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Bayesian inference of finite-nuclei observables based on the KIDS model
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Bayesian analyses on both isoscalar and isovector nuclear interaction parameters are carried out based on
the Korea-IBS-Daegu-SKKU (KIDS) model under the constraints of selected nuclear structure data of 208Pb
and 120Sn. Under the constraint of the neutron-skin thickness, it is found that incorporating the curvature
parameter Ksym of the nuclear symmetry energy as an independent variable significantly broadens the posterior
probability distribution function (PDF) of the slope parameter L and affects the related correlations. Typically, the
anticorrelation between L and the symmetry energy at saturation density disappears, while a positive correlation
between L and Ksym is observed. Under the constraint of the isoscalar giant monopole resonance (ISGMR),
incorporating the skewness parameter as an independent variable also significantly broadens the posterior PDF
of the nuclear matter incompressibility K0. Even with the broad uncertainties of higher-order parameters of the
equation of state (EOS), robust constraints of L < 90 MeV and K0 < 270 MeV are obtained. Our results suggest
some compatibility between the ISGMR data of 208Pb and 120Sn but not of the isovector observables, especially
the neutron-skin thickness.
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I. INTRODUCTION

Understanding the properties of nuclear interactions is
one of the main goals of nuclear physics. These properties
are mostly characterized by the nuclear matter EOS and the
in-medium nucleon effective mass, containing isoscalar and
isovector parts. The knowledge of the density dependence of
the symmetric nuclear matter (SNM) EOS and the nuclear
symmetry energy as well as the information of the nucleon
effective mass is important in understanding nuclear systems
from nuclear structures, nuclear reactions, and nuclear as-
trophysics. So far, difficulties in understanding the accurate
knowledge of the nuclear matter EOS and the nucleon effec-
tive mass appear in two aspects. On the one hand, nuclear
systems are mostly neutron-rich systems, so observables are
affected by both isoscalar and isovector nuclear interactions,
and they can be sensitive not only to the nuclear matter EOS
but also to the nucleon effective mass, hampering us from
constraining accurately each individual physics quantity. On
the other hand, different observables are sensitive to nuclear
matter properties at different density regions, calling for better
knowledge of detailed EOS parameters and a nuclear inter-
action model with a more flexible energy-density functional
(EDF).

Thanks to the available experimental data sets in the multi-
message era of nuclear physics, the Bayesian analysis serves
as a suitable tool to constrain multiple physics quantities from
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multiple observables, and it has several advantages over the
traditional χ2 fitting in revealing the relevant model parame-
ters [1]. Besides obtaining the posterior PDF of an individual
physics quantity, the Bayesian analysis can also reveal the
correlation between model parameters under the constraint
of relevent experimental data. One has to keep in mind that
these correlations between model parameters are generally
built with given experimental data based on a particular nu-
clear interaction model, and the Bayesian analysis serves as a
useful tool with which to reveal that correlation. The resulting
posterior PDFs and correlations can be model dependent.

Observables from nuclear structure and collective response
are reliable probes of the nuclear matter EOS up to satura-
tion density and more generally of the nuclear interaction in
both isoscalar and isovector channels. The excitation energy
of the ISGMR, a breathing oscillation mode of a nucleus,
serves as a good probe of the incompressibility K0 of normal
nuclear matter [2–9]. However, it has been observed that,
within a given theoretical model, the ISGMR data always
favor a smaller K0 value for Sn isotopes than for heavy nuclei,
leading to the question of why Sn is so soft (the soft tin
puzzle) [7,10,11]. The isoscalar giant quadrupole resonance
(ISGQR), an oscillation mode with quadrupole deformation
of a nucleus, has been found to be much affected by the
isoscalar nucleon effective mass m�

s [2,12–19]. The neutron-
skin thickness �rnp is the difference in root-mean-square
neutron and proton radii, and its values for heavy nuclei are
among the most robust probes of the nuclear symmetry energy
at subsaturation densities [20–30]. The recent PREXII data
of �rnp = 0.283 ± 0.071 fm for 208Pb from parity-violating
electron-nucleus scatterings [31] favors a rather stiff nuclear
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symmetry energy [32], inconsistent with the old �rnp data for
Sn isotopes from proton elastic-scattering experiments [33] as
well as the CREX data for 48Ca to be announced [34]. The
IVGDR is an oscillation mode in which neutrons and protons
move collectively relative to each other and is a good probe
of the nuclear symmetry energy [5,35–46] and the isovec-
tor nucleon effective mass m�

v [16,17,19]. The stiff nuclear
symmetry energy from the PREXII data is also inconsistent
with the IVGDR data [47], leading to another puzzle (PREXII
puzzle).

In previous studies [48–50], the posterior PDFs of the
nucleon effective mass, the value and the slope parameter
L of symmetry energy at saturation density, and the nuclear
matter incompressibility as well as its isospin dependence
were extracted by employing the Bayesian analysis based
on the standard Skyrme-Hartree-Fock (SHF) model. In the
present study, we employ a similar analysis method but based
on a more flexible KIDS model and try to address both puz-
zles mentioned above. With more parameters in the KIDS
model, each higher-order EOS parameter, e.g., the curvature
parameter Ksym of symmetry energy and the skewness EOS
parameter Q0 of SNM at saturation density, can be varied as
an independent model parameter. This may have important
effects on constraining the symmetry energy as well as the
incompressibility of nuclear matter. In the present work, we
investigate the posterior PDFs of physics quantities step by
step by incorporating more and more available nuclear struc-
ture data of 208Pb and 120Sn. As we will see, incorporating
Ksym as an independent variable may largely affect the con-
straint on L and related correlations, while incorporating Q0

may largely affect the constraint on both the isoscalar and the
isovector part of the incompressibility. Under the constraints
of the neutron-skin thickness, the IVGDR, and the ISGMR,
substantial overlaps of the PDFs from the data of 208Pb and
120Sn are observed for L and for K0. We have also compared
predictions of 120Sn observables using the posterior PDFs
from the constraints of 208Pb data to the corresponding exper-
imental data, and vice versa, in order to quantify the “PREXII
puzzle” and the “soft tin puzzle.”

This paper is structured as follows: In Sec. II, we present
the theoretical framework, namely, the KIDS EDF and the
standard SHF model, elements of the random-phase approx-
imation, and the Bayesian analysis method as well as the
parameters and data used in the analysis. In Sec. III, we
present and discuss our results. First, in Sec. III A, a simple
sensitivity study provides an overview of how strongly the dif-
ferent variables can affect the predictions for the observables
of interest. Next, in Sec. III B, we incorporate the constraints
from the neutron-skin thickness and examine the posterior
PDFs in both the SHF and KIDS models. We demonstrate
the compatibility of the various data by extracting predictions
for isovector quantities based on the PREXII measurement
and comparing with existing data. Next, in Sec. III C, we
incorporate all constraints from isovector observables and ex-
amine the resulting PDFs in both the SHF and KIDS models,
showing, among other things, that the strong constraints on
Ksym obtained within SHF disappear within KIDS. Finally, in
Sec. III D, we incorporate the additional constraint from the
ISGMR data and discuss the posterior PDFs in the SHF and

KIDS model and compare predictions of observables with the
experimental data. In Sec. IV we summarize our findings.

II. THEORETICAL FRAMEWORK

In the present study, the effective nuclear interaction is
taken from the KIDS model, and the standard Skyrme inter-
action is also compared as a reference [51]. For both EDFs
of the KIDS and the standard SHF model, coefficients can
be explicitly expressed in terms of macroscopic quantities but
with different numbers of independent variables. The standard
Hartree-Fock method is used to obtain the ground-state prop-
erties of the spherical nuclei of interest, and the random-phase
approximation method is used to study nucleus resonances
of different types. The Bayesian analysis method is used in
evaluating the posterior probability distribution function of
physics parameters as well as their correlations by comparing
the properties of ground-state nuclei and nuclear resonances
with the available experimental data.

A. The effective nuclear interaction

The KIDS framework for the nuclear matter EOS and EDF
offers the possibility to explore systematically the effect of
the EOS and other interaction parameters on predictions for
a variety of observables. The EOS of homogeneous nuclear
matter is expressed as an expansion in the cubic root of the
density, which is physically well motivated [52]. Although
up to four terms have been found optimal for a wide range
of densities, the expansion can be extended to accommodate
any set of EOS parameters [53] so that they can be varied
independently of each other. Any set of EOS parameters
characterizing, typically, the saturation point and the density
dependence of the symmetry energy, is readily transposed to
a nuclear EDF for finite nuclei in the highly convenient form
of an extended Skyrme functional, with the additional free-
dom of choosing the values for the effective mass and other
interaction parameters which are not active in homogeneous
nuclear matter [53,54]. Studies of symmetry-energy param-
eters based on astronomical observations and bulk nuclear
properties were publicized recently [55,56], and a pilot study
of the neutron-skin thickness was also conducted [57].

The effective interaction for the KIDS model can be con-
sidered as an extension of that for the standard SHF model,
and the interaction form between two nucleons at the positions
�r1 and �r2 can be expressed as

vKIDS(�r1, �r2) = (t0 + y0Pσ )δ(�r )

+ 1

2
(t1 + y1Pσ )[�k′2δ(�r ) + δ(�r )�k2]

+ (t2 + y2Pσ )�k′ · δ(�r )�k

+ 1

6

imax∑
i=1

(t3i + y3iPσ )ρ i/3( �R)δ(�r )

+ iW0(�σ1 + �σ2)[�k′ × δ(�r )�k]. (1)

In the above, �r = �r1 − �r2 and �R = (�r1 + �r2)/2 are respec-
tively the relative and central coordinates of the two nucleons,
�k = (∇1 − ∇2)/2i is the relative momentum operator and �k′
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TABLE I. Default values of macroscopic quantities as well as
their prior ranges in the KIDS model used in the present study.

Default value Prior range

ρ0 (fm−3) 0.16
E0 (MeV) −16
K0 (MeV) 240 200–300
Q0 (MeV) −373 −800–400
E 0

sym (MeV) 33 25–35
L (MeV) 49 0–120
Ksym (MeV) −156 −400–100
Qsym (MeV) 583 0–1000
m�

s/m 0.82
m�

v/m 0.7 0.5–1
GS (MeV fm5) 132
GV (MeV fm5) 5
W0 (MeV fm5) 133

is its complex conjugate acting on the left, and Pσ = (1 + �σ1 ·
�σ2)/2 is the spin-exchange operator. Note that the above effec-
tive interaction is the same as the standard Skyrme interaction
except for the density-dependent term, which in the standard
SHF model is written as

v
(ρ)
SHF = 1

6 (t3 + y3Pσ )ρα ( �R)δ(�r ), (2)

with t3, y3, and α being the parameters. The density-dependent
term in Eq. (1) is now a summation of terms from power 1/3
to imax/3, and we take imax = 3 in the present study.

The default values of parameters in the KIDS model are
determined as follows: Except for the spin-orbit coupling
constant, which we fix at W0 = 133 MeV fm5 [51], the other
12 parameters t0, t1, t2, t31, t32, t33, y0, y1, y2, y31, y32, and
y33 in the KIDS model can be solved inversely from the
macroscopic quantities, i.e., the saturation density ρ0, the
binding energy E0, the incompressibility K0, and the skewness
EOS parameter Q0 of SNM at ρ0, the isoscalar and isovector
nucleon effective mass m�

s and m�
v in normal nuclear matter,

the symmetry energy E0
sym and its slope parameter L, curva-

ture parameter Ksym, and skewness parameter Qsym at ρ0, and
the isoscalar and isovector density gradient coefficients GS

and GV . For the detailed expressions, we refer the reader to
Appendix. The isoscalar nucleon effective mass m�

s = 0.82m,
with m being the bare nucleon mass, presently chosen so
as to reproduce both the excitation energies of isoscalar gi-
ant quadruple resonance in 208Pb and 120Sn, to be shown
later. GS = 132 MeV fm5, GV = 5 MeV fm5, and m�

v = 0.7m
are chosen as the default values as those in the MSL0
model [51], while the default values of other EOS parameters
are taken to be those from the KIDS-P4 parametrization that
reproduces the APR EOS rather well [54]. In the present
study using the Bayesian analysis, we only vary the quantities,
to which the experimental observables are most sensitive after
doing the sensitivity analysis, within their prior ranges, while
other quantities are fixed at their default values, as shown in
Table I.

In the case of the standard SHF model, which we use for
comparison, we proceed in a similar manner, but there are
fewer parameters that can be explored freely. Specifically,

the higher-order EOS parameters, i.e., Q0 and Ksym, are not
varied independently because they can be fully expressed
in terms of other parameters. Indeed, based on the standard
SHF EDF [51], Q0 is related to lower-order EOS parameters
through the relation

Q0 = −3(3α + 1)
3

5

(
3π2

2

)2/3
h̄2

2m
ρ

2/3
0

+ 45(α + 1)E0 + (3α + 2)K0. (3)

Ksym is related to lower-order EOS parameters through the
relation [55]

Ksym = (2 − 3α)
2

3

(
3π2

2

)2/3
h̄2

2m
ρ

2/3
0

×
[
−3

(
m

m�
v

− 1

)
+ 4

(
m

m�
s

− 1

)]

− 3(1 + α)
(
3E0

sym − L
)

+ (1 + 3α)
1

3

(
3π2

2

)2/3
h̄2

2m
ρ

2/3
0 . (4)

α in the above formulas is the exponential coefficient in
Eq. (2), and it depends in a nonlinear way on ρ0, E0, K0, and
m�

s via the relation

9(1 + α)E0 + K0 =
[

(1 + 3α) + 2(2 − 3α)

(
m

m�
s

− 1

)]

× 3

5

(
3π2

2

)2/3
h̄2

2m
ρ

2/3
0 . (5)

With a fixed α, one sees that Q0 is linear in K0 and Ksym is
linear in 3E0

sym − L without any constraints in the standard
SHF model. We will return to this point later.

The potential energy per nucleon in the KIDS EDF, which
formally corresponds to the effective interaction [Eq. (1)]
employed in the Hartree-Fock approximation, has the form

Epot = 3

8
t0ρ − 1

8
(t0 + 2y0)

ρ2
3

ρ

+
imax∑
i=1

[
1

16
t3iρ

1+i/3 − 1

48
(t3i + 2y3i )ρ

−1+i/3ρ2
3

]

+ 1

16
(3t1 + 5t2 + 4y2)ρτ

− 1

16
(t1 + 2y2 − t2 − 2y2)ρ3τ3

+ 1

64
(−9t1 + 5t2 + 4y2)ρ∇2ρ

+ 1

64
(3t1 + 6y1 + t2 + 2y2)ρ3∇2ρ3

− 3

4
W0ρ∇ · �J − 1

4
W0ρ3∇ · �J3, (6)

where ρ = ρn + ρp, τ = τn + τp, and �J = �Jn + �Jp are the
isoscalar nucleon number density, the kinetic density, and
the spin-current density, respectively, and ρ3 = ρn − ρp,
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TABLE II. Experimental data of the neutron-skin thickness �rnp, the centroid energy E−1 of the IVGDR and electric polarizability αD, the
excitation energy EISGMR of the ISGMR, the average energy per nucleon Eb, and the charge radius Rc in 208Pb and 120Sn used for the Bayesian
analysis. For 208Pb, both the EISGMR data by TAMU and RCNP are used.

�rnp (fm) E−1 (MeV) αD (fm3) EISGMR (MeV) Eb (MeV) Rc (fm)

208Pb 0.283 ± 0.071 13.46 ± 0.10 19.6 ± 0.6 14.17 ± 0.28 & 13.9 ± 0.1 −7.867452 ± 3% 5.5010 ± 3%
120Sn 0.150 ± 0.017 15.38 ± 0.10 8.59 ± 0.37 15.7 ± 0.1 −8.504548 ± 3% 4.6543 ± 3%

τ3 = τn − τp, and �J3 = �Jn − �Jp are the corresponding isovec-
tor densities, respectively. For the standard SHF EDF, we
refer the reader to Ref. [51] for comparison. Here we assume
that the nuclei investigated in the present study are spherical
and consider only time-even terms in the EDF. Using the
variational principle, one obtains the single-nucleon Hamilto-
nian and the Schrödinger equation. Solving the Schrödinger
equation leads to the eigenenergies and wave functions of
constituent nucleons, based on which the binding energy, the
charge radius, and the neutron-skin thickness can be obtained
from this standard procedure [58].

B. Giant resonances from random-phase approximation method

The nuclear response to external fields is studied by ap-
plying the random-phase approximation (RPA) and using the
Hartree-Fock basis obtained from the above EDF. For the
present study, we use the open source routine of Ref. [59], af-
ter modifying to incorporate the extended density dependence
in Eq. (1). The operators for exciting the IVGDR, ISGMR,
and ISGQR are chosen respectively as

F̂IVGDR = N

A

Z∑
i=1

riY1M(r̂i ) − Z

A

N∑
i=1

riY1M(r̂i ), (7)

F̂ISGMR =
A∑

i=1

r2
i Y00(r̂i ), (8)

F̂ISGQR =
A∑

i=1

r2
i Y2M (r̂i ), (9)

where N , Z , and A are respectively the neutron, proton, and
nucleon numbers in a nucleus, ri is the coordinate of the ith
nucleon with respect to the center of mass of the nucleus,
and Y00(r̂i ), Y1M(r̂i ), and Y2M (r̂i ) are the spherical harmonics
with the magnetic quantum number M degenerate in spherical
nuclei. Using the RPA method [59], the strength function

S(E ) =
∑

ν

|〈ν||F̂ ||0̃〉|2δ(E − Eν ) (10)

of a nucleus resonance in a given channel can be obtained,
where the square of the reduced matrix element |〈ν||F̂ ||0̃〉|
represents the transition probability from the ground state |0̃〉
to the excited state |ν〉 under the action of the external field F̂ .
The moments of the strength function for the corresponding
resonance type can then be calculated from

mk =
∫ ∞

0
dEEkS(E ). (11)

For the IVGDR, the centroid energy E−1 and the electric
polarizability αD can be obtained from the moments of the
strength function through the relation

E−1 =
√

m1/m−1, (12)

αD = 8πe2

9
m−1. (13)

For the ISGMR, the RPA results of the excitation energy,

EISGMR = m1/m0 (14)

are compared with the corresponding experimental data. For
the ISGQR, we compare the peak values of the strength func-
tion directly to the corresponding experimental data.

FIG. 1. The excitation energy of ISGQR in 208Pb (upper) and
120Sn (lower) from SHF-RPA calculations using default parameters
in Table I but varying m�

s . The experimental data shown by bands are
compared.
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FIG. 2. Sensitivity of �rnp, E−1, αD, and EISGMR in 208Pb to E 0
sym, L, m�

v , Ksym, Qsym, K0, Q0 by changing one quantity at a time within its
prior range with other quantities fixed at their default values in Table I.

C. Bayesian analysis

We employ the Bayesian analysis method to obtain the
PDFs of model parameters from the experimental data, and
the calculation method can be formally expressed as the
Bayes’ theorem

P(M|D) = P(D|M )P(M )∫
P(D|M )P(M )dM

, (15)

where P(M|D) is the posterior probability for the model
M given the data set D, P(D|M ) is the likelihood function
or the conditional probability for a given theoretical model
M to predict correctly the data D, and P(M ) denotes the
prior probability of the model M before being confronted
with the data. The denominator of the right-hand side of the
above equation is the normalization constant. For the prior
PDFs, we choose the model parameters p1 = E0

sym uniformly
within 25–35 MeV, p2 = L uniformly within 0–120 MeV,
p3 = m�

v/m uniformly within 0.5–1, and p4 = K0 uniformly
within 200–300 MeV. To study the isospin dependence of
the incompressibility, we also choose p5 = Ksym uniformly
within −400 to 100 MeV based on analyses of terrestrial
nuclear experiments and EDFs [60,61]. Although it is not
the purpose to constrain Qsym, we vary p6 = Qsym uniformly
within 0–1000 MeV to take into account the uncertainties of
higher-order EOS parameters and thus obtain a conservative
constraint on other quantities. In addition, p7 = Q0 is var-

ied uniformly within −800 to 400 MeV [60,61] in the most
complete calculation with the ISGMR data incorporated. The
theoretical results of dth

1 = �rnp, dth
2 = E−1, dth

3 = αD, and
dth

4 = EISGMR from the SHF-RPA method are compared with
the experimental data dexpt

1–4 , and a likelihood function is used
to quantify how well these model parameters reproduce the
corresponding experimental data

P[D(d1, d2, d3, d4)|M(p1, p2, p3, p4, p5, p6, p7)]

= �4
i=1

{
1

2πσi
exp

[
−

(
dth

i − dexpt
i

)2

2σ 2
i

]}
, (16)

where σi is the 1σ error of the data dexpt
i . The calculation

of the posterior PDFs is based on the Markov-chain Monte
Carlo (MCMC) approach using the Metropolis-Hastings algo-
rithm [62,63]. Since the MCMC process does not start from
an equilibrium distribution, initial samples in the so-called
burn-in period have to be thrown away. After the average of
each model parameter becomes stable, the posterior PDF of a
single model parameter pi can be calculated from

P(pi|D) =
∫

P(D|M )P(M )� j �=id p j∫
P(D|M )P(M )� jd p j

, (17)

while the correlated PDF of two model parameters pi and p j

can be calculated from

P[(pi, p j )|D] =
∫

P(D|M )P(M )�k �=i, jd pk∫
P(D|M )P(M )�kd pk

. (18)
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FIG. 3. Same as Fig. 2 but for 120Sn.

In the present study, we incorporate the experimental data and
the corresponding sensitive model parameters step by step so
that we can understand where the correlation between model
parameters as well as their posterior PDFs come from.

Details of the experimental data for 208Pb and 120Sn used
in the present study are shown in Table II. For the neutron-
skin thickness, we adopt the latest PREXII data of �rnp =
0.283 ± 0.071 fm for 208Pb from parity-violating electron-
nucleus scatterings [31], and the predicted values of �rnp =
0.150 ± 0.017 fm for 120Sn from L(ρ� = 0.10 fm−3) =
43.7 ± 5.3 MeV extracted in Ref. [29], with the latter de-
duced from the neutron-skin thickness of Sn isotopes from
proton elastic-scattering experiments [33]. For 208Pb, the ex-
perimental results of the centroid energy E−1 = 13.46 MeV
of the IVGDR from photoneutron scatterings [64], and the
electric polarizability αD = 19.6 ± 0.6 fm3 from polarized
proton inelastic scatterings [65] and with the quasideuteron
excitation contribution subtracted [42], are used in the
Bayesian analysis. For 120Sn, we use the experimental data
of E−1 = 15.38 MeV of the IVGDR from photoneutron scat-
terings [64], and αD = 8.59 ± 0.37 fm3 from combining the
proton inelastic-scattering and photoabsorption data [66] and
with the quasideuteron excitation contribution subtracted [42],
overlapping with αD = 8.08 ± 0.60 fm3 from the latest data
extracted through proton inelastic scatterings [67,68]. The 1σ

error of E−1 for both 208Pb and 120Sn is chosen to be 0.1 MeV,
representing the scale of its uncertainty so far [64]. For the
excitation energy of the ISGMR from inelastic scatterings of
α particles, we use EISGMR = 15.7 ± 0.1 MeV for 120Sn by

the RCNP, Osaka University [69], and for 208Pb we use both
EISGMR = 14.17 ± 0.28 MeV by the TAMU [3] and EISGMR =
13.9 ± 0.1 MeV by the RCNP [70]. Besides comparing with
the experimental data of E−1, αD, �rnp, and EISGMR, we have
also used a strong constraint that the theoretical calculation
should reproduce the binding energy and charge radius of
the corresponding nucleus within 3%, an uncertainty range
for reasonable SHF parametrization as shown in Ref. [51],
otherwise the likelihood function [Eq. (16)] is set to zero.
This condition guarantees that we are exploring a reasonable
space of model parameters, and the experimental data of the
binding energies and charge radii of 208Pb and 120Sn are taken
from Refs. [71,72]. A more precise description of these data is
possible, but for each set of EOS parameters it would require
fits of the density gradient and spin-orbit parameters to the
properties of several more nuclei (to avoid overfitting), which
is beyond the scope of the present study.

III. RESULTS AND DISCUSSIONS

In the present study, we first fix the value of the isoscalar
nucleon effective mass by reproducing the excitation energies
of the ISGQR in 208Pb and 120Sn. Next, we investigate the
sensitivity of involved observables to the physics quantities of
interest. The Bayesian analysis is then carried out step by step
by incorporating more observables and physics quantities in
the analysis. Results from the KIDS model are compared with
those from the standard SHF model in order to understand the
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FIG. 4. (upper panel) Posterior correlated PDFs between L and
E 0

sym under the constraint of �rnp based on the standard SHF model.
(middle panel) Posterior correlated PDFs of L and E 0

sym under
the constraint of �rnp based on the KIDS model using Ksym =
−156 MeV. (lower panel) Posterior correlated PDFs of L and E 0

sym

under the constraint of �rnp based on the KIDS model using Ksym =
0 MeV. Results are from only varying L, E 0

sym, and m�
v , and those in

the left (right) panels are for 208Pb (120Sn).

difference from previous studies [48–50] as well as the model
dependence.

FIG. 5. (upper panel) Posterior correlated PDFs between L and
E 0

sym under the constraint of �rnp based on the KIDS model. (lower
panel) Posterior correlated PDFs between L and Ksym under the
constraint of �rnp based the KIDS model. Results are from only
changing L, E 0

sym, m�
v , Ksym, and Qsym, and those in left (right) panels

are for 208Pb (120Sn).

FIG. 6. Posterior PDFs of L under the constraint of �rnp from
the four scenarios in Figs. 4 and 5. Results in the left (right) panel
are for 208Pb (120Sn).

A. Sensitivity study

We first show how we determine the isoscalar nucleon
effective mass m�

s from the ISGQR in 208Pb and 120Sn, which
is less sensitive to other physics quantities of interest here. As
shown in Fig. 1, the excitation energies Ex of the ISGQR in
both 208Pb and 120Sn from SHF-RPA calculations based on
the KIDS model are seen to decrease with increasing m�

s/m,
and Ex is seen to be smaller in 208Pb compared with that in
120Sn. This is consistent with the intuitive picture that the os-
cillation frequency becomes smaller in a heavier system with
a larger nucleon number or nucleon effective mass. The bands
represent the experimental data of Ex = 10.9 ± 0.1 MeV in
208Pb [15,73–76] and Ex = 12.7 ± 0.4 MeV in 120Sn [76]
from α inelastic scatterings, respectively shown in Figs. 1(a)
and 1(b). It is seen that m�

s/m = 0.82 reproduces the Ex values
of the ISGQR in 208Pb rather well, while the large range of
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16
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FIG. 7. Predictions of (a) �rnp in 120Sn, (b) �rnp in 48Ca, (c) E−1

of 208Pb, and (d) αD of 208Pb, from the posterior PDFs of physics
quantities under the constraint of the �rnp in 208Pb based on the stan-
dard SHF and KIDS model, with vertical bands being the available
experimental data for comparison.
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FIG. 8. (first row) Posterior correlated PDFs between m�
v , L, and E 0

sym under the constraints of �rnp, E−1, and αD in 208Pb based on the
standard SHF model. (second row) Same as the first row but based on the KIDS model using Ksym = −156 MeV. (third row) Same as the
second row but using Ksym = 0 MeV. (bottom row) Same as the second and the third rows but letting Ksym change as an independent variable.

Ex for 120Sn covers m�
s/m = 0.80–0.84. We thus fix m�

s/m =
0.82 in the present study.

We further carry out a sensitivity study by showing the
dependence of �rnp, E−1, αD, and EISGMR in 208Pb on E0

sym,
L, m�

v , Ksym, Qsym, K0, and Q0 within the prior ranges of
these physics quantities as in Table I. In the SHF-RPA cal-
culation based on the KIDS model, we change one quantity at
a time while others are fixed at their default values in Table I.
Results for 208Pb are shown in Fig. 2 while those for 120Sn
are shown in Fig. 3, and the sensitivities for the observables
of interest are similar in the two systems. We note that this

is an illustration of sensitivities free from the experimental
data. �rnp is seen to be most sensitive to L and moderately
sensitive to Ksym. E−1 is seen to be most sensitive to L and
moderately sensitive to E0

sym, m�
v , and Ksym. αD is seen to

be most sensitive L and moderately sensitive to E0
sym and

Ksym. EISGMR is seen to be most sensitive to K0, moderately
sensitive to Q0, and slightly sensitive to Ksym. It is seen that
none of the observables here is sensitive to Qsym, varying
which does not affect much the conclusion in the present
study. Varying other physics variables within their empirical
uncertainty ranges, such as GS , GV , and W0, leads to effects
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FIG. 9. Same as Fig. 7 but under the constraints of the nuclear structure data of 120Sn.

on the nuclear structure observables at most comparable to
that from Qsym. The sensitivity study justifies the validity of
the Bayesian analysis by choosing proper physics variables.
We also note that the apparent sensitivities of observables to
higher-order EOS parameters, such as Ksym and Q0, are due to
their large prior ranges in Table I.

B. Bayesian inference on �rnp

We first apply the constraint of only the neutron-skin thick-
ness �rnp in Table II. As in Ref. [29], we vary m�

v , L, and
E0

sym and investigate their posterior PDFs under the constraint
of �rnp based on the Bayesian analysis. Figure 4 displays the

correlated PDFs between L and E0
sym calculated from Eq. (18)

in different scenarios, while the posterior correlated PDFs
between m�

v and L or E0
sym are trivial, see, e.g., Ref. [29],

where similar results were obtained. Figures 4(a) and 4(b)
for 208Pb and 120Sn, respectively, are based on the standard
SHF model [51]. One sees in Fig. 4(b) that the anticorrela-
tion between L and E0

sym from the �rnp in 120Sn is almost
identical to that in Fig. 1(c) of Ref. [29]. Compared with
the analysis for 120Sn, the �rnp in 208Pb favors a larger L
and with a larger error bar, so the anticorrelation band is
shifted and not so obvious due to the limited prior ranges
of L and E0

sym, as shown in Fig. 4(a). In the KIDS model,
the value of Ksym is decoupled from L and Esym, different
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FIG. 10. (first row) Posterior correlated PDFs between Ksym and m�
v , L, and E 0

sym under the constraints of �rnp, E−1, and αD in 208Pb based
on the standard SHF model. (second row) Same as the first row but based on the KIDS model. (third row) Same as the first row but under the
constraints of the nuclear structure data of 120Sn. (fourth row) Same as the second row but under the constraints of the nuclear structure data
of 120Sn.

from the case in the standard SHF model, and we will vary
it later on. Figures 4(c) and 4(d) display the correlated PDFs
between L and E0

sym with a fixed Ksym = −156 MeV, and
Figs. 4(e) and 4(f) display the similar results but with a fixed
Ksym = 0 MeV. The anticorrelations between L and E0

sym is
no longer seen, i.e., �rnp constrains only L regardless of
E0

sym when Ksym is fixed as an independent variable rather
than coupled to the lower-order parameters. This is different
from the intuitive derivation in the Appendix of Ref. [29],
where the density dependence of the symmetry energy is
parametrized as Esym(ρ) = E0

sym(ρ/ρ0)γ . Since L and Ksym

are now decoupled in the KIDS model, Esym(ρ) can no longer
be parametrized in a density power form with a single γ factor.
It is also seen that the correlated PDFs depend on the value of
Ksym. For the results of 208Pb in all scenarios, the regions of
too large L and too small E0

sym are ruled out by the rigourous
constraint of reproducing the binding energy in the ground
state.

It is not surprising that the posterior PDFs under the con-
straint of �rnp depend on the value of Ksym, since from the
sensitivity study (Figs. 2 and 3) �rnp is moderately sensitive
to Ksym. We thus vary m�

v , L, E0
sym, Ksym, and also Qsym, and
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FIG. 11. Posterior correlated PDFs between Ksym and 3E 0
sym − L

under the constraints of �rnp, E−1, and αD in 208Pb (left) and 120Sn
(right) based on the standard SHF (upper) and KIDS (lower) model.

the posterior correlated PDFs of interest under the constraint
of �rnp from the Bayesian analysis are shown in Fig. 5. One
sees from Figs. 5(a) and 5(b) that the posterior correlated
PDFs between L and E0

sym are now smeared out but can be
basically regarded as superpositions of the correlated PDFs
at different fixed Ksym. Interestingly, although there is no
strong correlation between L and E0

sym, we observe a posi-
tive correlation between L and Ksym, as found in Ref. [30]
based on a different extension of the SHF model. The latter
is completely understandable from the positive (negative) cor-
relation between L (Ksym) and �rnp in Figs. 2 and 3, so both
L and Ksym should increase or decrease to get a similar �rnp.
The latter can be further intuitively understood since both L
and Ksym characterize the density dependence of symmetry
energy so their effects compensate for each other. As shown
in Refs. [26,29], �rnp is dominated by the slope parameter
of the symmetry energy at about 2

3ρ0 based on the standard
SHF model, while such sensitivity needs further investiga-
tions once Ksym becomes a variable independent of L. A
similar slope of the L-Ksym correlation is observed for 208Pb
and 120Sn, although the intercept values are different, due to
overall larger L values favored by the �rnp in 208Pb than in
120Sn. Under the constraint of �rnp, it is seen that an accurate
constraint on L requires the accurate knowledge of Ksym.

Figure 6 compares the posterior PDFs of the slope parame-
ter L of symmetry energy from the four scenarios analyzed in
Figs. 4 and 5. Compared with the correlated PDFs, the PDFs
of L are basically from integrating other variables according
to Eq. (17). It is seen that the results depend on the EDF
as well as the chosen independent variables. From a fixed
Ksym = −156 to 0 MeV, the maximum a posteriori (MAP)
value of L changes from 75 to 97 MeV under the constraint of
�rnp in 208Pb and changes from 43 to 63 MeV under the con-
straint of the �rnp in 120Sn. By incorporating Ksym and Qsym

as independent variables, the posterior PDFs of L become
much broader. However, the resulting PDFs of L are similar to
those from the Bayesian analysis based on the standard SHF

model, where Ksym can be determined by L, E0
sym, and other

quantities. Although we do not show here, we note that none
of the scenarios is able to constrain m�

v , E0
sym, Ksym, and Qsym

from only the constraint of �rnp.
Using the posterior PDFs of the physics quantities, espe-

cially those of L, Ksym, and E0
sym, constrained by the �rnp in

208Pb obtained above, we display in Fig. 7 what we can predict
on �rnp in 120Sn and 48Ca as well as the IVGDR results for
208Pb, where the available experimental data are shown with
vertical bands for comparison. Although the mean value of
�rnp in 208Pb favors a large L [32], its large error bar leads to
a diffusive PDF of L as shown in Fig. 6, giving wide predic-
tions of all observables mentioned above. Generally, there are
overlaps compared with �rnp = 0.150 ± 0.017 fm in 120Sn
from Ref. [29], �rnp = 0.10–0.19 fm in 48Ca estimated from
Ref. [34], E−1 = 13.46 ± 0.10 MeV from Ref. [64], and
αD = 19.6 ± 0.6 fm3 from Refs. [42,65]. With more inde-
pendent variables, especially Ksym, the KIDS model gives
slightly wider predictions than the standard SHF model. We
demonstrate the predictions from the posterior PDFs under the
constraints of more experimental data later.

C. Bayesian inference on �rnp, E−1, and αD

In addition to the neutron-skin thickness data, we now
incorporate the constraint of the IVGDR data, i.e., the centroid
energy E−1 and the electric polarizability αD from the IVGDR
in 208Pb and 120Sn. By varying m�

v , L, and E0
sym, their posterior

correlated PDFs under the constraints of �rnp, E−1, and αD

are compared in Fig. 8 for 208Pb and in Fig. 9 for 120Sn
from the Bayesian analysis, based on the standard SHF model
and the KIDS model with fixed Ksym = −156 and 0 MeV,
respectively. Comparing especially the E0

sym-L correlations in
Figs. 8 and 9 to those in Fig. 4, one sees that the more precise
IVGDR data dominate the results, compared with the �rnp

data with a larger error bar. This can be seen from the positive
correlation between L and Esym under the constraint of the
IVGDR data [48,49] in the standard SHF model, and it can
again be understood from the positive (negative) correlation
between E−1 and E0

sym (E−1 and L) as well as the negative
(positive) correlation between αD and E0

sym (αD and L) in
Figs. 2 and 3. The large L values in the L-m�

v plane are ruled
out, and this is also seen in the E0

sym-L plane as a result of the
limited prior range for E0

sym. Due to the sensitivity of E−1 to
m�

v , m�
v is also constrained. Again, the correlated PDFs in the

L-m�
v planes and in the E0

sym-L plane are also affected by the
fixed value of Ksym, while those in the E0

sym-m�
v plane are not

affected by much. The correlated PDFs from the standard SHF
model, with Ksym dependent on L, E0

sym, and other quantities,
have similar shapes but are more diffusive, compared with
those from the KIDS model for a fixed Ksym.

Under the constraints of both �rnp and IVGDR data, we
have further incorporated the independent variables Ksym and
Qsym based on the KIDS model, and the resulting correlated
PDFs of interest for both 208Pb and 120Sn are shown in the
bottom rows of Figs. 8 and 9, respectively. Again, the cor-
related PDFs in the L-m�

v plane and in the E0
sym-L plane are

basically the superpositions of those at different fixed Ksym,
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FIG. 12. Posterior PDFs of m�
v/m, L, E 0

sym, Ksym, and Kτ under the constraints of �rnp, E−1, and αD in 208Pb (upper) and 120Sn (lower) from
the four scenarios in Figs. 8 and 9.

while those in the E0
sym-m�

v plane are approximately indepen-
dent of Ksym, compared with those in the second and third
rows of Figs. 8 and 9. The correlated PDFs between Ksym

and m�
v , L, and E0

sym from such analyses are displayed in

Fig. 10 for both the standard SHF and KIDS models. For
the standard SHF model, Ksym is not an independent variable
but can be obtained from other parameters through Eq. (4),
so it is understandable that the correlated PDFs are narrow

FIG. 13. (first row) Posterior correlated PDFs between K0 and L, E 0
sym, Ksym, and Kτ under the constraints of �rnp, E−1, αD, and EISGMR in

208Pb based on the standard SHF model. (second row) Same as the first row but based on the KIDS model.

044305-12



BAYESIAN INFERENCE OF FINITE-NUCLEI … PHYSICAL REVIEW C 105, 044305 (2022)

FIG. 14. Same as Fig. 13 but under the constraints of the nuclear structure data of 120Sn.

and sharp. For the KIDS model, we observe similar positive
correlations between L and Ksym as in Fig. 5. This can again be
understood from the sensitivity study shown in Figs. 2 and 3,

where �rnp and αD increase with increasing L but decrease
with increasing Ksym, and E−1 decreases with increasing L
but increases with increasing Ksym. With the same constraints
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FIG. 15. (upper) Posterior PDFs of m�
v/m, L, E 0

sym, Ksym, Kτ , and K0 under the constraints of �rnp, E−1, αD, and EISGMR in 208Pb. (lower)
Same as the upper panels but under the constraints of the nuclear structure data of 120Sn. Results from adjusting different numbers of
independent variables based on the standard SHF model and the KIDS model are compared.
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FIG. 16. Posterior correlated PDFs between K0 and Q0 under the
constraints of �rnp, E−1, αD, and EISGMR in 208Pb (left) and 120Sn
(right) based on the standard SHF (upper) and KIDS (lower) model.

from the �rnp and IVGDR data, the correlated PDFs are much
more constrained in the standard SHF than in the KIDS model,
due to more independent variables and flexibility in the latter
case.

The linear anticorrelation between Ksym and 3E0
sym − L has

been found to be a general one in various EDFs [77]. In the
standard SHF model, it can be attributed to Eq. (4) with a
given α [through Eq. (5)], ρ0, and the nucleon effective masses
(see also Ref. [55]). Under the constraints of �rnp and IVGDR
data for 208Pb and 120Sn, the posterior correlated PDFs be-
tween Ksym and 3E0

sym − L are displayed in Fig. 11 based on
the standard SHF and KIDS model. The white line for the
standard SHF model is from Eq. (4) obtained using default
values of ρ0, E0, K0, m�

s , and the MAP value of m�
v . One sees

that the correlated PDFs are consistent with Eq. (4) within the
restricted range of 3E0

sym − L, while the small deviations are
likely due to the diffusive PDF of m�

v . Interestingly, without
the intrinsic relation as Eq. (4), the KIDS model also gives a
linear anticorrelation between Ksym and 3E0

sym − L under the
constraint of the nuclear structure data, but with the corre-
lated PDFs more diffusive and with a different slope. Some
differences in the correlated PDFs are also observed from the
208Pb and 120Sn data in both standard SHF and KIDS models.
Additional constraints from astrophysical observables would
further reduce the range of Ksym and 3E0

sym − L, as shown in
Ref. [55].

Integrating the other physics variable in the correlated
PDFs leads to the one-dimensional PDFs of m�

v/m, L, E0
sym,

and Ksym shown in Fig. 12 for both 208Pb and 120Sn for the
four scenarios discussed in Figs. 9 and 10, where the PDF of

Kτ = Ksym − 6L − Q0

K0
L (19)

characterizing the isospin-dependence of the incompressibil-
ity of nuclear matter [78] is also displayed. One sees that the
PDFs of m�

v and E0
sym are not much affected by the EDF or the

value of Ksym, and the corresponding PDFs are similar to those
obtained in Ref. [49], while those of L, Ksym, and Kτ can be
different in different scenarios. The data favor a large value of

E0
sym but limited by its prior range 25–35 MeV deduced from

various earlier analyses [79,80]. The L is mostly constrained
within moderate values from the IVGDR data, while the 208Pb
data still lead to a slightly larger L value than 120Sn attributed
to the �rnp data by PREXII. In the KIDS model, although the
combined data of �rnp, E−1, and αD are unable to constrain
Ksym, they help to constrain Kτ , whose PDF is affected by
both L and Ksym. In the standard SHF model, Ksym depends
on L, E0

sym, etc. and can be constrained from the combined
data of �rnp and IVGDR, with the 208Pb (120Sn) data favoring
a larger (smaller) Ksym value. The standard SHF model also
gives much sharper PDFs of L and Kτ as a result of less
independent parameters.

D. Bayesian inference on �rnp, E−1, αD, and EISGMR

We now further incorporate the ISGMR data and add
the incompressibility K0 as an independent variable in the
Bayesian analysis. Since the excitation energy EISGMR of IS-
GMR is rather insensitive to isovector parameters, as shown
in Figs. 2 and 3, the posterior PDFs of isovector parame-
ters as well as their correlations are not much affected. On
the other hand, since both 208Pb and 120Sn are neutron-rich
nuclei, where EISGMR is affected by both K0 and Kτ , one
expects that there are correlations between K0 and isovector
EOS parameters [50], and these correlations hamper us from
constraining accurately K0 from the ISGMR in neutron-rich
nuclei [5]. Figures 13 and 14 display the posterior correlated
PDFs between K0 and L, E0

sym, Ksym, and Kτ under the con-
straints of �rnp, E−1, αD, and EISGMR in 208Pb and 120Sn,
respectively, based on the standard SHF and KIDS model.
In the standard SHF model, we vary m�

v , E0
sym, L, and K0 in

the Bayesian analysis, while in the KIDS model we vary the
additional Ksym and Qsym as independent variables besides m�

v ,
E0

sym, L, and K0. With more independent variables, the PDFs
are generally more diffusive. In addition, although the weak
positive K0-E0

sym correlations are observed in all scenarios,
there are significant differences in the correlated PDFs in the
K0-L plane and in the K0-Ksym plane in different scenarios.
In the standard SHF model, weak positive K0-L and K0-Ksym

correlations are observed for 208Pb, but there are almost no
correlations between K0 and L for 120Sn. The stronger cor-
relation in the 208Pb case is likely due to its larger isospin
asymmetry compared with 120Sn. After incorporating Ksym as
an independent variable, negative K0-L and K0-Ksym correla-
tions are observed for both 208Pb and 120Sn based on the KIDS
model compared with those based on the standard SHF model,
where the value of Ksym depends on L, E0

sym, etc. Interestingly,
despite the different K0-L and K0-Ksym correlations in the
standard SHF and KIDS model, both models give the similar
K0-Kτ correlations, although the correlated PDF based on the
KIDS model is more diffusive compared with that based on
the standard SHF model. The weak negative K0-Kτ correlation
under the constraint of EISGMR is completely understandable,
since both K0 and Kτ contribute positively to EISGMR. We
have not observed nontrivial correlation between K0 and m�

v

or Qsym.

044305-14



BAYESIAN INFERENCE OF FINITE-NUCLEI … PHYSICAL REVIEW C 105, 044305 (2022)

0.0 0.1 0.2 0.3 0.4
0

10

20

30

Δr Canp (fm)Δr Sn
np (fm)

14 16 18
0

1

2

3

predictions from 208Pb data using KIDS,p1-7 SHF,p1-4 experimental data

E Sn
ISGMR (MeV)

13 15 17
0

1

2

3

E Sn
-1 (MeV)

6 8 10 12
0.0

0.5

1.0

1.5

α Sn
D (fm3)

PD
F

(a) (b) (c) (d)

0.0 0.1 0.2 0.3 0.4
0

10

20

30
(e)

0.0 0.1 0.2 0.3 0.4
0

10

20

30

Δr Canp (fm)Δr Pb
np (fm)

12 14 16
0

1

2

3
predictions from 120Sn data using KIDS,p1-7 SHF,p1-4 experimental data

E Pb
ISGMR (MeV)

12 14 16
0

1

2

3

E Pb
-1 (MeV)

16 18 20 22
0.0

0.5

1.0

1.5

α Pb
D (fm3)

PD
F

(f) (g) (h) (i)

0.0 0.1 0.2 0.3 0.4
0

10

20

30
(j)

FIG. 17. (upper) Predictions of �rnp, E−1, αD, and EISGMR in 120Sn and �rnp in 48Ca from the posterior PDFs of seven independent physics
variables in the KIDS model as well as those of four independent physics variables in the standard SHF model constrained by the 208Pb data.
(lower) Predictions of �rnp, E−1, αD, and EISGMR in 208Pb and �rnp in 48Ca from the posterior PDFs of seven independent physics variables
in the KIDS model as well as those of four independent physics variables in the standard SHF model constrained by the 120Sn data. The
corresponding experimental data shown by bands are compared.

The posterior PDFs of m�
v/m, L, E0

sym, Ksym, Kτ , and K0

from integrating the other variable in the correlated PDFs in
Figs. 13 and 14 are displayed in Fig. 15, and results obtained
from the Bayesian analysis based on the standard SHF and
KIDS model and under the constraints of nuclear structure
data of 208Pb and 120Sn are compared. The PDFs of m�

v/m
and E0

sym are similar based on the standard SHF and KIDS
model, while those of L and Ksym as well as the resulting Kτ

depends on the EDF and the chosen independent variables.
The posterior PDFs of these isovector variables, obtained after
the ISGMR data are incorporated, are similar to those without
incorporating the constraint of ISGMR, as shown in Fig. 12.
For the obtained PDF of K0, both the standard SHF and KIDS
model give the overall larger values from the ISGMR data
of 208Pb compared with 120Sn. This is qualitatively consistent
with the soft tin puzzle mentioned in the introduction, while
significant overlaps in the PDFs of K0 obtained for 208Pb and
120Sn are observed, especially based on the KIDS model that
gives a more diffusive PDF.

As shown in Fig. 2, since the EISGMR is also sensitive to the
skewness EOS parameter Q0 of SNM, Q0 should be varied
in the Bayesian analysis based on the KIDS model to get
a more reliable posterior PDF of physics quantities. Again,
incorporating Q0 affects mostly the isoscalar EOS parameters
and the corresponding correlations. Figure 16 displays the
posterior correlated PDFs between K0 and Q0 based on the
nuclear structure data of 208Pb and 120Sn in this most complete
scenario. For the standard SHF model, Q0 is not an inde-
pendent variable but can be obtained from other parameters
through Eq. (3), and such an intrinsic relation before being

confronted with the data is also compared in Fig. 16. One sees
that the correlated PDFs overlap with the curve from Eq. (3)
in a certain range in the standard SHF model, where both Q0

and K0 are significantly constrained mostly from the EISGMR

data. Interesting, without such intrinsic relation as Eq. (3), the
KIDS model gives almost linear positive correlations between
Q0 and K0 under the constraint of EISGMR. This can be un-
derstood from Fig. 2, where EISGMR in both 208Pb and 120Sn
increases with increasing K0 (decreasing Q0). It is interesting
to see that the correlated PDF for 120Sn is shifted slightly to
the lower part but with a similar slope compared with that for
208Pb.

The final posterior PDFs of m�
v/m, L, E0

sym, Ksym, Kτ , and
K0 with seven independent physics variables adjusted within
their prior ranges in Table I based on the KIDS model are
included in Fig. 15 for both 208Pb and 120Sn. Again, the PDFs
of isovector parameters m�

v/m, L, E0
sym, and Ksym are similar to

those without incorporating Q0. Although not shown here, the
nuclear structure data considered here are unable to constrain
Q0, like other higher-order EOS parameters Ksym and Qsym.
On the other hand, incorporating Q0 significantly broadens the
PDF of K0, and the PDF of Kτ is also affected according to
Eq. (19).

A more complete calculation would involve incorporating
at the same time the constraints from both 208Pb and 120Sn.
However, that would be extremely time consuming and not
necessarily more illuminating. One expects that the resulting
PDFs are roughly close to the average of those from the sepa-
rate constraints of 208Pb and 120Sn, depending on the relative
values of σi in the likelihood function [Eq. (16)]. With this
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limitation in mind, in order to show to what extent the soft tin
puzzle and the PREXII puzzle mentioned in the introduction
are resolved, we display in Fig. 17 the predictions of �rnp,
E−1, αD, and EISGMR in 120Sn from the posterior PDFs of
seven independent physics variables in the KIDS model (the
scenario of KIDS, p1−7 in Fig. 15) as well as those of four
independent physics variables in the standard SHF model (the
scenario of SHF, p1−4 in Fig. 15) constrained by the 208Pb
data, and vice versa. Predictions on the �rnp in 48Ca are dis-
played in both cases, and the corresponding experimental data
for all observables shown by bands are compared. One sees
that the posterior PDFs of physics variables from the 208Pb
data predict compatible �rnp in 120Sn, while those from the
120Sn data underpredict the �rnp in 208Pb. The compatibility
in the former case is because the posterior PDFs of isovector
model parameters from the Bayesian analysis are dominated
by the more accurate IVGDR data of 208Pb, which favors a
softer symmetry energy, rather than the less accurate �rnp

data of 208Pb, which favors a stiffer symmetry energy. This
shows the effect of incorporating additional constraints com-
pared with Fig. 7. In addition, the posterior PDFs of physics
variables from the 208Pb data underpredict E−1 in 120Sn, and
those from the 120Sn data overpredict E−1 in 208Pb. In other
cases, there are appreciable overlaps between the predicted
values and the experimental data. The standard SHF model
gives very similar predictions with slightly sharper distribu-
tions for these observables compared with those from the
KIDS model.

IV. CONCLUSIONS

Based on the KIDS model and using the Bayesian ap-
proach, we have obtained the posterior PDFs of physics
quantities of interest under the constraints of the neutron-skin
thickness, the IVGDR, and the ISGMR data. In the Bayesian
analysis, we gradually increase the number of constraints and
independent physics variables to understand where the corre-
lation between physics quantities as well as their PDFs come
from. Results are compared with those obtained based on the
standard SHF model in order to understand the influence of
choosing different independent variables, and those obtained
under the different constraints of nuclear structure data of
208Pb and 120Sn are also compared.

It is seen that incorporating Ksym as an independent variable
can significantly broaden the posterior PDFs of L and Kτ . Ksym

cannot be constrained at all from nuclear data within the KIDS
model, although we should note that it can be constrained
from astronomical observations, which probe higher densi-
ties, with existing data strongly suggesting −200 MeV <

Ksym < 0 [55]. A positive Ksym-L correlation based on the
KIDS model, instead of the negative E0

sym-L correlation ob-
tained based on the standard SHF model, is observed under
the constraint of the neutron-skin thickness. In the isoscalar
channel, a positive K0-Q0 correlation is observed, and incor-
porating Q0 as an independent variable significantly broadens
the PDF of K0 and also affects that of Kτ . In this sense,
although the nuclear structure data studied here are good
probes of L and K0, the large uncertainty ranges of Ksym and
Q0 hamper us from constraining accurately the correspond-

ing lower-order EOS parameters. This is different from the
standard SHF model, where Ksym and Q0 can be well con-
strained by the same nuclear structure data, mainly because
Ksym and Q0 can be generally expressed in terms of lower-
order EOS parameters. Considering the empirical uncertainty
ranges of higher-order EOS parameters, we obtained robust
constraints of L < 90 MeV and K0 < 270 MeV based on the
KIDS model, serving as a baseline to rule out unreasonable
parametrizations.

Finally, we have addressed the PREXII puzzle and the soft
tin puzzle quantitatively by comparing the overlaps of PDFs
of L under different constraints as well as those of K0 and
predictions of observables using posterior PDFs of physics
quantities with the corresponding experimental data. With the
posterior PDFs of physics quantities under the constraints of
the neutron-skin thickness of 208Pb from PREXII only, we
obtain broad predictions and thus significant overlaps with the
data of the neutron-skin thickness of 120Sn and 48Ca as well
as the IVGDR in 208Pb. Using the posterior PDFs of physics
quantities from more complete nuclear structure data of 208Pb
or 120Sn, predictions are mostly compatible with the corre-
sponding experimental data, although there are exceptions.
Predictions from posterior PDFs of physics quantities from
all 208Pb data underestimate the centroid energy of IVGDR
in 120Sn, while predictions from posterior PDFs of physics
quantities from all 120Sn data underestimate the neutron-skin
thickness but overestimate the centroid energy of IVGDR in
208Pb. This shows that the PREXII puzzle remains an issue.
On the other hand, the significant overlaps between the PDFs
of K0 from the ISGMR in 208Pb and 120Sn as well as the
compatibility between predictions and ISGMR data indicate
that one can find a compromise for the soft tin puzzle. The
next challenge would be to make use of the newly revealed
correlations and PDFs in order to explore whether indeed a
KIDS EDF can simultaneously reproduce the seemingly con-
flicting data examined in this work. It will also be interesting
to incorporate both constraints from nuclear structure data and
astrophysical observables in the Bayesian analysis, and thus
further constrain model parameters characterizing the nuclear
matter EOS from low to high densities.
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APPENDIX: RELATION BETWEEN MACROSCOPIC
QUANTITIES AND MODEL PARAMETERS IN KIDS

The binding energy per nucleon in isospin asymmetric
nuclear matter with nucleon density ρ = ρn + ρp and isospin
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asymmetry δ = (ρn − ρp)/ρ can be expressed as

E (ρ, δ) = E (ρ, 0) + Esym(ρ)δ2 + O(δ4), (A1)

where the symmetry energy is defined as

Esym(ρ) = 1

2

[
∂2E (ρ, δ)

∂δ2

]
δ=0

. (A2)

Around the saturation density ρ0, E (ρ, 0) and Esym(ρ) can be
expanded in powers of χ = ρ−ρ0

3ρ0
as

E (ρ, 0) = E (ρ0, 0) + K0

2!
χ2 + Q0

3!
χ3 + O(χ4),

Esym(ρ) = Esym(ρ0) + Lχ + Ksym

2!
χ2 + Qsym

3!
χ3 + O(χ4).

In the above, the linear term in the expansion of E (ρ, 0)
vanishes due to zero pressure of SNM at ρ0. The independent
EOS parameters in the KIDS model are the saturation density
ρ0, the binding energy E0, the incompressibility K0, and the
skewness parameter Q0 of SNM at ρ0, the symmetry energy
E0

sym and its slope parameter L, curvature parameter Ksym,
and skewness parameter Qsym at ρ0, and they are defined
respectively as[

∂E (ρ, 0)

∂ρ

]
ρ=ρ0

= 0, (A3)

E0 ≡ E (ρ0, 0), (A4)

K0 = 9ρ2
0

[
∂2E (ρ, 0)

∂ρ2

]
ρ=ρ0

, (A5)

Q0 = 27ρ3
0

[
∂3E (ρ, 0)

∂ρ3

]
ρ=ρ0

, (A6)

E0
sym ≡ Esym(ρ0), (A7)

L = 3ρ0

[
∂Esym(ρ)

∂ρ

]
ρ=ρ0

, (A8)

Ksym = 9ρ2
0

[
∂2Esym(ρ)

∂ρ2

]
ρ=ρ0

, (A9)

Qsym = 27ρ3
0

[
∂3Esym(ρ)

∂ρ3

]
ρ=ρ0

. (A10)

Higher-order parameters do not vanish, but they are fully
determined by the lower-order parameters through the
KIDS EOS expansion in terms of the cubic root of the
density [52,54].

From the Hartree-Fock method, the effective interaction
[Eq. (1)] leads to the energy per nucleon expressed as

E (ρ, δ) = T (ρ, δ) +
imax∑
i=0

ci(δ)ρ1+i/3, (A11)

where the kinetic energy per nucleon is expressed as

T (ρ, δ) = h̄2

2mρ
hk

(
ρ5/3

n + ρ5/3
p

)
, (A12)

with hk ≡ 5
3 (3π2)2/3 and m being the bare nucleon mass,

and the coefficients in the potential contribution can be
parametrized as

ci(δ) = αi + βiδ
2, (A13)

except for i = 2 for which the corresponding term is related to
the momentum-dependent interaction, and the coefficient can
be written as

c2(δ) = α2 + β2δ
2 + Ceffhk

[(
1 + δ

2

)5/3

+
(

1 − δ

2

)5/3
]

+ Deff hkδ

[(
1 + δ

2

)5/3

−
(

1 − δ

2

)5/3
]
,

where αi, βi, Ceff , and Deff are constant coefficients. From
i = 0 to imax = 3 in the present study, they are related to the
coefficients in the KIDS model by comparing with Eq. (6),
and their relations can be expressed as

t0 = 8
3α0, t3i = 16αi (for i = 1, 2, 3),

y0 = − 1
2 t0 − 4β0, y3i = − 1

2 t3i − 24βi (for i = 1, 2, 3),

and t1, t2, y1, and y2 are related to the nucleon effective mass
and the density-gradient coefficients through

⎛
⎜⎝

t1
y1

t2
y2

⎞
⎟⎠ = 2

3

⎛
⎜⎝

2 0 −8 0
−1 −3 4 12
6 −12 8 −16

−3 15 −4 20

⎞
⎟⎠

⎛
⎜⎝

Ceff

Deff

−GS/2
GV /2

⎞
⎟⎠, (A14)

with GS and GV being respectively the isoscalar and isovector
density gradient coefficients, and

Ceff = h̄2

2mρ0

(
m

m�
s

− 1

)
, (A15)

Deff = h̄2

2mρ0

(
m

m�
s

− m

m�
v

)
, (A16)

where m�
s and m�

v are the isoscalar and isovector nucleon
effective mass, respectively. We note that GS and GV are
trivially related to the coefficients C12 and D12 defined in
other studies [55,57], namely GS = −2C12, GV = 2D12. From
Eq. (A11) the nuclear symmetry energy can be expressed as

Esym(ρ) = σ

(
h̄2

2m
+ Ceffρ

)
hkρ

2/3 + ϕDeffhkρ
5/3

+
imax∑
i=0

βiρ
1+i/3, (A17)
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where σ ≡ 5
9

1
22/3 ≈ 0.35 and ϕ ≡ 5

3
1

22/3 ≈ 1.05 are constants. Finally, the coefficients αi for i = 0–3 can be expressed as
functions of isoscalar EOS parameters through

⎛
⎜⎜⎜⎝

α0ρ0

α1ρ
4/3
0

α2ρ
5/3
0

α3ρ
2
0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

20 −19/3 1 −1/6
−45 15 −5/2 1/2
36 −12 2 −1/2

−10 10/3 −1/2 1/6

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

E0 − (
h̄2

2m + Ceffρ0
)
hk (ρ0/2)2/3

−(
2 h̄2

2m + 5Ceffρ0
)
hk (ρ0/2)2/3

K0 + (
2 h̄2

2m − 10Ceffρ0
)
hk (ρ0/2)2/3

Q0 + (−8 h̄2

2m + 10Ceffρ0
)
hk (ρ0/2)2/3

⎞
⎟⎟⎟⎟⎟⎠, (A18)

and the coefficients βi for i = 0–3 can be expressed as functions of isovector EOS parameters through

⎛
⎜⎜⎜⎝

β0ρ0

β1ρ
4/3
0

β2ρ
5/3
0

β3ρ
2
0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

20 −19/3 1 −1/6
−45 15 −5/2 1/2
36 −12 2 −1/2

−10 10/3 −1/2 1/6

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

E0
sym − [

σ
(

h̄2

2m + Ceffρ0
) + ϕDeffρ0

]
hkρ

2/3
0

L − [
σ
(
2 h̄2

2m + 5Ceffρ0
) + 5ϕDeffρ0

]
hkρ

2/3
0

Ksym + [
σ
(
2 h̄2

2m − 10Ceffρ0
) − 10ϕDeffρ0

]
hkρ

2/3
0

Qsym + [
σ
(−8 h̄2

2m + 10Ceffρ0
) + 10ϕDeffρ0

]
hkρ

2/3
0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A19)
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