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Properties of the neutron star crust: Quantifying and correlating uncertainties
with improved nuclear physics
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A compressible liquid-drop model (CLDM) is used to correlate uncertainties associated with the properties
of the neutron star (NS) crust with theoretical estimates of the uncertainties associated with the equation of
state (EOS) of homogeneous neutron and nuclear matter. For the latter, we employ recent calculations based
on Hamiltonians constructed using chiral effective-field theory (χEFT). Fits to experimental nuclear masses are
employed to constrain the CLDM further, and we find that they disfavor some of the χEFT Hamiltonians. The
CLDM allows us to study the complex interplay between bulk, surface, curvature, and Coulomb contributions,
and their impact on the NS crust. It also reveals how the curvature energy alters the correlation between the
surface energy and the bulk symmetry energy. Our analysis quantifies how the uncertainties associated with
the EOS of homogeneous matter implies significant uncertainties for the composition of the crust, its proton
fraction, and the volume fraction occupied by nuclei. We find that the finite-size effects impact the crust
composition but have a negligible effect on the net isospin asymmetry of matter. The isospin asymmetry is
largely determined by the bulk properties and the isospin dependence of the surface energy. The most significant
uncertainties associated with matter properties in the densest regions of the crust, the precise location of the
crust-core transition, are found to be strongly correlated with uncertainties associated with the Hamiltonians. By
adopting a unified model to describe the crust and the core of NSs, we tighten the correlation between their global
properties such as their mass-radius relationship, moment of inertia, crust thickness, and tidal deformability with
uncertainties associated with the nuclear Hamiltonians.
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I. INTRODUCTION

The understanding of neutron star (NS) properties from
fundamental nuclear physics inputs requires the precise deter-
mination of the relation between nuclear physics uncertainties
and dense matter predictions. This became possible recently
due to advances in theoretical efforts to predict properties
of nuclei and dense nuclear matter, and advances in experi-
mental nuclear physics that are now providing more stringent
constraints. In addition, recent observations of NS radii by
1 NICER [1,2], and tidal deformabilities by the LIGO-Virgo
Collaboration [3] have also reached the accuracy required to
sharply constrain the dense matter EOS. These developments
motivate the construction of models that can provide a unified
description of the EOS of the crust and the core.

Our current understanding of NS crusts suggests that it
is composed of finite nuclei, usually referred to as nuclear
clusters since their properties are modified by the dense matter
environment and differ from those of isolated nuclei probed in
the laboratories, see, for instance, Ref. [4]. The outer crust
is dominated by the presence of an electron gas filling the
whole volume in beta-equilibrium with neutrons and pro-
tons bound inside nuclear clusters. The nuclear symmetry
energy controls the energy difference between neutrons and
protons, and thus the isospin asymmetry inside the nuclear

clusters. Electric charge neutrality is ensured by the presence
of electrons, and its rapid increase with density favors the
appearance of increasingly neutron-rich nuclear clusters [5].
From the experimental viewpoint, neutron-rich nuclei can be
produced in nuclear facilities and provide strong constraints
on the properties of nuclei present in the outer crust, see
Refs. [6,7] for recent updates. Nuclear clusters in the inner
crust are significantly more neutron rich and coexist with a
neutron fluid, and their properties cannot be directly probed
by experiments. Their description relies on theoretical models
that are sensitive to the properties of bulk nuclear matter and
the density and isospin dependence of the nuclear surface
tension [8]. The neutron fluid in the inner crust is very likely
to be in a superfluid state at low temperature, and superfluidity
is known to impact NS spin and thermal evolution.

Recently, several conceptual milestones have been reached
in the prediction of neutron star matter from microscopic
ab initio approaches which are based on realistic nu-
clear Hamiltonians constrained by nucleon-scattering data.
In particular, Hamiltonians derived using chiral effective-
field theory (χEFT) incorporate the symmetries of QCD and
provide a systematic expansion of the operators in powers
of the nucleon momenta. χEFT has two distinct features:
(1) it consistently includes three- and higher-body interac-
tions along with the two-body interactions that are well
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constrained by experiments, and (2) it provides a robust
method to estimate errors associated with the truncation
of the momentum expansion when the nucleon p is small
compared with the breakdown scale �χEFT of the χEFT.
Beginning with the pioneering work of Hebeler and Schwenk
[9], several groups have used χEFT to predict the EOS of
homogeneous neutron-rich matter [10–14]. At sufficiently low
densities, neutron matter is well understood because three-
body interactions are small, and the two-body neutron-neutron
interaction is strongly constrained by the neutron-neutron-
scattering phase shifts [15,16]. However, with increasing
density and correspondingly larger nucleon momenta, higher-
dimension operators including three-body forces begin play
an increasingly important role. For both these reasons the
associated uncertainty, which can be estimated quite systemat-
ically, grows. The densities up to which χEFT remains useful
is still a matter of debate; current expectations are that it
breaks down between saturation density (nsat) and twice nsat

[17–19].
Nuclear clusters in NS crust result from the equilibrium

between attractive volume interaction and repulsive surface
and Coulomb interactions, at leading order. Despite recent
progress in the description of finite nuclei based on chiral
nuclear interaction, it is still computationally not feasible to
calculate directly the properties of nuclear clusters in the NS
crust. Several well-motivated approximations could, however,
be employed to predict and understand the properties of this
complex system. Among them, the liquid-drop model (LDM)
is a macroscopic approach that allows us to combine together
the nuclear matter predictions from χEFT with finite-size
(FS) terms generated from a leptodermous expansion of the
total energy. The compressible liquid-drop model (CLDM)
includes variations of the cluster density from one nucleus
to another, through the density dependence of the bulk con-
tribution to the total energy. The LDM and CLDM describe
the collective degrees of freedom. They are different from
the microscopic approach, typified by the Shell model or
the energy-density-functional approach, which centers around
the single-particle degrees of freedom. Since the microscopic
approach is the most general one, it contains the macroscopic
one as an average.

In the leptodermous expansion of the total energy [20],
the different contributions are sorted by decreasing powers of
A1/3. The order A belongs to the domain of nuclear matter
studies, as can be directly related to the meta-model approach
for nuclear matter, the orders A2/3 and A1/3 characterize the
finite-size contributions, and finally, orders A0 and below be-
long to the single-particle contributions, e.g., shell effects or
pairing contributions, described by microscopic theories. In
our study, we investigate several FS terms which are sorted by
decreasing powers of A1/3 as in the leptodermous expansion.
In the following, we illustrate the fact that the leptodermous
expansion provides an interesting scheme where the effects
of different terms play a lower role as they contribute to a
higher order. Our analysis, however, is stopped at a given
order in the leptodermous expansion, hereinafter called FS4,
and we disregard higher-order corrections for the present
work. For instance, the neutron skin is not implemented and
the in-medium surface modification of cluster energy is also

currently disregarded. Some more microscopic effects are also
not implemented, such as, for instance, the actual cluster den-
sity profile, nonuniform in Thomas-Fermi and Hartree-Fock
approaches as well as quantum shell effects, see, for instance,
Refs. [21,22]. We discuss the impact of such approximations
in Secs. IV and VI. Being systematical in the implementation
of the leptodermous expansion allows us, however, to compare
our findings with previous ones as well as to evaluate the
impact of these different terms on the NS crust properties.

The impact of nuclear physics uncertainties on the NS
crust has been analyzed in earlier work. Steiner [23], for
instance, has constructed several NS crust using inputs from
current experimental information while allowing exploration
of the EOS uncertainties, in particular the one induced by
the symmetry energy. Other approaches are constructed from
currently available EOSs, which may not respect the low-
density neutron matter expectations because they are fit to the
properties of nuclei near saturation densities. In the present
work, we explore both the nuclear experimental uncertainties
from the knowledge of measured nuclear masses, as well as
the theoretical uncertainties in the nuclear matter equation of
state from the many-body approach based on chiral NN and
3N interactions. This is first systematic investigation that ac-
counts for these two sources of uncertainties. The following
main findings are obtained by incorporating these two sources
of information in our CLDM:

(i) A suggested upper limit for the energy density of nu-
clear matter at saturation density: εmax

sat ≈ −2.30 MeV
fm−3. Above this limit, our model cannot equilibrate
the bulk and FS terms over the nuclear chart.

(ii) The CLDM disfavors some χEFT Hamiltonians, even
if the FS terms in the CLDM vary independently
from the bulk term while they are correlated from
first principles. This is a strong rejection since in our
modeling the FS terms are optimized to fit nuclear
masses, while in reality they shall be fixed. So even
if—by chance—nature chooses to fix these FS terms
to be equal to our optimization, these models would
still be rejected.

(iii) The correlation between the surface energy (isoscalar
and isovector properties) and the bulk symme-
try energy depends on the considered FS model.
The inclusion of the curvature contribution suggests
however a typical value for the symmetry energy
(≈32 MeV) where the model dependence is minimal.

We find that the present CLDM predicts the following
properties for the neutron star crust:

(i) The crust composition (Acl, Zcl ) is mainly determined
by the considered FS model, which—for the most part
of them—are controlled by the experimental nuclear
energies. We find, however, that the cluster asymme-
try Icl is much less impacted than Acl and Zcl.

(ii) The crust composition (Acl, Zcl, Icl ), the proton frac-
tion Ye, and the volume fraction u are essentially
determined by the bulk contribution to the energy,
fixing the nuclear cluster and the neutron fluid
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contributions. The bulk term is varied across the chiral
Hamiltonians in our study.

(iii) In the densest region of the crust both the Hamilto-
nians and the surface energy isospin parameter psurf

have a dominant role in the determination of the crust-
core properties and of the matter composition. These
two properties are crucial for the determination of the
crustal moment of inertia.

(iv) While not negligible, the influence of the loss function
in the fit to finite nuclei as well as of the effective mass
is more subdominant.

Finally, we analyze the global NS properties and produce
uncertainties for a few observables associated with light and
canonical mass NS (1.0M� and 1.4M�). We obtain the fol-
lowing results:

(i) Global properties, e.g., mass, radius, moment of
inertia, and tidal deformability, are critically deter-
mined by the chiral Hamiltonian properties in uniform
matter.

(ii) Other ingredients discussed here—FS terms, psurf ,
effective mass, loss function—play a much smaller
role than the present uncertainties from astronomical
observations, e.g., radius uncertainty from NICER
or tidal deformability uncertainty from LIGO-Virgo
gravitational wave detectors.

(iii) Assuming the absence of phase transition in massive
NSs, we found that the present uncertainty in the
nucleonic effective mass modifies the spherical NS
maximum mass, MTOV, by about 0.15M� at maxi-
mum.

This paper is organized as follows: Section II is reserved
to homogeneous matter where the meta-model and the fit to
χEFT are described. We detail the CLDM used to describe
finite-size effects on the clusterized matter in Sec. III. We
compute and quantify uncertainties on the NS crust in Sec. IV,
while details on NS macroscopic properties are discussed in
Sec. V. Finally, the conclusions of the present work are drawn
in Sec. VI.

II. HOMOGENEOUS MATTER

For homogeneous matter, we consider the six Hamiltoni-
ans, H1–H5 and H7 (H6 being disregarded for not fitting well
the binding energy of 3He), which have been generated by
many-body perturbation theory (MBPT) based on chiral NN
and 3N interactions [24] and the two recent χEFT predictions
from Ref. [25]: DHSL59 and DHSL69. These eight predictions
for nuclear matter are used to calibrate a set of eight nuclear
meta-models (MMs), and the version we consider here is
a small extension of the original one [26]. This extension
has already been presented in Ref. [27]. The low-density
correction to the energy is now controlled by the function
b(δ) = bsat + bsymδ2 instead of the parameter b.

Let us briefly summarize the main ingredients of the MM.
The energy density is the sum of a kinetic and potential terms,

eMM = t∗ + epot, where the kinetic term reads

t∗(n, δ) = tsat

2

(
n

nsat

)2/3[ m

m∗
n (n, δ)

(1 + δ)5/3

+ m

m∗
p(n, δ)

(1 − δ)5/3

]
, (1)

with tsat = 3h̄2k2
F /(10m) and given τ3 = 1 (−1) for neutrons

(protons), the effective mass reads

m

m∗
τ (n, δ)

= 1 +
(

κsat

nsat
+ τ3δ

κsym

nsat

)
n. (2)

In the present work we explore how the effective mass
affects the kinetic energy. We show results with the effective
mass equal to the bare mass m∗

τ = mτ , and also with the effec-
tive mass given by Eq. (2). To obtain the parameters κsat and
κsym for the Hamiltonians we consider here, we first derive the
density-dependent Landau effective mass for neutrons from
its single-particle spectrum as was done in Ref. [27]. Then
Eq. (2), with τ = n, was fit to this quantity in symmetric
matter (SM) and neutron matter (NM) for each individual
Hamiltonian. As far as the finite residuals of the fits are con-
cerned, the uncertainties on the parameters κsat and κsym are
negligible for all Hamiltonians. There is, however, a spread in
the results of the fit across different Hamiltonians reflecting
an intrinsic uncertainty in the χEFT predictions. Reference
[27] performed a Bayesian quantification of this uncertainty,
whereas in this work we probe the χEFT uncertainty by
making distinct predictions for each individual Hamiltonian
and then monitoring the dispersion among these predictions.

The isospin splitting of the effective mass is defined as

�m∗
sat = m∗

n (n = nsat, δ = 1) − m∗
p(n = nsat, δ = 1)

= −2κsym

(1 + κsat )2 − κ2
sym

mN , (3)

where we fixed mn = mp = mN . Sometimes, the proton ef-
fective mass in NM is not calculated from microscopic
approaches, but SM and NM calculations are performed. In
these cases, it is interesting to consider the difference between
the neutron effective masses in NM and SM defined as

Dm∗
sat = m∗

n (n = nsat, δ = 1) − m∗
n (n = nsat, δ = 0). (4)

The effective mass, the splitting of the effective mass
�m∗

sat, and Dm∗
sat for the eight Hamiltonians are shown in

Table I. We find that Dm∗
sat, which is obtained directly from

the MBPT single-particle spectrum as explained before, is in
good agreement with our previous study in Ref. [27]. The
splitting of the effective mass can be inferred by using the MM
parametrization of the effective mass, see Eq. (2). We found
a very good correlation between Dm∗

sat and �m∗
sat, suggesting

that �m∗
sat is about 50% larger than Dm∗

sat. Finally, for DHSL59

and DHSL69 we only consider the bare-mass case.
In the MM, the potential term is expressed as

epot (n, δ) =
N∑

j=0

1

j!
(vsat, j + vsym2, jδ

2)x j + epot,low-n, (5)
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TABLE I. Effective mass m∗
sat at saturation in symmetric matter, the effective-mass splittings Dm∗

sat and �m∗
sat , see Eqs. (2), (4), and (3).

Note that m∗
sat and Dm∗

sat are determined from the microscopic predictions, while �m∗
sat is inferred from the MM.

MMbare MMm∗

Model m∗
sat/mN Dm∗

sat/mN �m∗
sat/mN m∗

sat/mN Dm∗
sat/mN �m∗

sat/mN

H1 1.00 0.00 0.00 0.59 0.29 0.43
H2 1.00 0.00 0.00 0.61 0.26 0.41
H3 1.00 0.00 0.00 0.61 0.22 0.34
H4 1.00 0.00 0.00 0.63 0.25 0.38
H5 1.00 0.00 0.00 0.66 0.20 0.33
H7 1.00 0.00 0.00 0.67 0.26 0.41
DHSL59 1.00 0.00 0.00
DHSL69 1.00 0.00 0.00

with the low-density correction expressed as

epot,low-n = vlow-n(δ) xN+1e−b(δ)n/nemp
sat , (6)

with vlow-n(δ) = vlow-n
sat + vlow-n

sym δ2. The parameters vlow-n
sat and

vlow-n
sym are fixed by the condition that epot (n = 0, δ) = 0 for

δ = 0 and δ = 1, and the parameters bsat and bsym are adjusted
to reproduce the very low density dependence of the MBPT
calculations, see Ref. [27] for more details. With the MM, the
binding energy eMM(n, δ) can be obtained for any arbitrary
value of the density n and the isospin asymmetry parameter δ.
There are two interesting limits which are SM and NM defined
as eSM(n) = eMM(n, δ = 0) and eNM(n) = eMM(n, δ = 1).

Table II shows the residual χ2 values for the fit, where the
χ2 loss function is defined as

χ2 = 1

2

∑
i

(
edata,i − eMM,i

σi

)2

, (7)

where σi was taken to be a 10% uncertainty on the data,
due to imperfect modeling [28]. The fit was performed by
minimizing the χ2 with data in 0.4 < kFn < 1.6 by using
the standard Levenberg-Marquardt algorithm implemented in
python’s SCIPY package. The impact of the effective mass is
very small. At most it improves the reduced χ2/N by 10%
in SM, no effect in NM. In addition, in the density region

TABLE II. Reduced χ 2/N in SM and NM considering the bare
(effective) nucleon mass reflecting the residuals between the MBPT
data and the MM, for 0.4 < kFn < 1.6 on left (used by the fit), and
0.4 < kFn < 1.0 fm−1 on the two right columns (not used by the fit).
All quoted values are dimensionless, see Eq. (7).

χ 2/N 0.4 < kFn < 1.6 0.4 < kFn < 1.0

Model SM NM SM NM

H1 0.56(0.48) 0.03(0.02) 0.60(0.52) 0.02(0.02)
H2 0.55(0.48) 0.03(0.02) 0.58(0.51) 0.02(0.02)
H3 0.35(0.30) 0.01(0.01) 0.46(0.41) 0.01(0.01)
H4 0.55(0.50) 0.03(0.03) 0.57(0.51) 0.02(0.02)
H5 0.55(0.51) 0.03(0.03) 0.53(0.49) 0.02(0.04)
H7 0.16(0.14) 0.05(0.05) 0.27(0.23) 0.04(0.07)
DHSL59 0.76 0.01 1.6
DHSL69 1.67 0.09 3.51

out of the data, the impact of the effective mass is also very
small. This is also confirmed in Sec. V where the impact of
the effective mass on the mass-radius relation is presented. In
Table II, for Hamiltonians H1–H5 and H7, the number of data
points, N , is 11 (11) for SM (NM) when 0.4 < kFn < 1.0 and
22 (24) for SM (NM) when 0.4 < kFn < 1.6. For the other two
Hamiltonians, N = 17 (9) in SM (NM) when 0.4 < kFn < 1.6
and 2 (-) for SM (NM) when 0.4 < kFn < 1.0.

A detailed comparison of the MBPT calculations (dots)
and the MM fit (lines) is shown in Fig. 1, the well-known SLy4
Skyrme model prediction is also shown for reference. For
the bare mass case (top panels) we also represent the recent
MBPT calculations DHSL59 and DHSL69. The three models
DHSL59, DHSL69, and H7 present stiffer NM energy at high
densities compared with H1–H5. There is a very good agree-
ment between the data and the MM down to kF = 0.4 fm−1

(in density n ≈ 0.004 fm−3), as shown in Figs. 1(b) and 1(d),
for instance. The vertical gray band shows the region where
the fit is less accurate. In the following, the MM calibrated on
the Hamiltonian Hn will be labeled HnMM.

Note in Fig. 1(b) that the MM reproduces very well the
NM energies as predicted by χEFT, at variance with SLy4,
which overestimates the energy per particle at low density.
This is indeed a general feature of Skyrme interactions. We
recently analyzed the impact of this systematical differences
between χEFT and Skyrme SLy4 in low-density NM on the
crust EOS within the CLDM [29]. We found that some ob-
servables are very sensitive to these differences, e.g., energy
density, pressure, sound speed, while other are much less
impacted, e.g., cluster configuration (Acl, Zcl, Icl), which are
mostly determined by experimental nuclear masses. Having a
good description of NM as predicted by χEFT is, however,
important to predict NS crust properties.

The symmetry energy is defined as the energy difference
between NM and SM,

esym(n) = eNM(n) − eSM(n), (8)

and the quadratic contribution to the symmetry energy reads

esym,2(n) = 1

2

∂2e(n, δ)

∂δ2

∣∣∣∣
δ=0

. (9)

The topological properties of the energy per particle
around saturation density, with empirical expectation nemp

sat ≈
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FIG. 1. [(a) and (c)] Energy per particle as a function of the baryon density, in NM and SM. [(b) and (d)] Energy per particle normalized
to the free Fermi gas energy [EFFG = (3/5)EF with EF = h̄2k2

F /(2m) and kF the Fermi momentum] in SM and NM function of the neutron
Fermi momentum kFn for the six Hamiltonians H1-H7 (except H6). Panels (a) and (b) include DHS Hamiltonians for comparison. Data from
the original model are plotted in dots (squares) for H1–H5 and H7 (DHSL59 and DHSL69), with the same color as the MM version. Bottom
panels include the nucleon effective mass.

0.155(5) fm−3, are encoded into the nuclear empirical param-
eters (NEPs), e.g., Esat, Esym, Esym,2, which are defined as

eSM(n) = Esat + 1
2 Ksatx

2 + 1
6 Qsatx

3 + 1
24 Zsatx

4 + · · · ,

esym(n) = Esym + Lsymx + 1
2 Ksymx2 + 1

6 Qsymx3

+ 1
24 Zsymx4 + · · · , (10)

esym,2(n) = Esym,2 + Lsym,2x + 1

2
Ksym,2x2 + 1

6
Qsym,2x3

+ 1

24
Zsym,2x4 + · · · , (11)

where the density expansion parameter is defined as x = (n −
nsat )/(3nsat ).

The low-order NEP of the eight Hamiltonians are given in
Table III. The values are rounded and the uncertainties in these
parameters are smaller than the rounding. These uncertainties
are thus not given. The dispersion of the NEPs across the
different Hamiltonians, however, serves to capture uncertain-
ties intrinsic to the χEFT expansion. The saturation energy
and density of H2MM–H4MM agree reasonably well with the

empirical ones determined from experimental data, see, for
instance, Ref. [26], while the saturation energy of H5MM

and H7MM is higher than the expected one. The saturation
density of H7MM is also quite lower than the empirical one.
For H1MM the saturation density is higher than the expected
one, and the saturation energy is lower. In the following,
we will confirm that the fit to the experimental masses is
poorer for H5MM and H7MM compared with the other Hamil-
tonians, as we can already anticipate from their empirical
properties.

It is well known that the high-order empirical parameters
Qsat, Qsym and Zsat, Zsym are not constrained by χEFT calcula-
tions in uniform matter, since χEFT is limited to low densities,
n < 2nsat [27]. In the present study, we fix the following
values for all Hamiltonians: Qsat = −220 MeV, Zsat = −200
MeV, Qsym = 700 MeV, and Zsym = 500 MeV. This choice
allows all the considered Hamiltonians to reach the astro-
physical constraint related to the observed maximum mass of
NSs, which is 2.0(1)M� [30,31]. The recent measurement for
PSR J0740 + 6620, suggesting MTOV � 2.14(10)M� is also
compatible with this constraint [32].
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TABLE III. Empirical parameters for the Hamiltonians derived from chiral EFT used in the present work. The energy density at saturation
density is defined as εsat = nsatEsat . The last two columns show the low-density correction parameters bsat and bsym. For the empirical parameters
for which the effective mass plays a role, we give the value obtained with the bare mass first and then the one obtained with the effective mass.

Esat nsat εsat Ksat Esym Lsym Ksym Esym,2 Lsym,2 Ksym,2 bsat bsym

Model (MeV) (fm−3) (MeV · fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

H1MM −17.0 0.186 −3.17 261 33.8 46.8 −154 33.0/31.4 45.3/37.2 −152/−169 10.73/11.37 9.91/10.46
H2MM −15.8 0.176 −2.78 237 32.0 43.9 −144 31.3/29.9 42.4/35.4 −142/−156 9.14/9.59 8.86/9.34
H3MM −15.3 0.173 −2.65 232 31.8 50.6 −96 31.0/29.8 49.1/42.8 −94/−108 9.83/10.35 18.17/20.56
H4MM −15.0 0.169 −2.54 223 31.0 42.1 −138 30.2/29.0 40.7/34.5 −136/−148 8.03/8.37 8.23/8.70
H5MM −13.9 0.159 −2.22 207 29.4 40.2 −128 28.7/27.7 38.8/33.9 −127/−137 6.22/6.41 7.70/8.24
H7MM −13.2 0.139 −1.84 201 28.1 36.5 −150 27.4/26.4 35.3/30.3 −148/−158 8.98/9.40 −1.12/−1.46
DHSL59

MM −14.0 0.168 −2.36 200 31.4 58.9 −30 30.6 57.4 −28 9.00 10.00
DHSL69

MM −14.6 0.173 −2.53 216 33.7 69.0 −20 33.0 67.5 −19 9.00 10.00

SLy4MMm∗ −16.0 0.160 −2.55 230 32.0 46.0 −120 31.3 44.7 −118 6.90 0

Expt. [26] −15.8(3) 0.155(5) −2.45(12) 230(30) 32(2) 50(10) −100(100)

The symmetry energy esym(n) is shown in Fig. 2. The
left panel shows in light (dark) blue band the constrains
from isobaric-analog state IAS (IAS + neutron skin, �rnp),
from Ref. [33]. In yellow are shown the PREX-II predictions
for the symmetry energy, where we vary Esym = 38.1 ± 4.7
MeV and Lsym = 106 ± 37 MeV, as suggested by Ref. [34].
The symbols represent the MBPT calculations [24,25] as in
Fig. 1. The right panel shows the symmetry energy, esym,
normalized by the free Fermi gas symmetry energy. Note
the higher value for the symmetry energy predicted by SLy4
compared with the Hamiltonians at low densities. This is a
direct effect of the high NM energy predicted by SLy4, as seen
in Figs. 1(b) and 1(d). The solid lines shows the MM with
the bare mass while the dashed lines include the corrections
induced by the effective mass, see Eqs. (1) and (2). Note
that the effect of the effective mass is very small on these
curves.

There is a disagreement between χEFT predictions and the
recent constraints from PREX-II [34] for the symmetry energy
and its density dependence, as shown in Fig. 2. To reproduce
PREX-II predictions not only a large value for Lsym is neces-
sary, like DHSL59 and DHSL69, but also for Esym.

The β equilibrium with e and μ satisfies the following
equations:

μn = μp + μe, μe = μμ. (12)

The total pressure, including baryon and lepton contributions,
at β equilibrium is shown in Fig. 3 for the eight Hamiltonians
and SLy4. The prediction by the LIGO-Virgo Collaboration
inferred from GW170817 for the pressure at 2nsat [35] is also
shown. Figure 3 shows that the eight models are in good
agreement with the GW170817 constraint. The impact of the
effective mass m∗ (dashed lines versus solid lines with the bare
mass) remains small for the pressure.

FIG. 2. (a) Symmetry energy with respect to the baryon density for H1–H5 and H7, DHSL59, DHSL69, and SLy4. Yellow band shows
constraint from neutron skin experiments by PREX-II. Blue bands show constrains from isobaric-analog state IAS (IAS + neutron skin,
�rnp). (b) Symmetry energy normalized to the free Fermi gas symmetry energy [Esym,FFG = (3/5)(EF,NM − EF,SM)] with respect to the Fermi
momentum kF . Continuous (dashed) lines consider bare (effective) nucleon mass.
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FIG. 3. Pressure as function of the baryon density in β-
equilibrium for the six Hamiltonians, DHSL59, DHSL69, and SLy4.
Continuous (dashed) lines consider bare (effective) nucleon mass.
Error bar shows the constraint for the pressure at 2nsat inferred by the
LIGO-Virgo Collaboration with the GW170817 observation at 90%
credible level.

In summary, we have shown that the MM can accurately
reproduce the MBPT predictions for each of the eight Hamil-
tonians considered. In addition, we impose a prescription for
the high-order empirical parameters that allows the present
extension of the MBPT to reach the astrophysical constraint
for the TOV mass. We have also checked that all the present
Hamiltonians are consistent with the inferred pressure at 2nsat

by the LIGO-Virgo Collaboration.

III. THE COMPRESSIBLE LIQUID-DROP MODEL
FOR FINITE NUCLEAR SYSTEMS

Finite nuclear systems results from the equilibrium be-
tween the bulk attraction, as seen in homogeneous matter, and
the surface repulsion, which originates mostly from the sur-
face tension and the Coulomb repulsion. In the present study,
we consider various extensions of the compressible liquid-
drop model (CLDM), see, for instance, the seminal Baym,
Bethe, Pethick (BBP) model [36], which can be justified from
the leptodermous expansion [20].

In the crust of NSs, we consider the following composition:
the nuclear clusters are composed of neutrons and protons,
which are described by Acl and Icl (the mass number and the
isospin asymmetry). The neutron and proton particle numbers
in the nuclear clusters are obtained from Ncl = Acl(1 + Icl )/2
and Zcl = Acl(1 − Icl )/2. In addition, clusters are embedded
in electron and neutron gases, described by their uniformly
distributed densities ne and nng. We have implicitly assumed
the r representation [37] for the Wigner-Seitz cell. In this
representation, the particles in the cluster volume Vcl are in
equilibrium with those in the outside volume VWS − Vcl, where
VWS is the Wigner-Seitz volume. There are therefore five vari-
ables in total (four particles and one volume), but the actual

variables can be any combination of these variables. In the
present study, we consider the following variables: Acl, Icl, ncl,
ne, and nng, where ncl = Acl/Vcl as in Ref. [38].

The total cluster energy in NS crust is expressed as the
sum of the independent contributions from the clusters Ecl,
the electrons Ee, and the neutron gas Eng,

Etot (Acl, Icl, ncl, ne, nng)

= Ecl(Acl, Icl, ncl ) + Ee(ne) + Eng(nng). (13)

The cluster contribution in the CLDM is expressed as a bulk
energy contribution, determined from homogeneous matter,
and a finite-size contribution, including Coulomb, surface,
curvature terms at leading orders. The cluster binding energy
contributing to Eq. (13) is given by

Ecl(Acl, Icl, ncl, ne) = Ebulk (Icl, ncl ) + EFS(Acl, Icl, ncl, ne),

(14)

ncl being the cluster density. Note that, in the CLDM, the
cluster density ncl is fixed to be uniform, at variance with
the droplet model [39], Thomas-Fermi approaches [40,41], or
microscopic models [21,22,42,43] where it decreases at the
surface and depends on the radial coordinate r as ncl(r). The
nonuniformities are, however, incorporated in a effective way
by adjusting the FS terms to the experimental nuclear masses.
Also, the neutron and proton radii are identically equal to
the cluster radius Rcl (there is no neutron skin in the present
model).

In the NS crust, the total density nB = (Acl + Ng)/VWS is
further imposed, contributing to fix one constraint among the
five independent variables. This constraint is treated with the
Lagrange multiplier technique, as suggested in Ref. [44], for
instance.

The energy of an isolated nucleus such as those present on
Earth is simply defined as

Enuc(Acl, Icl, ncl ) = Ebulk (Acl, Icl, ncl )

+ EFS(Acl, Icl, ncl, ne = 0). (15)

Note that there are only three independent variables in this
case. There are no electron and neutron gases surrounding the
nuclear cluster. In addition, note that the Wigner-Seitz volume
VWS is undefined (it is indeed infinite for isolated nuclei) but
the cluster volume Vcl is defined.

In the present CLDM, the global asymmetry of the cluster
Icl = (Ncl − Zcl )/Acl coincides with the cluster bulk asymme-
try δcl = (ncl,n − ncl,p)/nB since the neutron or proton skin are
not considered here. Note, however, that neutron skin has been
considered in Ref. [23] by introducing a fit parameter ζ relat-
ing Icl and δcl, as δcl = ζ Icl. If ζ is unity, there is no skin, while
if ζ < 1, then all nuclei with Ncl > Zcl will have a neutron
skin (Rn > Rp). In reality, the parameter ζ is function of Acl

and Zcl, see Ref. [45], as well as of the nuclear interaction, as
illustrated by the correlation between the neutron skin in 208Pb
and the slope of the symmetry energy Lsym [46,47]. It is thus a
strong approximation to impose the relation δcl = ζ Icl with ζ

constant that we prefer not to consider here. The skin contri-
bution modifies the Coulomb term by using the proton radius
instead of the cluster radius, which modified the Coulomb
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energy by a factor proportional to the difference between the
bulk asymmetry δcl and the global asymmetry Icl. This term
increases with the nuclear size and asymmetry and can be
important for nuclear clusters present close to the crust-core
transition. However, this modification is small compared with
the leading-order terms considered here and we follow the
procedure of recent works [38,48] and neglect the presence
of neutron skin in the present study. In a future development,
a consistent derivation in the spirit of Ref. [45], for instance,
will be considered.

The CLDM we consider is comparable to the pioneering
BBP model [36] and is well suited to analyze the origin of the
uncertainties in the predictions of the NS crust. More micro-
scopic models for the crust have indeed been developed, see,
for instance, Ref. [42] and recent efforts in Ref. [22]. While
being less accurate than microscopic models in reproducing
finite nuclei, the present CLDM allows us a better understand-
ing of the various features influencing the properties of the NS
crust, which are difficult to analyze in a microscopic model.
There are, however, missing features, such as shell and pairing
effects, but these feature are subdominant in the leptodermous
expansion: they represent a refinement in the description of
experimental binding energies which is of the order of a few
MeV in total energy, compared with the leading-order con-
tributions which are of the order of hundreds of MeV. The
uncertainties are indeed still large at the leading order, as we
will see in the following.

The contributions to the energy Ebulk, EFS, Ee, and Eng will
be detailed in the following subsections.

A. The cluster bulk contribution

The cluster bulk contribution to the energy per particle is
the leading-order term in the leptodermous expansion (order
Acl, the mass term). It is related to the homogeneous mat-
ter calculation, represented here by the MM energy density
εMM(nn, np) = nBeMM(nn, np), given by

ebulk (Icl, ncl ) = 1

nB
[εMM(nn, np) − nnmnc2 − npmpc2], (16)

where the neutron and proton masses mn and mp are fixed
to their bare mass, mnc2 = 939.565 346 MeV and mpc2 =
938.272 013 MeV, and nn and np are the uniform neutron and
proton densities in the cluster.

B. The finite-size contribution

The finite-size term in Eq. (15) incorporates the nuclear
contributions to the cluster energy at all orders in the leptoder-
mous expansion. In the present study, we limit ourself to the
leading-order terms: the Coulomb term is in Z2

cl/A1/3
cl ≈ A5/3

cl
(dominant term at large A which prevents superheavy nuclei
to exist), the surface is in A2/3

cl , and the curvature term is in
A1/3

cl . They are expressed as

EFS(Acl, Icl, ncl )

= ECoul(Acl, Icl ) + Esurf (Acl, Icl ) + Ecurv(Acl, Icl ), (17)

where the Coulomb term for a spherical and uniform dis-
tribution of protons is given by the direct and exchange

contributions,

ECoul = CCoul(ECoul,Dir + ECoul,Ex), (18)

with

ECoul,Dir = 3

5

Z2
cle

2

Rp
fCoul(u) (19)

= ac

(
1 − Icl

2

)2

fCoul(u)A5/3, (20)

ECoul,Ex = −3

4

(
3

2π

)2/3 Z4/3
cl e2

Rp
hCoul(u) (21)

= −5ac

4

(
3

2π

)2/3(1 − Icl

2

)4/3

hCoul(u)A, (22)

where e2 ≈ h̄c/137 and the functions fCoul and hCoul are
defined as fCoul(u) = 1 − (3/2)u1/3 + (1/2)u and hCoul(u) =
1 + u1/3, with u being the volume fraction of the cluster,
which is defined as

u = Vcl

VWS
= ne

ncl,p
= 2ne

(1 − Icl )ncl
, (23)

where ncl,p = ncl(1 − Icl )/2 is defined as the proton density
in the cluster. In the function fCoul, the first term corresponds
to the proton-proton repulsive interaction, the second term is
the “lattice contribution” including the electron-proton and
electron-electron interaction, under the hypothesis of a glob-
ally neutral Wigner-Seitz cell. Then the third term in fCoul

stands for the finite-size correction which becomes important
when the cluster volume is comparable with the Wigner-Seitz
volume. This term is important near the crust-core transition
and pushes the transition to nuclear matter towards higher
densities. The first term is the only one remaining in the
case of isolated nuclei, corresponding to the limit u = 0.
Since there is no proton-electron contributions to the exchange
Coulomb energy, the first (second) term in hCoul corresponds
to the proton-proton (electron-electron) contribution.

The coefficient CCoul in Eq. (18) is a variational parameter
which is fine tuned over the nuclear mass table. It describes—
in an effective way—the effect the diffusive nuclear surface
on the Coulomb energy, which is neglected in the sharp drop
off density profile that we consider here. Since the diffusive
surface is expected to be a small correction, the fit value is
expected to remain close to 1, CCoul ≈ 1.

To obtain an optimal value for CCoul and the other finite
size terms we fitted these variational parameters on the nuclear
chart. The details of the fit procedure together with the values
of the parameters for each interaction used on the present
work are given in the Supplemental Material of this paper
[49].

Note that the direct Coulomb term scales like A5/3
cl and

therefore dominates the CLDM energy at large Acl. Since the
Coulomb term is repulsive, this induces a limitation in the
maximum Acl for finite nuclei. However, for most of nuclei
in the nuclear chart, the Coulomb interaction remains small
compared with the nuclear one. For this reason, the bulk
term in Acl and the Coulomb direct contribution in A5/3

cl are
considered at the same order in the leptodermous expansion.
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It is also interesting to note that the exchange Coulomb term
contributes to two orders lower compared with the direct term
in the A1/3

cl leptodermous expansion. It is thus expected to
effectively contribute at one order below the curvature con-
tribution.

Neglecting the difference between the neutron and pro-
ton radii—no skin approximation—we have Rp = Rcl =
rcl (ncl )A

1/3
cl with r3

cl (ncl ) = 3/(4πncl ), and the Coulomb factor
reads

ac(ncl ) = 3

5

(
4π

3
ncl

)1/3

e2. (24)

Note that the Coulomb factor ac defined from Eq. (24)
depends on the cluster density. The Coulomb parameter ac is,
however, often taken as a constant, see, for instance, Ref. [38],
either as a free parameter to be fit or as function of the constant
nsat. The different assumptions for ac give differences on the
description of isolated nuclei. Note that if ac is taken to be
constant (often taken to be of the order ≈0.7 MeV), neither
the Coulomb nor the surface energy contributes to nuclear
pressure, the pressure derives from the bulk term only. In
the NS crust, however, the Coulomb term contributes to the
pressure thanks to its dependence in the volume fraction u.
We show the difference of having ac constant or not in the
sequence of the paper, FS1 refers to ac = ac(nsat ), while in
FS2 and others we have ac = ac(ncl ).

The surface energy is proportional to the surface tension
σsurf (Icl ) and scales as A2/3

cl . It reads

Esurf (Acl, Icl, ncl ) = 4πR2
clσsurf (Icl ) (25)

= 4πr2
clσsurf (Icl )A

2/3
cl , (26)

with σsurf (Icl ) as expressed, as suggested in Ref. [50], as

σsurf (Icl ) = σsurf,sat
2psurf +1 + bsurf

Y −psurf
p + bsurf + (1 − Yp)−psurf

, (27)

where Yp = Zcl/Acl = (1 − Icl )/2 is the cluster proton fraction
and σsurf,sat is a parameter that determines the surface tension
in symmetric nuclei. The parameter psurf entering into the
expression of the surface tension (27) plays an important role
at large isospin asymmetries. It is usually fixed to be psurf = 3
since the seminal contribution [50], but a small variation
around three plays an important role at large asymmetries,
which occurs around the core-crust transition densities in NSs
[48].

For small asymmetries,

σsurf (Icl ) ≈ σsurf,sat − σsurf,symI2
cl, (28)

with

σsurf,sym = σsurf,sat
2psurf psurf (psurf + 1)

2psurf +1 + bsurf
. (29)

One can thus relate the parameter bsurf to the surface symme-
try energy σsurf,sym. We have

bsurf = 2psurf

[
psurf (psurf + 1)

σsurf,sat

σsurf,sym
− 2

]
. (30)

TABLE IV. Standard FS parameters for the CLDM considered in
this work. Note the associated value bsurf = 29.9.

σsurf,sat σsurf,sym psurf σcurv,sat βcurv

MeV fm−2 MeV fm−2 MeV fm−1

1.1 2.3 3.0 0.1 0.7

In the following, we prefer to use the parameter σsurf,sym

instead of bsurf , since it directly reflects the isospin depen-
dence of the surface tension for small isospin asymmetries,
as shown in Eq. (28). For this reason the domain of variation
of σsurf,sym is better constrained than the one for the param-
eter bsurf , which ease the determination of the prior for this
parameter, see Sec. III C. The surface-energy parametrization
(28) does not include a correction due to the presence of
the neutron gas, while it has been adjusted on Hartree-Fock
microscopic calculations including this effect [51]. The au-
thors of this parametrization already realized this “paradox”
and concluded that the contribution of the neutron gas and
that induced by the change of the surface density as clusters
get more and more neutron rich play an opposite role. The
in-medium effects (neutron gas and nuclear surface modifica-
tions) can, however, be important for the description of the
crust-core transition, as suggested from the following authors
[21,22,41]. Microscopic calculations shall be used to further
refine the functional dependence of the surface energy term,
like in Refs. [52,53], for instance.

Table IV suggests standard values for the FS parameters
obtained by averaging over the usual parameters, see Ref. [48]
for a sample of these parameters associated with various
Skyrme interactions.

The curvature energy is controlled by the curvature tension
σcurv(I ), and follows [54]

Ecurv(Acl, ncl, Icl ) = 8πrclσcurv(Icl )A
1/3
cl , (31)

with

σcurv(Icl ) = ασcurv,sat
σsurf (Icl )

σsurf,sat

[
βcurv − 1 − Icl

2

]
. (32)

The parameter α is fixed to be α = 5.5, since we allow the
variation of the parameter σcurv,sat in the fit to the binding
energy over the nuclear chart. The standard values for the cur-
vature parameters σcurv,sat and βcurv are also given in Table IV.

In the present paper, we explore the role of various approx-
imations in the FS terms on the NS crust properties. We order
these approximations by their expected impact and selected
four of them, which we call FS1 to FS4, see Table V:

(i) FS1 is the simplest approximation for the FS term
that we consider, where only the surface and direct
Coulomb contributions are included and for which the
Coulomb and surface parameters, which are related to
rcl, are taken constant and fixed by setting ncl = nemp

sat .
(ii) FS2 is an improved version of FS1, where the

Coulomb and surface parameters are varied and fixed
from the actual value of the cluster density ncl.

(iii) In FS3, we additionally incorporate the effect of the
curvature contribution.
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TABLE V. Definition of nuclear macroscopic models used in this
work. In the left column we have the different terms on the CLDM
implemented in this work. On the first line we have the label of the
model. The table shows which term and how many parameters are
necessary to fix each model.

Model Variables FS1 FS2 FS3 FS4

Bulk from MM (Icl, ncl ) × × × ×
FS Surface (nsat) × − − −
FS Coulomb (Dir.) (nsat) × − − −
FS Surface (ncl ) − × × ×
FS Coulomb (Dir.) (ncl ) − × × ×
FS Curvature (ncl ) − − × ×
FS Coulomb (Ex.) (ncl ) − − − ×
Number of param. 3 3 5 5

(iv) Finally in FS4, we add the exchange Coulomb contri-
bution to the Coulomb energy term.

In the future, we plan to incorporate more contribu-
tions and go beyond FS4. The approximations captured
into the FS1–FS4 models represent, however, a systematic
development where the refinements are expected to play a
smaller and smaller role. This will be confirmed in Sec. IV.
The FS1–FS4 models allows us also to understand the dif-
ferences between the models proposed for the crust. In their
seminal paper in 1971, Bethe, Baym, and Pethick [36] in-
troduced the first version of the CLDM with Coulomb and
surface terms only, similar to our FS2 with the addition of
neutron skin effect and without optimization to the nuclear
chart. Another well-known model for the crust was proposed
by Douchin and Haensel in 2001 [55], still considered a
CLDM model with the additional contribution of the curvature
term, as in our model FS3. The surface and curvature terms
were, however, determined from many-body methods [56].
They have also considered different geometries in the pasta
phase and incorporated the effect of skins in the CLDM,
which go beyond the present approximations. In 2008, Steiner
considered a CLDM [23] with surface and Coulomb terms
comparable to our FS2 approximation but introduced in addi-
tion an effective way to describe skins that we have previously
discussed. Newton et al. suggested in 2012 [54] a CLDM
with a full Coulomb term (direct and exchange) as well as
surface and curvature contributions, as our FS4 approxima-
tion. They additionally studied different geometries in the
core-crust region (pasta phases). In 2016, Tews adopted the
same CLDM as the one suggested by Steiner [23] and addi-
tionally considered a bulk contribution determined by chiral
EFT calculations [57]. The FS terms were also adjusted to
reproduce the binding energy over the nuclear chart. These
two features make this study comparable to our model for
the crust. In 2017, Viñas et al. [40] extended the CLDM by
considering the Thomas-Fermi approximation and introduced
surface, Coulomb, and curvature terms, all FS terms being
functions of the proton radius. This treatment is similar to
our FS4 approximation but with additional contribution due
to skin and pasta phases. In 2019, Carreau et al. use a CLDM
with surface and Coulomb terms in Ref. [38], which can be

compared with our FS1 approximation, and then included in
2020 curvature and shell effects [58], which can be compared
with our FS3, but fixing ac constant and including shell ef-
fects.

Fantina et al. [21] constructed a unified EOS within
Brussels-Montreal Skyrme (BSk) functionals, using experi-
mental nuclear masses at the outer-crust, with the Brussels-
Montreal mass model when there are no data, and a extended
Thomas-Fermi plus Strutinsky integral method at the inner
crust [59]. This model is an interesting alternative to describe
neutron star crust, where it is possible to model shell effects.
Recently, this approach inspired a new model combining the
advantage of CLDM with the modeling of shell effects [58].

In conclusion, there is not a strict equivalence between the
FS1–FS4 approximations we suggest and the various models
for the crust which have been investigated, but we believe
our series of approximation is incremental and well suited
to the understanding of the role of various terms, and asso-
ciated uncertainties, on the properties of the crust of NSs. The
comparison with other crust models suggests also that our FS
approximation series could be extended to incorporate neutron
skins, shell effects, and different geometries in the core-crust
region.

C. Fit to experimental nuclear masses

In this section we discuss the impact of the fit on isolated
nuclei. We analyze two definitions for the loss function, �E

or �E/A, which are defined as

�X =
[

1

N

N∑
i=1

(
X i

expt − X i
nuc

)2

]1/2

, (33)

where X = E or X = E/A: X i
expt is the experimental values

and X i
nuc is the energy given by the CLDM model. In the

present fit, we consider N = 3375 nuclei taken from the 2016
atomic mass evaluation (AME) [60], with nuclei in the range:
A = 12–295 and Z = 6–118.

It is interesting to analyze the overall impact of the fine
tuning of the mass models on the surface and curvature con-
tributions to the nuclear energy. To do so, we represent in
Fig. 4(a) the following quantity (esurf + ecurv)/(4πr2

satA
2/3
cl )

as function of the nuclear asymmetry Icl for a typical value
Acl = 100. The homogeneous contribution is also fixed to be
given by SLy4MM. The different colors shows the result of the
different FS terms, as indicated in the legend, the solid lines
correspond to the standard values, given in Table IV, while the
dashed lines result from the minimization of the loss function
�E/A. The overall trend is similar for all the cases considered.
The contribution of the curvature term for FS1 and FS2 is
null. The difference between FS1 and FS2 reflects the role
played by the parameter r2

cl in FS2 while it is fixed to be r2
sat

in FS1: since the cluster density ncl decreases as Icl increases,
r2

cl becomes larger than r2
sat at large Icl, as shown in Fig. 4(a).

The consistent treatment of the cluster radius in the FS terms,
included in FS2 and further approximations, tends to increase
the surface term at large asymmetry Icl. We remind that the
radius parameter, see Eq. (26), is constant in FS1.
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FIG. 4. Sum of surface and curvature energies normalized by 4πr2
0,satA

2/3
cl function of the cluster asymmetry Icl in isolated nuclei. (a) Shows

a comparison between the four finite-size models in the case in which they are fixed by the standard values given in Table IV (solid lines) and
in the case in which they are fit to the nuclear masses (dotted lines). (b) Shows the influence of the surface parameter psurf at large Icl, after the
fit to the nuclear masses.

Employing the standard parameter set (solid lines), FS3
and FS4 predict larger values than FS1 and FS2, since the
contribution of the curvature ecurv adds up to the surface one
esurf . The exchange Coulomb term has no effect on the surface
tension, therefore FS3 and FS4 shows identical curves in the
figure. The dispersion between the dotted lines is smaller
than between the solid lines as a result of the minimization
which is performed for each FS model. Finally, in the fit
the curvature contribution is absorbed by a reduction of the
surface one, such that the sum remains identical, as seen from
the comparison of FS3 to FS4 (dashed lines). The fit with the
Coulomb exchange in FS4, absent in FS3, tends to slightly
increase the surface and curvature terms around Icl ≈ 0.

Figure 4(b) shows the influence of the surface parameter
psurf on the same quantity as in Fig. 4(a), where we show only
FS2 and FS3 for clarity. Around Icl ≈ 0 the impact of varying
psurf is null, while it plays a major role for Icl > 0.3, as was
already remarked in Ref. [38]. As a consequence, psurf cannot
be determined from the confrontation with the experimental
nuclear chart [38]. However, it plays an important role in the
densest layers of the NS crust at the vicinity of the core, where
matter is the most neutron rich. The value of the parameter
psurf is thus an important source of uncertainties which cannot

be controlled by the nuclear experimental data. This will be
illustrated in Sec. IV D.

We now vary both the bulk and the FS terms, where the
bulk terms we consider are those which reproduce the MBPT
predictions based on chiral interactions, see Sec. II. The
impact of varying the bulk contribution on the minimization
based on either the two loss functions �E and �E/A is shown
in Fig. 5. The horizontal axis is chosen to be εsat = nsatEsat

and the different colors represent the best fit obtained for each
FS approximation (FS1 to FS4). The solid (dashed) lines are
obtained with the bare (effective) nucleon mass. There is a
small improvement using the effective mass instead of the
bare mass, but it however remains small compared with the
impact of changing the Hamiltonian.

For instance, the Hamiltonians for which εsat > −2.30
MeV fm−3 are less good in reproducing the experimental
nuclear masses than the others. The reason is that the re-
production of the experimental binding energies requires a
delicate balance between the attractive bulk term εsat and the
repulsive FS term εFS. As εsat increases, the FS term decreases
such that the sum remains constant. The compensation can
happen until the FS term becomes almost zero. Above this
limit, if εsat continues to increase the energy density becomes

FIG. 5. Loss function �E fit to the total energy (a) and �E/A fit to the energy per particle (b) with respect to εsat for FS1–FS4 for H1–H5
and H7 (DHSL59 and DHSL69) in lines (symbols). Solid lines stand for the bare mass while dashed lines stand for the effective mass.

035806-11



GRAMS, SOMASUNDARAM, MARGUERON, AND REDDY PHYSICAL REVIEW C 105, 035806 (2022)

FIG. 6. (a) The isoscalar surface tension parameter σsurf,sat is represented against Esym for the six Hamiltonians H1–H5 and H7, and for
the FS models FS1 to FS4. The two Hamiltonians DHS are included with dots (squares) for the minimization to the total energy (energy per
particle). (b) Same for σsym. Silver band shows the values for the two Hamiltonians which best reproduce nuclear masses, H2 and H3.

too large to be able to reproduce the experimental masses, and
the quality of the fit gets worse and worse, as illustrated in
Fig. 5.

The groups FS3 and FS4—where the curvature term has
been incorporated—reduce the loss function compared with
the groups FS1 and FS2. The best models are H1, H2, H3, and
H4, among which H2 and H3 are even better. In the following
analysis, the predictions based on H1–H4 will be marked with
a light gray band, while those based on H2 and H3 will be
identified with a darker gray band, as illustrated in Fig. 5.

We also analyze in Fig. 5 the CLDM based on the Hamilto-
nians DHS. Note that it is still εsat which drives the goodness
of the model: the closer it is to −2.6/ − 2.8 MeV fm−3 the
better is the agreement with experiments. There is, however, a
reduction of the goodness of these models as the value of Lsym

departs from the one of the other models by 10 to 15 MeV, see
Table III. Since the DHS Hamiltonians do not show a good
reproduction of experimental masses, we neglect them on the
NS crust study. In the next section we show the Hamiltonians
which better reproduce nuclear masses, H1–H4, in a gray band
together with H5 and H7 for comparison.

Finally, we explore the correlation between the surface en-
ergy parameters σsurf,sat and σsurf,sym and the symmetry energy
Esym for the Hamiltonians H1–H7, the FS models FS1–FS4,
the prescription of the nucleon mass, and the loss function
used for the minimization, as shown in Fig. 6. Having or not
the curvature contribution in the CLDM is the main source of
difference between these correlations. With the contribution
of the curvature term the parameters σsurf,sat and σsurf,sym are
almost linearly correlated with Esym. The correlation between
σsurf,sym and Esym was already discussed in Ref. [23], but we
note here that this correlation is model dependent: without the
curvature term it becomes an anticorrelation, which can even
be almost flat if the minimization of the mass table is based
on the loss function �E/A.

It is further interesting to note that even if these correlations
are model dependent, they are crossing for the value of the
symmetry energy around 32 MeV, comparable to the one of
Hamiltonians H2 and H3. Therefore, selecting H2 and H3
Hamiltonians reduces strongly the model dependence of the

parameters σsurf,sat and σsurf,sym. In the future, it would be
interesting to check if this property remains while adding
more terms to the FS approximation.

The conclusion of this confrontation of the CLDM to the
experimental nuclear masses is that the Hamiltonians H1–H4,
which satisfy the condition εsat < −2.30 MeV fm−3, repro-
duce well the experimental masses over the mass table. A
better reproduction over the mass table is obtained for the
Hamiltonians for which εsat = −2.70(20) MeV fm−3. We
obtained the best results for the confrontation of the CLDM
to the experimental masses for the Hamiltonians H2 and H3,
which will represent in the following the best models for the
NS crust properties.

D. The electron and neutron gas contributions

At variance with isolated nuclei, the energetics of the NS
crust incorporates the contributions from the electron and
neutron gas, which we briefly present here for completeness.

Similarly to the contribution to the bulk properties for the
nuclear clusters, the energy of the neutron gas is given by the
MM as

eng(nng) = 1

nng
εMM (nng = nn, np = 0). (34)

Note that, by considering the same model providing the
core properties and the bulk and gas contribution in the crust,
our CLDM provides a unified description of the entire NS
[21,55,61].

Since the electron interaction between electrons and be-
tween electrons and protons have already been absorbed in
the Coulomb term, the remaining electron-gas contribution is
purely kinetic and reads for a relativistic gas,

εe = Ce

[
xe

(
1 + 2x2

e

)√
1 + x2

e − asinh(xe)
]
. (35)

where xe = h̄c kFe/mec2, the electron Fermi momentum kFe =
(3π2ne)

1
3 , and the overall constant Ce = (mec2)4/[8π2(h̄c)3].
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The electron chemical potential is expressed as

μe = mec2
√

1 + x2
e , (36)

and the pressure as

Pe = −εe + neμe. (37)

IV. NEUTRON STAR CRUST PROPERTIES

In this section, we derive the equilibrium configurations in
the crust of NS described by the CLDM (14). We first derive
the equilibrium equations and then present and discuss our
results for the NS equation of state.

A. Equilibrium equations in the crust

The CLDM cluster energy (14) is minimized under the
constraint of the baryon density nB defined as

nB = Acl + Ng

VWS
= nclu + nng(1 − u), (38)

= nng + 2ne

1 − Icl

(
1 − nng

ncl

)
. (39)

In Eq. (39), the density nB is expressed in terms of four of the
five independent variables: Acl, Icl, ncl, ne, and nng. We use the
Lagrange multipliers technique, as suggested in Ref. [44], to
minimize the μ-canonical energy density εμcan in the Wigner-
Seitz cell,

εμcan = εtot − μBnB. (40)

The total energy reads

εtot (Acl, Icl, ncl , ne, ng) = uεcl + (1 − u)εg + ne(mpc2

− mnc2) + nBmnc2 + ρe, (41)

where u = Vcl/VWS is the volume occupied by a nucleus in a
Wigner-Seitz cell, ρe is the electron energy density (with rest
mass), εg = εMM(nng = ng, np = 0) is the neutron gas energy
density and εcl = εMM(nn,cl, np,cl ) + εFS(Acl, Icl, ne, ncl ) is the
cluster energy density, with the finite-size contributions given
by Eq. (17) and discussed in the previous section.

In fact, εμcan coincides with the pressure, εμcan = −Ptot,
so minimizing εμcan is equivalent to maximizing the total
pressure Ptot. Moreover, minimizing the total energy Etot ≡
εtotVWS at fixed baryon density nB is equivalent to minimizing
the total Gibbs energy Gtot at fixed total pressure, as discussed
in Ref. [59].

We define the following thermodynamical quantities
(q = n, p),

Pcl ≡ n2
cl

∂Ecl/Acl

∂ncl

∣∣∣∣
Acl,Icl

, (42)

Pg ≡ −εg + ngμg, (43)

μcl,q ≡ μnuc,q + Pg

nB
, (44)

μe ≡ ∂Ee

∂Ne

∣∣∣∣
Ncl,Zcl

+ 2ne

(1 − Icl )Acl

∂ECoul

∂ne
, (45)

with

μnuc,n ≡ ∂Enuc

∂Ncl

∣∣∣∣
Zcl,Ne

, μnuc,p ≡ ∂Enuc

∂Zcl

∣∣∣∣
Ncl,Ne

. (46)

From Eq. (42), we deduce

Pcl = Pbulk + PCoul + Psurf + Pcurv, (47)

with obvious definitions for these partial contributions.
We impose the stationarity of the canonical potential (40)

with respect to the five independent variables, considering μB

as a constant parameter, and obtain the following equilibrium
relations [58]:

2ECoul = Esurf + 2Ecurv, (48)

Pcl = Pg, (49)

μcl,n = μg, (50)

μcl,n = μcl,p + μe + �mc2, (51)

μB = μg + 2ne

nclAcl(1 − Icl ) − 2ne

∂Esurf

∂ng

∣∣∣∣
Acl,Icl,ncl

, (52)

where �m = mp − mn. These equilibrium relations have a
physical understanding: Eq. (48) is an extension of the virial
theorem [36] including the curvature energy, Eq. (49) reflects
the mechanical equilibrium, Eq. (50) describes the chemical
equilibrium between the cluster and the gas in the r represen-
tation, and finally Eq. (51) assures the β equilibrium. The last
equation, Eq. (52), describes the baryon chemical potential
which fixes the baryon density.

Equations (48)–(52) are solved by using the robust
Newton-Raphson method. Note that, since the surface energy
(26) is independent of the gas density nng, Eq. (52) is sub-
sumed to μB = μg.

In the following, we analyze the role played by the different
terms in the CLDM and discuss their role in the uncertainties
on the various observables in the NS crust.

B. Impact of the FS terms and of the loss function

We first discuss the role of the FS terms and of the loss
function, see Eq. (33), used for the confrontation to experi-
mental nuclear masses.

The neutron gas Pg and the electron Pe pressures are shown
in Fig. 7 as a function of the baryon density nB. Recall that the
equilibrium condition in the WS cell imposes Pg = Pcl, and the
total pressure is Ptot = Pg + Pe. Figure 7(a) shows the impact
of the FS terms by fixing the FS parameters to their standard
values (without optimization), see Table IV, and the bulk
term is derived from SLy4MM. The neutron gas pressure is
largely impacted by the FS approximation at low density. The
differences between the curves reflects the different density at
which the outer-inner crust phase transition takes place. The
main differences are between the groups FS1, FS2 and FS3,
FS4, reflecting the important role of the curvature term. As the
density increases, the effect of FS terms on the cluster pressure
is weakened. Note that, at low densities, the electron pressure
dominates over the neutron gas pressure. As a consequence,
the total pressure will be weakly impacted by the FS terms,
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FIG. 7. Neutron gas and electron contribution to the pressure on the NS crust. (a) Shows the difference originated by the four finite-size
models (with standard parameters, see Table IV). (b) Shows the influence of the different optimization procedures (see Sec. III C).

but the equilibrium configurations at the bottom of the inner
crust could potentially be.

Figure 7(b) is similar to Fig. 7(a), but we show the electron
and gas pressure after the optimization of the FS parame-
ters, i.e., including the impact of the experimental nuclear
masses. The dashed (dotted) lines stand for the minimization
employing the loss function �E (�E/A). We observe that the
optimization of the FS parameters on the experimental nu-
clear masses considerably reduces the dispersion between the
various FS terms, as shown in Fig. 7(a). There are still some
differences, but they are smaller once the experimental nuclear
masses are considered. For instance, the transition density
between the outer and the inner crust is better determined. The
impact of the loss function, while not negligible, is also small
compared with the uncertainties from the FS terms.

We now analyze more globally the properties of the crust—
from outer to inner—in terms of composition (Acl and Zcl),
isospin asymmetries (Icl and Ye), and volume fraction u, see
Fig. 8. Here the bulk term is still SLy4MM. Note that the
right panels [Figs. 8(b), 8(d), 8(f), and 8(h)] show the same
quantities as the left panels [Figs. 8(a), 8(c), 8(e), and 8(g)],
but zooming in the crust-core transition region. The end of
the curves indicates the boundary of the inner crust where the
phase transition to uniform matter occurs. The crust-core tran-
sition is defined as the density at which the energy density in
the crust given by Eq. (41) matches with eMM the energy den-
sity in uniform matter given from the MM at the same density.

As expected, there is a hierarchy in the contributions of the
FS terms—from FS1 to FS4—since the largest difference is
observed between FS1 and FS2, then between FS2 to FS3,
and finally from FS3 to FS4. The different observables are,
however, not identically sensitive to the FS terms. For instance
Acl, Zcl, and Icl are impacted, while Ye, u, and ncc (the crust-
core transition density) are almost insensitive to the FS terms.
For reference, the magic number Zcl = 28 and the quasimagic
number Zcl = 40 are shown in Fig. 8(c). The number of pro-
tons Zcl in the inner crust is more stable employing FS4, which
includes curvature and exchange Coulomb terms, as well as a
proper treatment of the cluster density ncl in the equilibrium
equations, compared with the lower-order FS terms. We see
in the following that this stability is also due to the value
taken of psurf . The impact of the loss function is also minimal
for FS4 compared with the other FS terms. The composition

of the neutron star crust is important for the determination
of transport properties [62,63], which has a direct impact on
shear frequencies of neutron stars [57].

Note that, even if the effect of the FS terms on the crust-
core transition density ncc is small, it can still be discussed
from the right panels in Fig. 8. There is a reduction of ncc

from FS1 to FS2, a consequence of the consistent treatment of
the cluster density in the Coulomb and surface terms, which
decreases at high density in FS2 while it is fixed to be nsat

at all densities in FS1. The cluster energy thus gets higher
in FS2 compared with FS1 as the density increases and the
crust-core transition occurs at a lower density. From FS2 to
FS3, the positive curvature term contributing to the energy is
compensated in the fit to experimental nuclear masses by a
reduction of the surface term for densities given by the experi-
mental data (close to nemp

sat ). As a consequence FS2 and FS3 are
quite similar. However, the surface and curvature terms have
a different density dependence in FS2 and FS3. Then as the
global density increases in the crust, implying a decrease of
the cluster density, the FS term in FS3 becomes lower than the
FS term in FS2, and as a consequence ncc slightly increases.
Finally, the exchange Coulomb term is attractive, opposite to
the direct Coulomb term, but being a small contribution, it
very slightly pushes up ncc.

C. Impact of the bulk terms

In this section, we analyze the impact of the bulk terms by
varying the Hamiltonians and by analyzing the effect of the
effective nucleon mass. We contrast the predictions obtained
from the Hamiltonians H1–H4, which represent the best mod-
els reproducing the experimental nuclear masses, with the
Hamiltonians H5 and H7 for which the reproduction of the
experimental data is poorer.

The crust predictions by the chiral Hamiltonians H1–H5
and H7 within the FS4 model are displayed in Fig. 9 similarly
to Fig. 8. We notice that the Hamiltonians H5 and H7—
already excluded from the finite nuclei analysis—significantly
depart from the predictions by the Hamiltonians H1–H4,
which define the light gray band in Fig. 9. They predict lower
values for Acl, Zcl, Icl and slightly larger values for Ye and
u. Note also that, while the nucleon effective mass prescrip-
tion plays a role, it is much smaller than the uncertainty
in the Hamiltonians. The biggest uncertainties are for the
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FIG. 8. Crust composition (a)–(d), asymmetry (e) and (f), and volume fraction occupied by the cluster (g) and (h), for the different
ingredients in the CLDM within the SLy4MM interaction. FS1 (red), FS2 (magenta), FS3 (green), and FS4 (black) are as explained in Table V.
Dotted lines in panel (c) represent the magic numbers Zcl = 28 and Zcl = 40. Continuous lines represent the parameters fit to the total energy,
while dashed lines represent the fitting to the energy per particle. Left panels show outer and inner crust. Right panels show zoom at crust-core
transition.

composition (Acl, Zcl, Icl), as seen in the top panels. Note
that the uncertainty in the value of Zcl originating from the
Hamiltonian H1-H4 is small in the outer crust (about 2 to 4),
larger at the bottom of the inner crust (about 8 to 10), and then
becomes very large close to the core-crust transition (about 20
or more). The uncertainties from our best models H2, H3 is,
however, smaller. For instance, in the inner crust, these models
predict quite stable values for Zcl up to about 0.01 fm−3:
34 < Zcl < 40. The vertical gray band in Fig. 9(h) shows the
width for ncc corresponding to the two best Hamiltonians H2
and H3: ncc = 8.4–9.3 × 10−2 fm−3.

D. Impact of the surface parameter psurf

In Fig. 10 we illustrate the dependence of the EOS on the
surface parameter psurf for a reduced set of models. We thus
consider our two best models H2 and H3 with FS4 and we fix
the loss function to be �E . We vary psurf from 2.5 to 3.5 as
suggested in Refs. [38,48].

Recall that the precise value for psurf cannot be determined
from finite nuclei, since its influence on the surface energy
becomes important for isospin asymmetries which are way
beyond the experimental ones. It was first claimed in Ref. [48]
and is similarly illustrated in Fig. 4(b). Figure 10 shows that
psurf has, however, a remarkable impact in the high density
region of the inner crust, close to the core-crust transition. It
largely controls, for instance, the slope of Zcl close to the core-
crust transition: a large value of psurf (here 3.5) predicts a de-
crease of Zcl below 30 at high density while a low value (here
2.5) predicts a increase of Zcl above 40. The stability of Zcl at
high density is found only for a very specific value of psurf .

The impact of psurf on the core-crust density ncc is large
and comparable with the impact of the Hamiltonian as shown
in Fig. 9.

In conclusion, the impact of psurf on the composition of the
crust (Acl, Zcl, Icl) in the high-density region is large and quite
uncontrolled. More microscopic calculations are required in
order to better determine the value of psurf .
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FIG. 9. Crust composition (a)–(d), asymmetry (e) and (f), and volume fraction occupied by the cluster (g) and (h), for the different
ingredients in the CLDM. In the left panels we show the 6 H from outer to inner crust, on the right we show the 4 H allowed by the finite nuclei
analysis with a zoom close the crust-core transition. Dotted lines in panel (c) represent the magic numbers Zcl = 28, Zcl = 40, and Z = 50.
Dashed lines include the nucleon effective mass. All figures use FS4�E model.

V. GLOBAL NEUTRON STAR PROPERTIES

The structure of nonrotating neutron stars is provided by
the solution of the spherical hydrostatic equations in gen-
eral relativity, also named the Tolman-Oppenheimer-Volkoff
equations [64,65],

dm(r)

dr
= 4πr2ρ(r),

dP(r)

dr
= −ρ(r)c2

(
1 + P(r)

ρ(r)c2

)
d�(r)

dr
,

d�(r)

dr
= Gm(r)

c2r2

(
1 + 4πP(r)r3

m(r)c2

)(
1 − 2Gm(r)

rc2

)−1

, (53)

where G is the gravitational constant, c is the speed of light,
P(r) is the total pressure, m(r) is the enclosed mass, ρ(r) =
ρB(r) is the total mass-energy density, and �(r) is the gravita-

tional field. P and ρ have contributions from both the baryons
(PB, ρB) and the leptons (PL, ρL).

The four variables (m, ρ, P, �) are obtained from the
solution of the three TOV equations (53) and the EOS. In the
present calculation, the crust and core EOS are unified, i.e.,
the same nuclear interaction describes crust and core, as seen
in the previous sections. The tidal deformability �GW induced
by an external quadrupole field is expressed in terms of the
Love number k2 as �GW = 2k2/(3C5), where the compactness
is C = GM/(Rc2), and k2 is calculated from the pulsation
equation at the surface of NSs [67,68],

k2 = 8C5

5
(1 − 2C)2[2 − yR + 2C(yR − 1)]

×{2C[6 − 3yR + 3C(5yR − 8)]

+ 4C3
[
13 − 11yR + C(3yR − 2) + 2C2(1 + yR)

]
+ 3(1 − 2C)2[2 − yR + 2C(yR − 1)] ln(1 − 2C)}−1,

(54)
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FIG. 10. Same as Fig. 9. Comparison of three different values of the surface parameters psurf , within the H2MMm∗ FS4,�E and H3MMm∗ FS4,�E

models.

where yR is the value of the y function at radius R, yR =
y(r = R), and y(r) is the solution of the following differential
equation:

r
dy

dr
+ y2 + yF (r) + r2Q(r) = 0, (55)

with the boundary condition y(0) = 2 and the functions F (r)
and Q(r) defined as

F (r) = 1 − 4πr2G[ρ(r) − P(r)]/c4

1 − 2M(r)G/(rc2)
, (56)

r2Q(r) = 4πr2G

c4

(
5ρ(r) + 9P(r) + ∂ρ(r)

∂P(r)
[ρ(r) + P(r)]

)

× [1 − 2M(r)G/(rc2)]−1−6[1−2M(r)G/(rc2)]−1

− 4G2

r2c8
[M(r)c2+4πr3P(r)]2[1−2M(r)G/(rc2)]−2.

(57)

The NS moment of inertia is obtained from the slow rota-
tion approximation [69,70] as

I = 8π

3

∫ R

0
drr4ρ(r)

(
1 + P

ρ(c)c2

)
ω̄

�
eλ−�, (58)

where ω̄ is the local spin frequency, which represents the
general relativistic correction to the asymptotic angular mo-
mentum � and λ is defined as exp(−2λ) = 1 − Gm/(rc2).
The crust moment of inertia Icrust is deduced by considering
the contribution of the crust to the general expression (58).

As usual, for a given EOS the family of solutions is
parametrized by the central density or pressure or enthalpy.
The EOSs are characterized by their evolution in the mass-
radius diagram, where both masses and radii of compact stars
could in principle be measured, see also Ref. [71].

We show the mass and radius relations for families of
NS in Fig. 11. Horizontal error bars show the constrains
from NICER analysis of the pulsar J0030 + 0451 [1] and
J0740 + 6620 [2], and the constraint from Capano et al. [66]
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FIG. 11. Mass and radius relation. Observational constrains from NICER to the pulsar J0030 + 0451 and J0740 + 6620, and the constraint
from Capano et al. [66] combining multimessenger signals with nuclear physics are shown in error bars. Wheat-colored band shows the lowest
mass NS observed with a mass of 1.17M�. Marks on curves represent the density where causality is broken for a given EOS. Top panels show
the results for H1–H4 and (a) the influence of the optimization procedure and (b) the effect of the inclusion of the nucleon effective mass.
Bottom panels show the results for the two Hamiltonians that better reproduce nuclear masses, H2 and H3, (c) the impact of finite-size terms,
and (d) the impact of the surface parameter psurf . See text for more details.

combining multimessenger signals with nuclear physics. The
gray band shows the maximum mass constraint of 2M� ± 0.1
NS [30,31]. The wheat-colored band marks the lowest NS
mass observed of 1.17M� [72]. Figure 11(a) shows the influ-
ence of the Hamiltonians H1–H4 and the loss function, used
in the fit to experimental nuclear masses, on the mass-radius
diagram. All curves are calculated with FS4 model and in-
clude the effective mass m∗. The square symbols on the curves
shows the density above which causality is violated for a given
EOS. We note that the loss function has a very small influ-
ence for the mass-radius relation, especially in the domain of
observed NS (we observe a very small effect for H3 and H4
for masses below 1.1M�). The Hamiltonian H1 predicts the
smallest radius (about 11.5 km for 1.4M�), while H3 the high-
est one (about 12.3 km for 1.4M�). Note that this prediction is
also influenced by the extrapolation of the chiral Hamiltonian
at high density, which we do not discuss in this paper.

In Fig. 11(b) we show the impact of the nucleon mass
prescription (bare versus effective mass), considering the FS4
finite-size term and �E loss function. The impact of the
nucleon mass prescription is smaller than the one of the
Hamiltonian, but it is the largest one among all other terms
discussed here. Note that the use of the bare nucleon mass
makes all EOSs a bit stiffer compared with the use of the ef-
fective mass, but the overall impact on the radius is not larger
than about 100 m (less than 1% of the radius). The maximum
mass is also influenced by the effective-mass prescription. We
remark that it is increased by 0.15M� between the effective
mass and the bare mass.

In Fig. 11(c) we show the mass-radius predictions for the
two best Hamiltonians, H2 and H3, for which the different FS
approximation are shown, fixing the nucleon effective mass
and the �E loss function. We note that the finite-size terms
have essentially no effect on the global mass-radius relation.
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FIG. 12. Correlation of crust thickness for a 1.0M�, 1.2M�, and
1.4M� NS and the symmetry energy evaluated at nsat/2. Dashed lines
include the nucleon effective mass.

Finally, in Fig. 11(d) we show the effect of varying the
surface parameter psurf for H2 and H3, fixing FS4, m∗ and
the �E loss function. Although this parameter has proven
to be important for the composition and crust-core transition
density, for the macroscopic quantities shown Fig. 11(d) we
see no effect of psurf .

While the global mass-radius relation is rather insensitive
to the details of the energetic modeling of the crust, some
more specific properties could be. We show, for instance, in
Fig. 12 the correlation of the crust thickness CT with the
symmetry energy evaluated at half saturation density for three
NS masses. We note that, the higher Esym(n = nsat/2), the
smaller the crust thickness. By changing the effective mass
and the loss function, we also note small effects: the effective
mass reduces CT by about 5% compared with the bare mass,
while �E reduces by about 1% the CT compared with �E/A.

We have performed a more systematical study of the un-
certainties related to the crust properties, which is shown in
Table VI. We present in this table the values obtained by av-

TABLE VI. Average value (± uncertainty) on neutron star ra-
dius, crust thickness (CT), tidal deformability �, and fraction of
crust moment of inertia for a 1.0 and 1.4M� NS. Comparison among
the four Hamiltonians selected from the finite nuclei study, H1–H4,
the different fit prescriptions and the inclusion or not of the nucleon
effective mass. Noting that the biggest uncertainty comes from the
Hamiltonian choice (H1–H4).

R1.0 (km) CT1.0 (km) �1.0 (Icrust/I )1.0 (%)

11.84 (0.36) 1.65 (0.10) 2040 (375) 5.80 (0.42)

R1.4 (km) CT1.4 (km) �1.4 (Icrust/I )1.4 (%)

11.91 (0.34) 1.10 (0.07) 337 (56) 3.25 (0.25)

eraging over the different parameters, as well as the standard
deviations reflecting their present uncertainties.

We compare low-mass NSs (1.0M�) with canonical mass
NSs (1.4M�) for the following quantities: radius, crust thick-
ness, tidal deformability, and crustal moment of inertia. In
more details, we have varied the bulk term from H1 to H4,
with and without effective mass within the two loss functions,
keeping however FS4 fixed. We note a ≈3% uncertainty on
the radii. Note that this error could be larger if one assumes a
nonunified EOS, as shown in Ref. [61]. For the crust thickness
we found an error of ≈6%. The size of the crust impacts
directly the crust moment of inertia, therefore we see an error
of the same order for Icrust/I . Here we bring attention again for
the importance of using a unified EOS, since this error could
be as high as 10% [61] in case of an inconsistent treatment for
the NS crust and core. Regarding the tidal deformability of the
1.4M� NS, the models presented in this work predict �1.4 =
337(±56), therefore all models are inside the constraint from
the GW170817 event [3].

VI. CONCLUSIONS

In the present paper we produce a set of compressible
liquid-drop models (CLDMs) at different orders in the finite-
size terms. These CLDMs are qualified as unified models
for the NS crust and core since the bulk contribution in
these two regions are derived from the same model. Here we
use the meta-model fit to a set of Hamiltonians constructed
from chiral EFT interactions. Based on these ingredients,
we build a set of unified EOSs which allows us to explore
a number of approximations leading to uncertainties in the
crust EOS. We have then investigated the impact of various
nuclear approximations and model uncertainties on the pre-
diction for NS crust properties and global quantities. While
the present crust model could be extended in the future, we
reached some conclusions on the respective impact of var-
ious sources of uncertainties which are already interesting
for the understanding of NS modeling and of their predictive
power.

The confrontation of the CLDM to the experimental nu-
clear masses presented in this work allowed us to exclude
four Hamiltonians: H5, H7, DHSL59, and DHSL69. We also
predicted the existence of an upper max limit for the energy
density at saturation εmax

sat induced by the finite-size terms.
Based on the CLDM and chiral EFT Hamiltonians, we ob-
tained the following value for this upper limit: εmax

sat ≈ −2.30
MeV fm−3. The good models considered here (H2 and H3)
lead to an even more refined value for the energy density at
saturation, which is εbest

sat = −2.70(20) MeV fm−3. We have
also discussed the effect of including the curvature term in
the CLDM: this term leads to a substantial reduction of the
residuals between the CLDM and the experimental data and
also impacts the correlation of the surface parameters σsurf,sat

and σsurf,sym versus the symmetry energy Esym. In the latter
case, we found that the model dependence of this correlation
is minimal for our best Hamiltonians H2 and H3. The origin
of this effect remains to be understood. More material is
provided in the Supplemental Material [49].
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The analysis of NS crust shows that the finite-size terms
impact directly the crust composition (Acl, Zcl, and Icl) and
very marginally Ye and the volume fraction u. The impact of
the finite-size terms on the core-crust transition density ncc is
also small, while non-negligible. ncc is, however, very largely
impacted by the Hamiltonian and the surface energy parame-
ter psurf . We finally make predictions on the EOS properties
based on the best models we have (H1–H4 for the wider ones
and H2, H3 for the smaller ones). Our results somehow es-
tablishes new boundaries based on our present knowledge on
nuclear physics (χEFT and experimental nuclear masses) and
NS crust modeling (represented here by the different finite-
size terms employed in the CLDM). These boundaries are
important for the modeling of NS phenomenology, such as, for
instance, NS cooling or the understanding of quasi-periodic
oscillations (QPOs) in x-ray flares, oscillation modes in the
NS crust, as well as spin glitches observed in young NSs. In
the future, the present approach could be enriched by incor-
porating the contribution of pairing, neutron skins, different
geometries, and of shell effects, and better determination of
the parameter psurf shall also be explored.

Recall that several approximations were considered in the
present analysis, and it would be interesting to add further
terms in the leptodermous expansion to check, for instance,
if this expansion continues to provide a pertinent ordering of
the missing terms. Among important corrections for future ex-
tensions of the present work, let us mention the neutron skin,
the in-medium effects on the surface energy, as well as the
superfluid contribution from the neutron gas. Thomas-Fermi
and Hartree-Fock microscopic calculations also show that the
density distribution in the nuclear clusters is not uniform and
that shell effects play a role, see, for instance, Refs. [21,22]

among others. Finally, proton shell effects and neutron pairing
could play opposite roles, as illustrated in Ref. [43], based
on the Hartree-Fock-Bogoliubov approach: In the bottom lay-
ers of the crust where neutrons are nonexistent or very few,
the shell effects induced by protons dominate and impose
magicity for the proton number Z , while in the deep layers of
the crust where neutrons dominate, superfluidity is maximal
for midshell nuclei reducing the stabilizing influence of the
proton shells.

Finally, the uncertainties on NS macroscopic properties are
dominated by the Hamiltonians themselves. A realistic esti-
mation of this error requires however a unified description of
nuclear matter in the crust and the core of NS, as implemented
in this work.
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