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Core structures of vortices in Ginzburg-Landau theory for neutron 3P2 superfluids
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We investigate vortex solutions in the Ginzburg-Landau theory for neutron 3P2 superfluids relevant for neutron
star cores in which neutron pairs possess the total angular momentum J = 2 with spin triplet and P wave, in
the presence of the magnetic field parallel to the angular momentum of vortices. The ground state is known
to be in the uniaxial nematic (UN) phase in the absence of magnetic field, while it is in the D2 (D4) biaxial
nematic (BN) phase in the presence of the magnetic field below (above) the critical value. We find that a
singly quantized vortex always splits into two half-quantized non-Abelian vortices connected by soliton(s) as
a vortex molecule with any strength of the magnetic field. In the UN phase, two half-quantized vortices with
ferromagnetic cores are connected by a linear soliton with the D4 BN order. In the D2 (D4) BN phase, two
half-quantized vortices with cyclic cores are connected by three linear solitons with the D4 (D2) BN order.
The energy of the vortex molecule monotonically increases and the distance between the two half-quantized
vortices decreases with the magnetic field increases, except for a discontinuously increasing jump of the
distance at the critical magnetic field. We also construct an isolated half-quantized non-Abelian vortex in the D4

BN phase.
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I. INTRODUCTION

Pulsars or rapidly rotating neutron stars are dense and
compact stars under extreme conditions, thereby serving as as-
trophysical laboratories for studying nuclear and QCD matter
at high density, with a strong magnetic field and under rapid
rotation [1,2]. The recent progress in astrophysical observa-
tions promote us to study the interiors of neutron stars more
precisely: the observation of massive neutron stars whose
masses are about twice as large as the solar mass [3,4], the
gravitational waves from a binary neutron star merger [5,6],
and the Neutron Star Interior Composition Explorer (NICER)
mission [7,8], expected to reveal interior states of neutron
stars.

The interior of neutron stars is believed to exhibit neutron
superfluidity and proton superconductivity as first predicted
by Migdal [9] (see Refs. [1,10–14] for recent reviews). Such
superfluid and superconducting components can alter low-
energy excitation modes compared with the normal phase,
and thus their existence can affect several processes and
properties of neutron stars, such as neutrino emissivities and
specific heats relevant to the long relaxation time after the sud-
den speed-up events, that is pulsar glitches, of neutron stars
[15–17], and the enhancement of neutrino emission around
the critical point of the superfluid transition [18–23]. The
neutron superfluids are realized by the attraction between two

neutrons in the 1S0 channel at the low density [9]. It was,
however, shown in Ref. [24] that this channel is repulsive at
higher densities as a consequence of the strong short-range
repulsion. Thus, it was proposed that neutron 3P2 superfluids,
in which neutron pairs possess the total angular momentum
J = 2 with spin triplet and P wave, are more relevant at higher
density [25–42]. The 3P2 interaction originates from a strong
spin-orbit force at large scattering energy, and thus the neutron
3P2 superfluids are expected to be realized in the high-density
regions in the inner cores of neutron stars. They also can
survive in neutron stars with strong magnetic fields, such as
magnetars with the magnetic field 1015–1018 G, since they are
tolerant against the strong magnetic field due to the fact that
the aligned pairs of Cooper pairs with the spin-triplet pairing
are not broken by the Zeeman effect. In the S-wave case, it
has also predicted that Cooper pairs can survive at around the
magnetic field 1017 G [43].

In astrophysical observations, the possibility of the ex-
istence of neutron 3P2 superfluids inside neutron stars are
investigated; the rapid cooling of the neutron star in Cas-
siopeia A might be explained by the enhancement of neutrino
emissivities due to the formation and dissociation of neutron
3P2 Cooper pairs [21–23].

On the other hand, as the theoretical aspects are concerned,
neutron 3P2 superfluids have rich topological structures both
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TABLE I. In the absence and presence of the magnetic field
below and above the critical value Bc, (a) phases, (b) unbroken
symmetries, (c) OPMs, (d) the first homotopy groups of the OPMs,
(e) the order inside half-quantized vortex cores, (f) the number of
solitons connecting the two half-quantized vortices, and (g) the order
inside soliton cores are summarized. Here, Q = D∗

2 is a quaternion
group with ∗ implying the universal covering group. �h is a product
defined in Ref. [93], ensuring the existence of isolated half-quantized
non-Abelian vortices. (e), (f), and (g) are new results presented in this
paper.

|B| |B| = 0 0 < |B| < Bc Bc < |B|
(a) Phase UN D2 BN D4 BN
(b) Symmetry O(2) D2 D4

(c) OPM S1×RP2 U (1)× SO(3)
D2

U (1)×SO(3)
D4

(d) π1(OPM) Z ⊕ Z2 Z ⊕ Q Z �h D∗
4

(e) Vortex core order Ferro Cyclic Cyclic
(f) # of solitons 1 3 3
(g) Soliton core order D4 BN D4 BN D2 BN

in bosonic and fermionic excitations. There are basically two
related approaches for theoretical study of superfluids. The
most fundamental theory is the Bogoliubov-de Gennes (BdG)
equation offering a framework to deal with fermion degrees
of freedom. The other is the Ginzburg-Landau (GL) approach
as the low-energy effective theory obtained by integrating
out fermion degrees of freedom, which is an expansion of
both the order parameters and spatial derivatives, and thus is
valid only in the region close to the critical temperature. The
BdG approach was applied to 3P2 superfluids and the phase
diagram in the plane of the temperature and magnetic field
was obtained [44]. Furthermore, 3P2 superfluids were shown
to be topological superfluids of a class DIII in the classifi-
cation of topological insulators and superconductors [45,46],
allowing a topologically protected gapless Majorana fermion
on its boundary [44]. On the other hand, within the GL the-
ory, superfluid states with J = 2 are in general classified into
nematic, cyclic, and ferromagnetic phases etc. [47]. The GL
theory for 3P2 superfluids was obtained [30,31,48–56], and
in the weak coupling limit, the nematic phase was found to
be the ground state of 3P2 superfluids [48–50]. The nematic
phase consists of three subphases with different unbroken
symmetries: uniaxial nematic (UN), D2 biaxial nematic (D2

BN), and D4 biaxial nematic (D4 BN) phases, with unbroken
groups O(2), D2 and D4, respectively, where Dn is a dihedral
group of order n [see Table I(a) and I(b)]. Corresponding
order parameter manifolds (OPMs) are U (1)×SO(3)/O(2) �
S1×RP2, U (1)×SO(3)/D2, and [U (1)×SO(3)]/D4, respec-
tively [see Table I(c)]. These are continuously degenerated
in the absence of magnetic field in the GL expansion up to
the fourth order.1 In the presence of the magnetic field and/or
with the inclusion of the sixth-order term into the GL theory,
the continuous degeneracy is lifted to pick up either UN, D2

1More precisely these are connected by a parameter of continuous
degeneracy called a quasi-Nambu-Goldstone mode [85], and these
OPMs are submanifolds of an extended OPM (S1×S4)/Z2.

BN, or D4 BN state as the ground state for zero magnetic
field, nonzero one below the critical value Bc, and nonzero
one above Bc, respectively [52,54,55] [see Table I(a)]. There
is a subtle problem on the instability of the ground states
for large value of the order parameter, which is cured by the
expansion up to the eighth order [56]. The phase diagram
up to the eighth order captures the essential features of that
determined in the BdG equation [44], including a tricritical
point connecting first- and second-order phase transition lines
between D4 and D2 BN phases [44,57]. Apart from nematic
phases, more general uniform states of 3P2 superfluids were
classified [58], which is also useful to identify local states such
as vortex cores. As a uniform ground state, the ferromagnetic
state is in fact found to appear, beyond the quasiclassical
approximation, in the region close to the critical tempera-
ture [59]. The GL approach is useful to deal with bosonic
collective excitations and topological defects. Bosonic exci-
tations in the 3P2 superfluids yield collective modes [60–72]
relevant, for instance, for cooling process of neutron stars.
Topological defects such as domain walls [73] and the
boundary defect (boojums) of 3P2 superfluids [74] were
investigated.

One of the most salient features of superfluidity is the fact
that circulations of vortices are quantized so that the wave
function is single valued around the vortices (the Feynman-
Onsager’s quantization), yielding the existence of quantized
vortices. When a superfluid is rotating, a vortex lattice is
formed as observed in helium superfluids and ultracold atomic
gasses. In the context of superfluids in neutron stars, the origin
of pulsar glitches was proposed to be explained by sudden
releases of a large number of quantized vortices [75,76]. In the
case of 3P2 superfluids, quantized vortices were investigated
both in the GL theory [30,49,50,52,53,77] (see also Ref. [78]
for coreless vortices), and in the BdG theory [79,80]. The first
homotopy group classifying vortices is given in Ref. [52] [see
Table I(d)]. Singly quantized vortices in 3P2 superfluids were
studied in the GL theory [30,49,50,52,77], and topologically
protected Majorana fermions in the vortex core were found
in the BdG theory [79]. Vortices more peculiar to the 3P2

superfluids are half-quantized non-Abelian vortices, which are
allowed only in the D4 BN phase [53,80]. Their circulations
are a half of the Feynman-Onsager’s quantized circulations,
and the first homotopy group characterizing these vortices
is non-Abelian, thus giving noncommutativity of exchanging
vortices. The existence of half-quantized vortices was pro-
posed to explain a scaling law of pulsar glitches [81]. In
Ref. [80], it was found in the BdG formalism that a singly
quantized vortex is split into two half-quantized non-Abelian
vortices. It was also found that a Majorna fermion zero mode
is trapped in each half-quantized vortex.

Apart from 3P2 superfluids, spin-2 spinor ultracold atomic
Bose-Einstein condensates (BECs) are also J = 2 con-
densates whose ground states are possibly nematic phase
[58,82–86] sharing almost the same bosonic properties with
3P2 superfluids, thus admitting the same order parameter
manifold and non-Abelian half-quantized vortices [85,86].
Therefore, studying bosonic properties of 3P2 superfluids is
also applicable to spin-2 BECs, which can be experimentally
testable in principle, although the current experiments of 87Rb
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atoms imply their ground state to be in the cyclic or nematic
phase [87–92].

In this paper, we investigate vortex solutions, namely
singly quantized vortices and half-quantized non-Abelian vor-
tices, in neutron 3P2 superfluids within the GL approach. The
orientation of the magnetic field is fixed to be parallel to
the angular momentum of vortices. In the previous studies of
vortices in the GL theory, an axial symmetry around the vortex
axis was assumed [30,49,50,52,53,77]. In contrast, imposing
no axial symmetry, we find that a singly quantized vortex
always splits into two half-quantized non-Abelian vortices
with any strength of the magnetic field. An advantage to use
the GL theory compared with the BdG equation employed in
Ref. [79] is that we do not have to consider the direction of
splitting a priori. In the UN phase with the zero magnetic field,
cores of two half-quantized vortices are found to be filled with
the ferromagnetic states, while they are filled with the cyclic
states in the D2 and D4 BN phases in the presence of the mag-
netic field, as summarized in Table I(e). In the UN phase, the
two half-quantized vortices are connected by a single soliton
of the D4 BN order while they are connected by three linear
solitons with the D4 (D2) BN order in the D2 (D4) BN phase,
as summarized in Table I(f) and I(g). The appearance of the D4

BN order around the vortex core in the UN and D2 BN phases
is a consequence of the fact that isolated half-quantized vor-
tices can topologically exist only in the D4 BN state. We also
show that the energy of the vortex molecule monotonically
increases as the magnetic field increases, which is continuous
everywhere including the critical magnetic field separating D2

and D4 BN states. On the other hand, the distance between
the two half-quantized vortices decreases with the magnetic
field increases, except for a discontinuously increasing jump
at the critical magnetic field. We also construct an isolated
half-quantized non-Abelian vortex in the D4 BN phase above
the critical magnetic field.

A molecule of half-quantized vortices connected by a soli-
ton or domain wall can be found in various systems such
as multicomponent or multigap superconductors [94–106],
coherently coupled multicomponent BECs [107–122], dense
QCD of quark matter [123], and the two-Higgs doublet model
[124] as a model beyond the standard model of elementary
particles. Compared with these systems, the unique feature of
3P2 superfluids is that constituent half-quantized vortices are
non-Abelian vortices, that is, characterized by a non-Abelian
first homotopy group.

This paper is organized as follows. In Sec. II, we begin
with formulations of 3P2 superfluids within the GL approach
in our notation. Section III shows our numerical results for
vortex states in the 3P2 superfluids. Section IV is devoted to a
summary and discussion.

II. GINZBURG-LANDAU FREE ENERGY
FOR 3P2 NEUTRON SUPERFLUIDS

We start from a brief review of the GL theory for 3P2

superfluids [56] reformulated in the notation of Ref. [58]. The
effective GL Lagrangian density f is given by

f = K0
(

f (0)
202 + f (1)

202

) + α f002 + β0 f004 + γ0 f006

+ δ0 f008 + β2 f022 + γ2 f024 +
∑

4l+2m+n=10

O(∇l |B|mAn),

(1)

where flmn is the free energy part including l spatial deriva-
tives ∇, mth order of the magnetic field B, and nth order of
spin-2 spinor order parameter ψ = (ψ2, ψ1, ψ0, ψ−1, ψ−2)T .
The spatial derivative term f202 is further separated
into current-spin-independent and -dependent parts
f (0)
202 and f (1)

202, respectively. Their specific forms can be
written as

f (0)
202 = 3 j† · j,

f (1)
202 = 4 j† · j − i

2
j† · Ŝ × j − ( j† · Ŝ)(Ŝ · j),

f002 = 3ρ,

f004 = 6ρ2 + 3

4
S2 − 3

2
|	20|2,

f006 = −324ρ3 − 81ρS2 + 162ρ|	20|2 + 15|	30|2 − 27|
30|2,
f008 = 6480ρ4 + 1944ρ2S2 − 5184ρ2|	20|2 − 864ρ|	30|2 + 2592ρ|
30|2 + 81S4 + 648|	20|4 − 1296�4

f022 = 2ρB2 − 1

2
ψ†ŜBŜBψ,

f024 =
(

−106ρ2 + 9

2
S2 + 31|	20|2

)
B2 +

(
22ρψ†ŜBŜBψ + Re

[
	∗

20ψ
T ŜT

B T̂ ŜBψ
] + 5

4
	

†
22ŜBŜB	22 + 1

2

T

22ŜT
B T̂ ŜB
22

)
,

(2)

where Ŝi (i = x, y, z) are 5×5 spin-2 matrices, T̂ is the time-
reversal operator defined by (T̂ ψ )m ≡ (−1)mψ−m, and ŜB ≡

Ŝ · B. The ψ-dependent terms j, ρ, S, 	20, 	30, 
30, �4 are
defined by
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j = −i∇ψ, ρ = ψ†ψ, S = ψ†Ŝψ,

	20 = ψT T̂ ψ =
√

5
2∑

m1,m2=−2

C00
2m1,2m2

ψm1ψm2 ,

	30 = −
√

35

2

4∑
J=0

J∑
M=−J

2∑
m1,m2,m3=−2

×C00
JM,2m3

CJM
2m1,2m2

ψm1ψm2ψm3 , (3)


30 = −
√

35

2

4∑
J=0

J∑
M=−J

2∑
m1,m2,m3=−2

×C00
JM,2m3

CJM
2m1,2m2

ψm1ψm2ϕ
∗
m3

,

�4 = Re
[
	20


∗2
30

]
.

The GL coefficients can be obtained in the weak coupling
limit within the quasiclassical approximation starting from the
nonrelativistic spin-1/2 fermion field theory as [56]

K0 = 7ζ (3)N (0)p4
F

240π2m2
nT 2

, α = N (0)p2
F

3
log

T

Tc
,

β0 = 7ζ (3)N (0)p4
F

60π2T 2
, γ0 = 31ζ (5)N (0)p6

F

13440π4T 4
,

δ0 = 127ζ (7)N (0)p8
F

387072π6T 6
, β2 = 7ζ (3)N (0)p2

Fγ
2
n

48(1 + F a
0 )2π2T 2

,

γ2 = 31ζ (5)N (0)p4
Fγ

2
n

3840(1 + F a
0 )2π4T 4

,

(4)

with the temperature T , the critical temperature Tc, the neu-
tron mass mn, the neutron gyromagnetic ratio γn, the Fermi
momentum pF, the state-number density N (0) = mn pF/(2π )2

at the Fermi surface, and the Landau parameter F a
0 .

The spin-2 spinor order parameter is often written by the
3×3 traceless symmetric matrix A given by

[A]11 =
√

3

2
(ψ2 + ψ−2) − 1√

2
ψ0,

[A]12 = [A]21 =
√

3i

2
(ψ2 − ψ−2),

[A]13 = [A]31 = −
√

3

2
(ψ1 − ψ−1),

[A]22 = −
√

3

2
(ψ2 + ψ−2) − 1√

2
ψ0,

[A]23 = [A]32 = −
√

3i

2
(ψ1 + ψ−1),

[A]33 =
√

2ψ0.

(5)

All candidates for uniform ground states were classified
in Ref. [58], and characterized by U (1)×SO(3) invariants S2,
|	20|2, and |	30|2. The five characteristic symmetric states are
ferromagnetic (S2/ρ2 = 4ρ2, |	20|2 = |	30|2 = 0), uniaxial
nematic (UN) (S2 = 0, |	20|2 = ρ2, |	30|2 = ρ3), D4 biax-
ial nematic (BN) (S2 = 0, |	20|2 = ρ2, |	30|2 = 0), D2 BN

(S2 = 0, |	20|2 = ρ2, 0 < |	30|2 < ρ3), and cyclic (S2 = 0,
|	20|2 = 0, |	30|2 = 2ρ3) states.

For the effective Lagrangian density f in Eq. (1), the UN,
D2 BN, and D4 BN states are predicted to be realized at
|B| = 0, 0 < |B| < Bc, and |B > Bc, in 3P2 superfluids [44] as
shown in Table I(a). The critical magnetic field Bc separating
the D2 BN and D4 BN states depends on the temperature and
takes the maximum value Bc = 7.06×10−2π (1 + F a

0 )Tc/γn at
T � 0.854Tc. With an estimation for the critical temperature
Tc ≈ 0.2 MeV and the Landau parameter F a

0 ≈ 1, this critical
magnetic field can be estimated as Bc ≈ 7.36×1015 G. At
T � 0.796Tc, we obtain Bc = 0.

III. VORTEX SOLUTIONS

A. Ansatz

Next, we consider vortex solutions with vortex cores
placed at r = 0 in the cylindrical coordinate (r, θ, z) and the
boundary ψ |r→∞ far from vortex cores. The vortices and
the angular momentum are parallel to the z axis. For the
so-called integer vortices, the order parameters behave as
ψ−2�m�2|r→∞ ∝ eiθ around which the overall phase of ψ

winds by 2π . In this section, we determine the boundary
conditions around the vortices for the cases of B = 0 and
B �= 0,

For B = 0, the uniform ground state is degenerate within
the possible UN state

ψ̃±2 = ei(φ∓2a)
√

3 sin2 b

2
√

2
, ψ̃±1 = ∓ei(φ∓a) sin(2b)

2
√

2
,

ψ̃0 = eiφ{1 + 3 cos(2b)}
4

, (6)

or

Ã = 1√
2

Ra
z Rb

y

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠R−b

y R−a
z ,

Rb
y ≡

⎛
⎝ cos b 0 sin b

0 1 0
− sin b 0 cos b

⎞
⎠, (7)

Ra
z ≡

⎛
⎝cos a − sin a 0

sin a cos a 0
0 0 1

⎞
⎠,

for 0 � a, 2b, φ � 2π . Here ψ̃ is defined as ψ̃ ≡ ψ/
√

ρ, and
Ã is defined by replacing A and ψ with Ã and ψ̃ , respectively,
in Eq. (5). a, b, and φ represent overall spin rotations along
z axis and y axis, and overall phase shift, respectively. Under
the spatial phase gradient eiθ for the vortex solution, however,
the current-spin-dependent free energy density f (2)

202 in Eq. (1)
favors b = 0, giving

ψ̃
r→∞−−−→ (0, 0, eiθ , 0, 0)T , (8)

or

Ã
r→∞−−−→ eiθ

√
2

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠, (9)
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We next consider the case of |B| > 0. In this paper, the
simplest situation B ‖ z is considered, i.e., the magnetic field
is parallel to the angular momentum for the vortex. For 0 <

|B| < Bc, field-dependent free energy density β2 f022 + γ2 f024

favors ψ±2, leading

ψ̃
r→∞−−−→ eiθ

(
e−2ia sin g√

2
, 0, cos g, 0,

e2ia sin g√
2

)T

, (10)

or

Ã
r→∞−−−→

√
2eiθ Ra

z

⎛
⎝sin g− 0 0

0 − sin g+ 0
0 0 cos g

⎞
⎠R−a

z ,

g± ≡ g ± π

6
,

(11)

where g depends on |B| and satisfies π/3 < g < π/2, making
ψ |r→∞ to be the D2 BN state. a also represents the overall
spin rotation along z axis as well as that in Eq. (6). Without
current-spin-dependent free energy f (1)

202, a takes the arbitrary
value, but is fixed with the finite f (1)

202 to minimize this. In the
limit of |B| ↘ 0, g becomes g → π/3 giving

ψ̃
r→∞−−−→ eiθ

(
e−2ia

√
3

2
√

2
, 0,

1

2
, 0,

e2ia
√

3

2
√

2

)T

, (12)

or

Ã
r→∞−−−→ eiθ

√
2

Ra
z

⎛
⎝1 0 0

0 −2 0
0 0 1

⎞
⎠R−a

z . (13)

This solution belongs to the uniaxial nematic state in Eq. (6)
with b = π/2, but is different from that for B = 0 shown in
Eq. (8), which leads the discontinuity between B = 0 and
|B| ↘ 0.

In the limit of |B| ↗ Bc, g becomes g → π/2, giving

ψ̃
r→∞−−−→ eiθ

(
e−2ia

√
2

, 0, 0, 0,
e2ia

√
2

)T

, (14)

or

Ã
r→∞−−−→

√
3

2
eiθ Ra

z

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠R−a

z . (15)

which belongs to the D4 BN state. For |B| � Bc, the vortex
state is the same as that in Eq. (14) that belongs to D4 BN
state.

For the half-quantized vortex, the overall phase of ψ winds
by π . To keep the single-valued property of the order parame-
ter, the spin also rotates. Only the D4 BN state under |B| > Bc

enables the half-quantized vortex with the order parameter
giving

ψ̃
r→∞−−−→

(
e−2ia

√
2

, 0, 0, 0,
ei(θ+2a)

√
2

)T

, (16)

or

Ã
r→∞−−−→

√
3

2
√

2
Ra

z

⎛
⎝ θ+ iθ− 0

iθ− −θ+ 0
0 0 0

⎞
⎠R−a

z ,

θ± ≡ eiθ ± 1

(17)

in the case of B ‖ z. For the vortex solution (16), the z compo-
nent of the spin rotates by π/2 around the vortex. The other
solution with the spin rotation by −π/2 is

ψ̃
r→∞−−−→

(
ei(θ−2a)

√
2

, 0, 0, 0,
e2ia

√
2

)T

, (18)

or

Ã
r→∞−−−→

√
3

2
√

2
Ra

z

⎛
⎝ θ+ −iθ− 0

−iθ− −θ+ 0
0 0 0

⎞
⎠R−a

z . (19)

B. Numerical results

In this section, we show the numerical results for the over-
all vortex state by minimizing the free energy f under the
boundary condition

ψm(θ + π/2) = iψm(θ ), (20)

or

[A]i j (θ + π/2) = i[A]i j (θ ), (21)

at the boundary r = L/2, which induces the integer vortex
solution. The minimization of the free energy density f can
be done by finding the solution of the stationary solution of
the GL equation

δ f

δψ∗
m

= 0. (22)

The solution of Eq. (22) can be obtained by introducing the
relaxation time t and the dependence of the order parameter
ψm on t , and solving

ψ̇m = − δ f

δψ∗
m

. (23)

After the long time evolution of Eq. (23), we attain the so-
lution of Eq. (22). With an appropriate scaling of the time t ,
Eq. (23) is nothing but the time-dependent GL equation that is
often used in the research field of superconductivity. However,
it has not yet derived from the microscopic theory for the 3P2

superfluids.
Here, L is the system size fixed to be L =

128pF/[π2N (0)T 2
c ]. The temperature is fixed to be

T = 0.854Tc ≈ 0.171 MeV for which Bc takes the maximal
value Bc = 7.06×10−2π (1 + F a

0 )Tc/γn ≈ 7.36×1015 G with
the critical temperature Tc ≈ 0.2 MeV and Landau parameter
F a

0 ≈ 1. The magnetic field B(‖ z) changes from 0 to 1.5Bc.

1. Vortex state with ferromagnetic core in the UN phase

We start from the case of the UN phase at zero magnetic
field. Figure 1 shows the squared modulus |ψm|2, argument
Arg[ψm] of the order parameter, U (1)×SO(3) invariants S2,
|	20|2, and |	30|2, and the free energy density f at the
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FIG. 1. The vortex state in the UN phase at the zero magnetic field B = 0. The squared modulus |ψm|2 (top row), argument Arg[ψm]
(middle row) of the order parameter, the U (1)×SO(3) invariants S2, |	20|2, and |	30|2, and the free energy density f (bottom row) are shown.
The radius of the figure shown here is 64pF/(πmnTc ) ≈ 1.33×104 fm. The two half-quantized vortices are connected by a single line soliton
of the D4 BN order.

zero magnetic field B = 0. The radius of circles in figures is
fixed to be 64h̄2kF/(πM∗

n Tc) ≈ 1.33×104 fm. Where kF =
(3π2n)1/3 ≈ 2.20 fm−1 is the neutron Fermi wave number
with the neutron number density n ≈ 2.25n0 ≈ 0.36 fm−3 for
the saturation density n0 ≈ 0.16 fm−3 of nuclear matter. M∗

n
is the effective neutron mass M∗

n c2 ≈ 0.7Mnc2 ≈ 658 MeV
for the neutron vacuum mass Mnc2 ≈ 940 MeV. The critical
temperature is set to be Tc ≈ 0.2 MeV. The order parameter ψ

satisfies Eq. (8) near the edge of the system, where the state
belongs to the uniaxial nematic state S2 = 0, |	20|2/ρ2 =
|ψ30|2/ρ3 = 1. At the center of the system, there are two
holes of |	20|2 implying the breakdown of the UN order.
These two holes correspond to the vortex cores and each
of them carries half-circulations. This result clearly shows
that a singly quantized vortex splits into two half-quantized
non-Abelian vortices around the vortex core. The fact that
isolated half-quantized vortices can topologically exist only
in the D4 BN state implies that the D4 BN order should
appear around the vortex core. In fact, we can confirm that
the D4 BN order characterized by S2 = 0, |	20|2/ρ2 = 1,
and |	30|2/ρ3 = 0 appears along a line structure bridging
two vortex cores, as can be seen in the plot of |	30|2 lo-
cally inducing the D4 BN order and half-quantized vortices.
On the other hand, at the vortex cores, the U (1)×SO(3)
invariants are S2/ρ2 � 4 and |	20|2/ρ2 = |ψ30|2/ρ3 = 0, im-
plying the appearance of the ferromagnetic order. Therefore,
we characterize this vortex by the ferromagnetic core. In
this phase, there is also a metastable vortex molecule state

with the cyclic cores similar to the D2 phase discussed
below.

2. Vortex state with the cyclic core in the D2 BN phase

At |B| = 0.5Bc as shown in Fig. 2, the order parameter
drastically changes from that in Eq. (8) to that in Eq. (10)
where ψ±2 become finite at r → ∞. As well as the case
for B = 0, a singly quantized vortex splits into two half-
quantized vortices with two holes of |	20|2. In contrast to
the vortex molecule in the UN phase, there are three soliton
lines of D4 BN order with |	30|2/ρ3 = 0 bridging two half-
quantized vortices. At the vortex cores, we have S2/ρ2 � 0
and |ψ30|2/ρ3 � 2 supporting the cyclic order. We charac-
terize this vortex by the cyclic core. With turning off the
magnetic field, it becomes a metastable state with higher
energy than the lowest-energy state of the vortex molecule
discussed in Sec. III B 1.

3. Vortex state with the cyclic core in the D4 BN phase

At |B| > Bc, the order parameter in the bulk becomes the
D4 BN state shown in Eq. (14) at r → ∞. Figure 3 shows
the SO(3) invariants and the free energy density at the mag-
netic field |B| = 1.3Bc. Although one half-quantized vortex
is topologically stable in this state, two half-quantized vor-
tices form a bound state to be an integer vortex. The cores
of half-quantized vortices are filled with the cyclic order
having S2/ρ2 � 0 and |ψ30|2/ρ3 � 2 as well as the case of
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FIG. 2. The vortex state in the D2 BN phase at the magnetic field B = 0.5Bcẑ. The squared modulus |ψm|2 (top row), argument Arg[ψm]
(middle row) of the order parameter, the U (1)×SO(3) invariants S2, |	20|2, and |	30|2, and the free energy density f (bottom row) are shown.
The radius of the figure shown here is 64pF/(πmnTc ) ≈ 1.33×104 fm. The two half-quantized vortices are connected by three line solitons
with the D4 BN order in their cores.

FIG. 3. The vortex state in the D4 BN phase at the magnetic field B = 1.3Bcẑ. Squared modulus |ψm|2 (top row), argument Arg[ψm]
(middle row) of the order parameter, the U (1)×SO(3) invariants S2, |	20|2, and |	30|2, and the free energy density f are shown. The radius
of the figure shown here is 64pF/(πmnTc ) ≈ 1.33×104 fm. The two half-quantized vortices are connected by three line solitons of the D2 BN
order in their cores.
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FIG. 4. The vortex state at the boundary between the D2 BN and D4 BN phases at the magnetic field B = Bcẑ. The squared modulus |ψm|2
(top row), argument Arg[ψm] (middle row) of the order parameter, the U (1)×SO(3) invariants S2, |	20|2, and |	30|2, and the free energy
density f are shown. The radius of the figure shown here is 64pF/(πmnTc ) ≈ 1.33×104 fm. The two half-quantized non-Abelian vortices are
connected by three line solitons asymmetrically.

the D2 BN phase (0 < |B| < Bc). In contrast to the case of
the D2 BN phase, the three line solitons bridging two half-
quantized vortices are characterized by the D2 BN order with
0 < |	30|2/ρ3 < 1.

Our results suggest that the order of three line solitons
connecting the two half-quantized vortices are exchanged
between D2 and D4 BN orders for |B| < Bc and |B| > Bc,
respectively. Another characteristic feature of the case of
|B| > Bc is a fact that ψ±1 components completely vanish.

4. Vortex state at the boundary between the D2 and D4 BN phases

Figure 4 shows the vortex state at the critical magnetic
field |B| = Bc. Especially, we can see the asymmetric shape
of |	30|2/ρ3 as an intermediate state between those below
and above the critical magnetic field Bc, in which two D4

and D2 BN orders compete as candidates of the line solitons
connecting the two half-quantized vortices. This asymmetric
structure of the vortex core soon vanishes as the magnetic field
B becomes away from the critical magnetic field Bc. In our
case, the vortex core becomes symmetric at |B| = 0.9Bc and
|B| = 1.1Bc.

5. Energetics and distance between half-quantized vortices

Figure 5(a) shows the free energy F = ∫
drdθ r f as a

function of the magnetic field |B|. The free energy F mono-
tonically increases with magnetic field, and it is continuous
when the magnetic field across the critical one Bc. At the

zero magnetic field B = 0, the vortex solution with ferromag-
netic cores with the boundary condition in Eq. (8) has the
lower free energy F than that with the cyclic cores and the
boundary shown in Eq. (10), and discontinuously connects at
B = 0. However, a vortex solution with cyclic cores with the
boundary in Eq. (10) can also exist as the metastable solution,
continuously connecting to the solutions in the D2 BN phase
|B| > 0.

Figure 5(b) shows the distance � between two half-
quantized vortices as a function of the magnetic field |B|.
� monotonically decreases with the magnetic field |B|, dis-
continuously increases at |B| = Bc, and again monotonically
decreases for |B| > Bc. At the zero magnetic field B = 0, the
half-quantized vortices having the ferromagnetic cores have
smaller � than that for those having the cyclic cores.

FIG. 5. (a) Free energy F and (b) distance � between two half-
quantized non-Abelian vortices as a function of the magnetic field
|B|.
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FIG. 6. A single isolated half-quantized non-Abelian vortex in the D4 BN phase at the magnetic field B = 1.3Bcẑ. The squared modulus
|ψm|2 (top row), argument Arg[ψm] (middle row) of the order parameter, the U (1)×SO(3) invariants S2, |	20|2, and |	30|2, and the free energy
density f are shown. The radius of the figure shown here is 64pF/(πmnTc ) ≈ 1.33×104 fm.

6. Isolated half-quantized vortices in the D4 BN phase

Finally, we also obtain the solution for a single half-
quantized vortex at |B| > Bc. We put the boundary condition
as

ψ2(θ + π/2) = iψ2(θ ),

ψ1,0,−1 = 0,

ψ−2(θ + π ) = ψ−2(θ ),

(24)

or

[A]11(θ + π/2) = −[A]22(θ + π/2)

= eiπ/4

√
2

{[A]11(θ ) − [A]12(θ )},

[A]12(θ + π/2) = [A]21(θ + π/2)

= eiπ/4

√
2

{[A]11(θ ) + [A]12(θ )},

[A]13 = [A]23 = [A]31 = [A]32 = [A]33 = 0 (25)

at the boundary which induces half-quantized vortex solu-
tions. Figure 6 shows a single half-quantized vortex state at
|B| = 1.3Bc. The system has a threefold rotational symmetry
around the vortex core, which can be seen in |ψ−1|2, |ψ0|2,
and |	30|2. The existence of the threefold symmetry in |	30|2
is closely related to the existence of the three soliton lines
between two half-quantized vortices for the vortex shown in
Fig. 3. Such a threefold symmetry at the vortex core has been
also observed in ultracold spin-2 atomic BECs [125].

One of the main differences of the isolated half-quantized
vortex in Fig. 6 from the constituent one in the molecule in
Fig. 3 is that the vortex core in Fig. 6 is filled with the state
having S2/ρ2 > 0 and |	30|2/ρ3 > 0, which corresponds to
the mixed state [58] being intermediate state between the
ferromagnetic and cyclic states. Another difference is that ψ±1

takes finite values near the vortex core.

IV. SUMMARY AND DISCUSSION

In this paper, we have presented vortex solutions, that
is, singly quantized vortices and half-quantized non-Abelian
vortices, in the neutron 3P2 superfluids in the case that the
external magnetic field is parallel to the angular momentum
of the vortices. We have found that a singly quantized vortex
splits into two half-quantized non-Abelian vortices connected
by soliton(s) forming a vortex molecule, at any strength of the
magnetic field. The main results are summarized in Table I. In
the absence of the magnetic field in which the UN state is the
bulk ground state, the cores of the half-quantized vortices are
filled with the ferromagnetic states, and a single linear soliton
with the D4 BN state connects the two half-quantized vortices,
as shown in Fig. 1. At the finite magnetic field below the criti-
cal one separating D2 and D4 BN states, the bulk ground state
is the D2 BN state. In this case, the cores of the half-quantized
vortices are filled with the cyclic state and are connected by
three line solitons composed of the D4 BN order, as shown
in Fig. 2. Above the critical magnetic field for which the
bulk ground state is the D4 BN state, a single half-quantized
vortex is topologically allowed stably, as constructed in Fig. 6.
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Nevertheless, two half-quantized vortices are confined with
three line solitons composed of D2 BN order, still forming a
vortex molecule as shown in Fig. 3. At the critical magnetic
field, the vortex core becomes asymmetric as in Fig. 4, as an
intermediate state between the two kinds of molecules of two
half-quantized vortices connected by the three D4 BN solitons
and those connected by the three D2 BN solitons. We have also
found that the energy of the vortex molecule monotonically
increases as the magnetic field increases, which is continu-
ous including the critical magnetic field as in Fig. 5(a). The
distance between the two half-quantized vortices decreases as
the magnetic field increases, except for a discontinuous jump
with an increase at the critical magnetic field in Fig. 5(b).

Except for the case of the zero magnetic field, vortex cores
are always filled with the cyclic state, which also appears even
at the zero magnetic field as a metastable state as in Fig. 5(a).
Our results contradict with the BdG approach [79,80,126] in
which vortex cores are filled with the mixed state for |B| < Bc

[126] without ψ±1 components and completely separated as
two isolated half-quantized vortices without linear soliton [80]
for |B| > Bc. A main possible reason for this contradiction
comes from the difference of the GL and BdG approaches.
The latter approach has an advantage in describing the mi-
croscopic structure such as vortex cores and fermion degrees
of freedom, and the cyclic state inside cores that we have
obtained could be an artifact of the low-energy theory. We
should study this point in more detail with, for example, a
GL expansion to higher order. Another minor possible reason
is the difference of treatments of the boundary condition and
positions of half-quantized vortices. In the previous study, the
boundary is fixed with the bulk integer vortex state [Eqs. (10)
and (14)]. The positions of the half-quantized vortices are
also fixed and treated as a differential parameter. On the
other hand, neither boundary state determined in the boundary
condition (20) nor the positions of half-quantized vortices are
fixed and automatically determined to minimize the whole
free energy density in our study. This subtle difference may
affect the difference of the vortex-core states.

Here we address further discussions for future studies. We
here have studied only the case for the magnetic field parallel
to the angular momentum (the direction of vortices). We will
report the case for an arbitrary angle between them elsewhere,
which should be important for study of neutron stars in more
general situations.

Further studies should be done for multiple vortex states
such as a vortex lattice under rapid rotation relevant for
neutron star interiors. In particular, it is important to study
whether, in a vortex lattice, constituent half-quantized vortices
are still tightly bound as a singly quantized vortex as found in

this paper or they are separated by distances of the same order
as two-component BECs [108,109,114] and whether a lattice
is triangular or square.

Another important subject is a collision dynamics of vor-
tices in three spatial dimensions. It is important whether two
vortices reconnect in collision or a formation of a rung be-
tween them occurs as the case of non-Abelian vortices in the
cyclic phase of spin-2 spinor BECs [127]. The presence or
absence of such a vortex reconnection is crucial for states
of the quantum turbulence. With this regards, vortex recon-
nection was reported in the nematic phase of a spin-2 BEC
[86], a superfluid similar to 3P2 superfluids. Collision of two
vortex molecules may be accompanied by swapping partners
as found in vortex molecules in two-component BECs [120].

The coexistence of 1S0 and 3P2 superfluids drastically
changes the phase diagram [128], and vortex states in this
case will be also one direction to be explored. In this case,
vortices having winding only in either of 1S0 and 3P2 conden-
sates would be further fractionalized. In addition, vortex states
in the ferromagnetic phase appearing without quasiclassical
approximation in the region close to the critical temperature
[59] are also interesting to be investigated.

Recently, it has been proposed that in the deep inside
of neutron star cores, the quark-hadron continuity for two-
flavor quarks holds; the 3P2 superfluid (nuclear matter) is
continuously connected through crossover to a two-flavor
quark matter called the 2SC+dd phase [129]; in addition to
the conventional 2SC phase, a P-wave condensation 〈d∇d〉
is suggested. Vortex structures in the 2SC+dd phase were
studied in Refs. [130–132] in which an exotic vortex called
a non-Abelian Alice string was found. In particular, in
Ref. [131], how vortices in nuclear and quark matter should be
connected along the crossover. It will be interesting whether
core structures found in this paper are preserved or deformed
along this connection. Finally, a novel type of the Berezinskii-
Kosterlitz-Thouless (BKT) transition of vortex molecules in
two-component systems was reported in Ref. [121], and thus
the BKT transition should be investigated in neutron 3P2 su-
perfluids.
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