → Ge (5/2−
1 ) and Ge (1/2−

1 ) →
As (1/2−

1 ) , shown in Figs. 13(a) and 13(d), respectively. The

TABLE IV. Same as Table III, but for the positive-parity states of
odd-odd As nuclei.

Nucleus Moments Th. Exp.

68As Q(3+
1 ) 0.02

μ(3+
1 ) 2.13

70As Q(4+
1 ) 0.10 +0.09 ± 0.02

μ(4+
1 ) 1.72 +2.1061 ± 0.0002

72As Q(3+
1 ) 0.07

μ(1+
1 ) 1.92

μ(3+
1 ) 1.38 +1.58 ± 0.02

74As μ(1+
1 ) 2.10

μ(4+
1 ) 1.94 +3.24 ± 0.04

76As μ(1+
1 ) 1.71 +0.559 ± 0.005

78As μ(1+
1 ) 2.44
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FIG. 13. Calculated log f t values for the electron-capture decays
from the odd-A As to Ge nuclei, (a) 5/2−

1 → 5/2−
1 and (b) 3/2−

1 →
1/2−

1 , and the β− decays from the odd-A Ge to As nuclei, (c) 1/2−
1 →

3/2−
1 and (d) 1/2−

1 → 1/2−
1 . The experimental data, available from

Ref. [67], are also shown.

log f t results for the GT-type (�I = 1) decays As (3/2−
1 ) →

Ge (1/2−
1 ) and Ge (1/2−

1 ) → As (3/2−
1 ) rather abruptly de-

crease from A = 71 to 73.
As shown in Fig. 13 the calculation systematically un-

derestimates the observed log f t values [67]. For both the
67,69As (5/2−

1 ) → 67,69Ge (5/2−
1 ) decays, the dominant con-

tributions to the GT and Fermi matrix elements come from the
terms of the type (a†

ν f5/2
× aπ f5/2 )(I ), with I = 1 and 0, respec-

tively. As one can see in Figs. 11(e) and 11(f), the 5/2−
1 states

of both the parent (67,69As) and daughter (67,69Ge) nuclei are
almost purely made of the 1 f5/2 single-particle configurations,
hence the GT and Fermi transitions are calculated to be so
large as to give the small log f t values compared to the data.

For the GT-type decay 73As (3/2−
1 ) → 73Ge (1/2−

1 ) , the
largest contribution to the GT strength is from the term pro-
portional to sν (a†

νp1/2
× aπ p3/2 )(1). The IBFM-2 wave functions

for the 3/2−
1 parent state of 73As and the 1/2−

1 daughter state
of 73Ge are built predominantly on the 2p3/2 and 2p1/2 single-
proton configurations, respectively [see Figs. 11(a) and 11(d)].
Thus the GT strength between these states is calculated to be
substantially large, hence the small log f t value is obtained.

The rapid increase of the log f t values for As (5/2−
1 ) →

Ge (5/2−
1 ) decay toward A = 71 is attributed to the fact that

the structure of the wave function for the 5/2−
1 daughter

state drastically changes from A = 69 to 71. One finds from
Figs. 11(e) and 11(f) that, the parent 71As (5/2−

1 ) and the
daughter 71Ge (5/2−

1 ) states are here almost purely made
of the proton 1 f5/2 and neutron 2p1/2 single-particle con-
figurations, respectively. Thus the terms such as (a†

ν f5/2
×

TABLE V. Comparison of calculated and observed [67] log f t
values for the EC decays from odd-A As to Ge nuclei.

log f t

Decay I → I ′ Th. Exp.

67As → 67Ge 5/2−
1 → 5/2−

1 4.15 5.44 ± 0.13
5/2−

1 → 5/2−
2 6.63 5.92 ± 0.08a

5/2−
1 → 5/2−

3 6.08 6.4 ± 0.4a

5/2−
1 → 3/2−

1 6.49 6.18 ± 0.11a

5/2−
1 → 3/2−

2 7.61 5.64 ± 0.07a

69As → 69Ge 5/2−
1 → 5/2−

1 4.77 5.49 ± 0.02
5/2−

1 → 5/2−
2 6.92 6.94 ± 0.07

5/2−
1 → 5/2−

3 5.63 6.80 ± 0.06
5/2−

1 → 5/2−
4 5.98 6.47 ± 0.06

5/2−
1 → 5/2−

5 7.15 5.95 ± 0.05
5/2−

1 → 3/2−
1 7.58 6.05 ± 0.02

5/2−
1 → 3/2−

2 7.44 7.21 ± 0.05
5/2−

1 → 3/2−
3 6.43 6.71 ± 0.06

5/2−
1 → 3/2−

4 7.07 5.82 ± 0.05
5/2−

1 → 3/2−
5 8.00 6.21 ± 0.05

5/2−
1 → 7/2−

1 10.85 6.20 ± 0.05
5/2−

1 → 7/2−
2 7.46 5.44 ± 0.05

71As → 71Ge 5/2−
1 → 5/2−

1 5.92 5.853 ± 0.012
5/2−

1 → 5/2−
2 6.28

5/2−
1 → 5/2−

3 6.55 6.869 ± 0.015
5/2−

1 → 5/2−
4 7.74 9.14 ± 0.08b

5/2−
1 → 5/2−

5 7.30 6.840 ± 0.025
5/2−

1 → 3/2−
1 6.74 7.192 ± 0.012

5/2−
1 → 3/2−

2 7.47 >8.6
5/2−

1 → 3/2−
3 7.24 6.333 ± 0.013

5/2−
1 → 3/2−

4 8.25 7.430 ± 0.023
5/2−

1 → 3/2−
5 8.10 6.946 ± 0.014

5/2−
1 → 7/2−

1 8.38 8.79 ± 0.25
5/2−

1 → 7/2−
2 7.85 7.296 ± 0.016

73As → 73Ge 3/2−
1 → 1/2−

1 3.82 5.4

aParity not firmly established.
bI = (3/2, 5/2−) level at 886 keV.

aπ f5/2 )(I=0,1), which make a large contribution to the GT and
Fermi matrix elements for the decays of 67,69As, now play a
much less important role in the case of the 71As decay. There
are, instead, various other terms with small amplitudes in the
GT and Fermi matrix elements of the 71As decay, which can-
cel each other and lead to the large log f t value as compared
to the 67,69As decays.

As shown in Figs. 13(c) and 13(d), the calculated log f t
values for the β− decays Ge (1/2−

1 ) → As (3/2−
1 ) and

Ge (1/2−
1 ) → As (1/2−

1 ) , show a certain systematic trend
with A. Such behaviours also reflect the structure of the IBFM-
2 wave functions for the parent and daughter states.

For the sake of completeness, Tables V and VI show the
calculated and experimental log f t values for those β decays
for which the data are available.

One can also make a comparison with the previous IBFM-2
calculation for the 69,71As → 69,71Ge β decays in Ref. [8]. In
general, the log f t values obtained in the present study appear
to be systematically larger than those reported in Ref. [8].
Particularly for the decay 69As (5/2−

1 ) → 69Ge (3/2−
1 ) , here
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TABLE VI. Same as Table V, but for the β− decays from odd-A
Ge to As nuclei.

log f t

Decay I → I ′ Th. Exp.

75Ge → 75As 1/2−
1 → 3/2−

1 3.54 5.175 ± 0.007
1/2−

1 → 3/2−
2 5.04 5.63 ± 0.05

1/2−
1 → 3/2−

3 5.90 6.42 ± 0.06a

1/2−
1 → 1/2−

1 5.66 6.87 ± 0.05
1/2−

1 → 1/2−
2 4.45 6.94 ± 0.05

1/2−
1 → 1/2−

3 7.18 6.42 ± 0.06a

77Ge → 77As 1/2−
1 → 3/2−

1 3.38 4.96 ± 0.04
1/2−

1 → 3/2−
2 3.79 7.2 ± 0.2

1/2−
1 → 3/2−

3 4.71 5.3 ± 0.1
1/2−

1 → 3/2−
4 4.82 7.2 ± 0.1

1/2−
1 → 3/2−

5 5.15 5.7 ± 0.1b

1/2−
1 → 1/2−

1 5.32 7.7 ± 0.1
1/2−

1 → 1/2−
2 4.91 5.7 ± 0.1b

1/2−
1 → 1/2−

3 3.98 5.8 ± 0.1c

aI = 1/2− or 3/2− state at 618 keV.
bI = 1/2− or 3/2− state at 1605 keV.
cI = 1/2− or 3/2− state at 1676 keV.

the value log f t = 7.58 is obtained, which overestimates the
experimental one, 6.05 ± 0.02. On the other hand, the calcula-
tion in Ref. [8] gave a smaller value log f t = 5.88, in a better
agreement with experiment. The log f t values for the �I = 0
decay 69As (5/2−

1 ) → 69Ge (5/2−
1 ) obtained from both cal-

culations are close to each other, i.e., log f t = 4.26 in Ref. [8]
and the present one is slightly larger, log f t = 4.77. Both cal-
culations underestimate the data, log f t = 5.49 ± 0.02. For
both IBFM-2 calculations, the results for the log f t values
appear to be quite sensitive to the wave functions for the
initial and final odd-A nuclei. In fact, the IBFM-2 frame-
work in Ref. [8] is largely based on the phenomenological
grounds, i.e., the empirical parameters for the even-even
IBM-2 core Hamiltonian, and the phenomenological single-
particle energies were adopted in that reference, while most
of the parameters are here determined based on the EDF
calculations.

To make a reasonable comparison with the experimental
log f t data, one could estimate the effective value of the
gA/gV ratio for the GT matrix element [see Eq. (24)], denoted
here by (gA/gV)eff . By fitting to the experimental log f t value
for the �I = 1 β-decay 73As (3/2−

1 ) → 73Ge (1/2−
1 ) one

obtains (gA/gV)eff = 0.206, equivalent to a quenching factor
q = 0.162. If one applies this (gA/gV)eff value, for instance,
to the �I = 0 decay 69As (5/2−

1 ) → 69Ge (5/2−
1 ) , then the

log f t value is only slightly increased to log f t = 5.06, with
respect to the one (4.77) obtained with the free gA/gV ra-
tio. Likewise, the (gA/gV)eff values for the 75Ge (1/2−

1 ) →
75As (3/2−

1 ) and 75Ge (1/2−
1 ) → 75As (3/2−

1 ) decays are
calculated to be 0.194 and 0.204, respectively. Also in these
cases, the quenching of the gA/gV ratio does not drastically
increase the relevant �I = 0β decay, i.e., the 1/2−

1 → 1/2−
1

one.

FIG. 14. Same as Fig. 13, but for the β+/EC decay 1+
1 → 0+

1

from the even-A As to Ge nuclei (a), and the β− decay 0+
1 → 1+

1

from the even-A Ge to As nuclei (b).

B. β decays between even-A nuclei

In Fig. 14 shown are the calculated log f t values for
the GT-type transitions between the even-A nuclei, i.e.,
As (1+

1 ) → Ge (0+
1 ) β+/EC and Ge (0+

1 ) → As (1+
1 ) β−

decays. The present calculation gives the values typically
within the range 4 � log f t � 5 for both the β+/EC and β−
decays. Apart from the decays of 68As and 68Ge, the predicted
log f t values show a gradual decrease with A, but with a kink
at A = 76. Note that a good agreement with the observed
log f t value is seen for the β− decay 78Ge (0+

1 ) → 78As (1+
1 )

[see Fig. 14(b)]. As shown in Sec. V, the IBFFM-2 wave
functions for the 1+

1 state of those odd-odd As nuclei with
A � 72 are dominated by the neutron-proton pair configu-
ration [νp1/2 ⊗ π p3/2]J=1+

. For the GT transitions between
those nuclei with A � 72, components in the GT opera-
tor of the forms proportional to (a†

νp1/2
× a†

π p3/2
)(1), (a†

νp3/2
×

a†
π p1/2

)(1), and (a†
νp3/2

× a†
π p3/2

)(1) have particularly large con-
tributions to the β-decay rates.

On the other hand, as mentioned above, the calculation
predicts exceptionally large log f t values (≈9–10) for the de-
cays of the states 68As (1+

1 ) and 68Ge (0+
1 ) . This is, to a large

extent, traced back to the IBFFM-2 wave function of the 1+
1

state of the 68As nucleus, in which the fraction of the compo-
nent [νp1/2 ⊗ π p3/2]J=1+

is negligibly small, in comparison
to the decays of the A � 72 nuclei. In the GT matrix elements,
the terms corresponding to the coupling between the neutron
2p1/2 (or 2p3/2) and proton 2p3/2 (or 2p1/2) single-particle
states make only vanishing contributions, while other terms
have small amplitudes and cancel each other.

Table VII shows a comparison between the calculated
and experimental data for the β-decay log f t values for the
ground states of even-A nuclei. The predicted log f t values
for the relevant β decays, i.e., 68As (3+

1 ) → 68Ge (2+
1 ) ,

68As (3+
1 ) → 68Ge (4+

1 ) , 70As (4+
1 ) → 70Ge (4+

1 ) , and
78Ge (0+

1 ) → 78Ge (1+
1 ) , are generally in a fair agreement

with the observed ones. The IBFFM-2 log f t values for the
70As (4+

1 ) → 70Ge (3+
1 ) decay is nearly twice as large as the

observed one. The large deviation is probably related to the
fact that the IBFFM-2 calculation does not give the correct
ground-state spin of I = 4+ for 70As. For this particular
decay, numerous terms are fragmented and cancel each other
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TABLE VII. Same as Table V, but for the β+/EC decays from
even-A As to Ge nuclei, and for the β− decays from 78Ge to 78As.

log f t

Decay I → I ′ Th. Exp.
68As → 68Ge 3+

1 → 2+
1 6.66 7.38 ± 0.24

3+
1 → 2+

2 6.95 6.86 ± 0.19
3+

1 → 2+
3 6.34 6.89 ± 0.10

3+
1 → 2+

4 5.81 7.24 ± 0.04
3+

1 → 2+
5 7.21 6.57 ± 0.04

3+
1 → 4+

1 6.34 7.02 ± 0.06
3+

1 → 4+
2 5.73 6.74 ± 0.03

3+
1 → 4+

3 6.63 5.979 ± 0.018a

70As → 70Ge 4+
1 → 4+

1 6.58 7.30 ± 0.16
4+

1 → 4+
2 6.03 7.37 ± 0.14

4+
1 → 4+

3 6.01 5.69 ± 0.05
4+

1 → 3+
1 10.74 6.97 ± 0.04

78Ge → 78As 0+
1 → 1+

1 3.92 4.264 ± 0.025
0+

1 → 1+
2 5.15 5.61 ± 0.12

aLevel at 3042 keV with spin and parity temporarily assigned to
be (4+).

in the GT matrix element, giving rise to the too large log f t
value.

By following the same procedure as discussed in the pre-
vious section, the (gA/gV)eff ratios can be extracted for the
β decays of the even-A nuclei. Of particular interest is the
78Ge (0+

1 ) → 78As (1+
1 ) β− decay, since the neighboring nu-

cleus 76Ge is a candidate for the 0νββ-decay emitter. For
the above decay, one obtains the effective ratio (gA/gV)eff =
0.860, corresponding to the quenching factor q = 0.677. This
appears to be a modest value, as compared with those ob-
tained here for the β decays of odd-A nuclei. The result is
also more or less consistent with a common value of the
effective (gA/gV)eff ratio that is often considered in many of
the calculations for the single-β and ββ decays of 76Ge [20].
One also obtains the (gA/gV)eff values for the 68As decays.
For instance, the value (gA/gV)eff = 0.554 is extracted for the
3+

1 → 2+
1 decay.

VII. CONCLUDING REMARKS

The shape evolution and the related spectroscopic prop-
erties of the low-lying states, and the β-decay properties of
the even-even, odd-mass, and odd-odd Ge and As nuclei in
the mass A ≈ 70–80 region have been investigated within the
framework of the nuclear EDF and the particle-boson cou-
pling scheme. The constrained SCMF calculation based on
the universal relativistic functional DD-PC1 and the separable
pairing force of finite range provides triaxial quadrupole de-
formation energy surface for the even-even 66–78Ge nuclei. By
mapping the mean-field energy surface onto the expectation
value of the IBM-2 Hamiltonian in the coherent state, the
parameters for the Hamiltonian have been determined. The
same SCMF calculation yields spherical single(quasi)-particle
energies and occupation probabilities, which are the essential
building blocks of the particle-boson interactions, and the

Gamow-Teller and Fermi transition operators. Fixed values
are employed for the three coupling constants for the particle-
boson interaction terms, and for the two parameters for the
residual neutron-proton interaction in the IBFFM-2, which are
determined to have an overall reasonable agreement with the
low-energy data for the odd-A and odd-odd nuclei under study.

At the SCMF level, a rapid nuclear structural evolution
as a function of the nucleon number has been suggested
in the energy surface, from the γ -soft oblate shapes for
66–70Ge, to the spherical-oblate shape coexistence for 72Ge,
to the triaxial deformation for 74Ge, and to the γ -soft prolate
shapes for 76,78Ge. The resultant energy spectra for the low-
lying states, obtained by the diagonalization of the mapped
IBM-2 Hamiltonian, follow the observed systematics with
A. The possibility of shape coexistence for 72Ge has been
addressed, in which nucleus the observed spectrum is char-
acterized by the low-lying excited 0+ state below the 2+

1 one.
The configuration-mixing IBM-2 calculation reproduces well
the observed 0+

2 excitation energy. The calculated low-lying
negative-parity levels in the neighboring odd-N Ge and odd-Z
As, as well as the odd-odd As, nuclei show the systematic
behaviours reflecting the shape transition that is suggested to
occur in the even-even Ge core. The B(E2) and B(M1) transi-
tion rates in the odd-nucleon systems are, however, sensitive
to the IBFM-2 or IBFFM-2 wave functions.

The wave functions for the even- and odd-A nuclei have
been then used to compute the GT and Fermi matrix ele-
ments for the β decays. The predicted log f t values for the
β decays of the odd-A nuclei evolve with A, corroborating
the underlying nuclear structure evolution in the parent and
daughter nuclear systems. As compared to experiment, the
log f t values obtained for the odd-A nuclei are systematically
small. This reflects the nature of the corresponding IBFM-2
wave functions and, in turn, serves as a sensitive test of various
model assumptions and the microscopic input provided by
the EDF. To effectively account for the deviation between
the IBFM-2 and observed log f t values, drastic quenching
for the ratio gA/gV would be required for the odd-A cases.
For the decays of the even-A As and Ge nuclei, the agree-
ment with the experimental log f t values has turned out to
be slightly better, and rather modest quenching has been
suggested.

The present theoretical scheme allows for a simultane-
ous and computationally feasible calculation of the low-lying
states and their β decays for all kinds of nuclei, i.e., even-even,
odd-mass, and odd-odd ones, based largely on the nuclear
EDF calculations. The next step is the applications of the
methodology to the β-decay properties of more neutron-rich
nuclei, which are expected to play a significant role in the as-
trophysical processes and are experimentally of much interest.
On the other hand, the reported spectroscopic calculation in
this mass region opens up a possibility to study the effects
of the shape coexistence, as well as the triaxial deformation,
on the low-lying states of the odd-nucleon systems within
the IBFM-2 and IBFFM-2, and on the predictions on their β

decays. These would require a major extension of the model.
Work along these lines is in progress, and will be reported
elsewhere.
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