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Neutron stars with crossover to color superconducting quark matter
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We follow the idea that the QCD phase diagram may be described by a crossover from a hadron
resonance gas to perturbative QCD using the switch function ansatz of Albright, Kapusta, and Young
[Phys. Rev. C 90, 024915 (2014)]. While the switch function could be calibrated at vanishing baryon chem-
ical potential with data from lattice QCD simulations, it has been suggested recently by Kapusta and Welle
[Phys. Rev. C 104, L012801 (2021)] that in the zero temperature limit, the switch function parameter μ0 could
be constrained by neutron star phenomenology, in particular by massive pulsars such as PSR J0740+6620 with
a mass exceeding 2 Msun. In this work we demonstrate that this procedure to constrain the QCD phase diagram
does crucially depend on the fact that cold dense quark matter is very likely in a color superconducting state.
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I. INTRODUCTION

The quest for the structure of the phase diagram of quan-
tum chromodynamics (QCD) in the plane of temperature and
baryon density is one of the great challenges in experimental
and theoretical particle and nuclear physics. Lattice gauge
theory simulations of QCD at vanishing and small net baryon
densities have revealed that the transition from hadronic mat-
ter to the deconfined quark-gluon plasma (QGP) is a crossover
[1]. Searches for the critical endpoint (CEP) of a possible first-
order phase transition at higher baryon densities and lower
temperatures, where lattice QCD could not reach at present
due to the sign problem, have been performed experimentally
with the beam energy scan (BES) programs of ultrarelativistic
heavy-ion collisions. In particular, the STAR experiment at
RHIC Brookhaven could not provide conclusive evidence for
a CEP from their phase one of the BES program. It has been
pointed out recently (see Ref. [2] and references therein) that
in order to reach the CEP in a heavy-ion collision, the center-
of-mass energies must be below

√
sNN ≈ 6 GeV, because the

temperature of the CEP should not exceed that of the chi-
ral transition in the chiral limit, which has been determined
by lattice QCD to be T 0

c = 132+3
−6 MeV [3]. On the other

hand, at low temperatures the transition is also likely to be
a crossover, due to the possible coexistence of chiral sym-
metry breaking and color superconductivity, which is induced
by the mixing of the corresponding order parameters by the
Fierz-transformed Kobayashi-Maskawa-’t Hooft determinant
interaction resulting in a second CEP [4] or even the absence
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of a CEP at all. Such a situation would be in accordance with
the concept of hadron-quark continuity [5–7].

In this situation that the structure of the QCD phase di-
agram is likely to be a crossover all over, an approach to a
unified description of the equation of state (EoS) of hadronic
and quark matter phases has been suggested [8], which is
based on an interpolation between a hadron resonance gas
EoS and a perturbative QCD approach to the QGP using a
switching function

S(T, μ) = exp [−(T0/T )q − (μ0/μ)r]. (1)

Here T is the temperature and μ the baryochemical poten-
tial. The exponents q and r are free parameters for which in
Ref. [8] it has been assumed that r = q = 4, 5. The tempera-
ture T0 sets the scale for the transition on the temperature axis
and has been calibrated by comparison with the EoS of lattice
QCD thermodynamics. In order to fix the scale μ0 for the
transition in the direction of the baryochemical potential it has
been suggested recently by Kapusta and Welle [9] to employ
a comparison with observational data for the maximum mass
of neutron stars that is uniquely determined by the EoS of
nuclear matter in β equilibrium at T = 0.

However, in their study [9] Kapusta and Welle employed
a rather rudimentary EoS for T = 0 quark matter, which in
particular neglected the effects of color superconductivity that
were considered essential for the emergence of a crossover
transition at low temperatures.

In the present work, we will follow the idea of Ref. [9] to
fix the switch function in the T = 0 limit by a comparison
with neutron star phenomenology. Going beyond their setup,
we will employ a color superconducting quark matter EoS
with a diquark pairing gap �, allowing also for an effec-
tive bag pressure Beff that mimics confining effects. As the
width of the crossover transition is expected to be temperature
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dependent and become narrower for lower temperatures, even
in the crossover-all-over scenario, we will investigate the in-
fluence of narrowing the switching function by increasing the
r parameter.

We will use modern multimessenger data from the NICER
experiment [10] for constraining the mass-radius data of the
massive pulsar PSR J0740+6620 [11] and from the LIGO-
Virgo Collaboration for the tidal deformability of a neutron
star at 1.4 Msun, extracted from the gravitational wave signal
of the binary neutron star merger GW170817 [12].

II. EQUATION OF STATE

A. Quark matter

We will use the form of EoS for color superconducting
quark matter phases that was suggested in Alford et al. [13]
and recently used again in Ref. [14]

Pq(μ) = ξ4a4

4π2

(
μ

3

)4

+ξ2a�
2 − ξ2bms

π2

(
μ

3

)2

+ μ4
e − Beff ,

(2)
where for the color-flavor-locking (CFL) phase holds that
ξ4 = 3, ξ2a = 3, and ξ2b = 34. As suggested in Ref. [9],
we will consider massless quarks so that mu = md = ms = 0
and electric neutrality is manifest even without leptons, i.e.,
μe =0. For the coefficient a4 = 1 − 2αs/π we will use here
the constant values a4 = 0.7 or a4 = 0.3 that could be attained
in the nonperturbative domain relevant for hybrid neutron
stars. The resulting three-flavor, color superconducting quark
matter EoS reads

Pq(μ) = 3

4π2
a4

(μ

3

)4
+ 3

π2
�2

(μ

3

)2
− Beff . (3)

For the quark number density follows

nq(μ) = 3
∂Pq(μ)

∂μ
= 3

π2
a4

(μ

3

)3
+ 6

π2
�2

(μ

3

)
, (4)

and the energy density is thus

εq(μ) = −Pq(μ) +
(

μ

3

)
nq(μ)

= 9

4π2
a4

(
μ

3

)4

+ 3

π2
�2

(
μ

3

)2

+ Beff . (5)

An interesting quantity is the squared sound speed, which
serves as a measure for the stiffness of the EoS. It is obtained
as

c2
s (μ) = dPq(μ)

dε(μ)
= nq(μ)

μdnq(μ)/dμ
= 1 + ζ (μ)

3 + ζ (μ)
, (6)

where ζ (μ) = 2(3�)2/(a4μ
2). We like to discuss two limits.

For normal quark matter, when � = 0, the squared sound
speed obeys the conformal limit case c2

s = 13. Immediately af-
ter the deconfinement transition, when μ ≈ μc ≈ 1150 MeV
and for large diquark pairing gap, � ≈ 150 MeV, the pa-
rameter ζ (μc) ≈ 1 may be attained for a4 = 0.3 so that
c2

s (μc) = 1/2. This value has been obtained as a typical re-
sult for several parametrizations of a instantaneous nonlocal
chiral quark model [15]. Within an instantaneous separable

parametrization of the nonlocal chiral quark model that fits
the three-momentum dependence of the quark mass function
obtained in Coulomb gauge lattice QCD it has recently been
demonstrated [16] that the speed of sound for zero temper-
ature quark matter in β equilibrium attains almost constant
values as a function of the energy density, in the vicinity of
c2

s = 0.5 ± 0.1 depending on the values of vector meson and
diquark coupling. It is the main aim of this work to investi-
gate the modifications relative to the hadron-to-quark matter
crossover scenario discussed in Ref. [9] that result from the
introduction of the color superconductivity term proportional
to �2μ2 in the equation of state. For modeling the hadronic
matter phase we use the description of pure neutron matter as
given in the nonlinear Walecka model, as in Ref. [9].

B. Neutron matter

The pressure and energy density of pure neutron matter in
the nonlinear Walecka (NLW) model are given by [17,18]

Ph(n) = PFG + 1

2

[(
gω

mω

)2

+ 1

4

(
gρ

mρ

)2]
n2

− 1

2

(
mσ

gσ

)2

(gσ σ )2 − 1

3
bm(gσ σ )3 − 1

4
c(gσ σ )4,

(7)

εh(n) = εFG + 1

2

[(
gω

mω

)2

+ 1

4

(
gρ

mρ

)2]
n2

+ 1

2

(
mσ

gσ

)2

(gσ σ )2 + 1

3
bm(gσ σ )3 + 1

4
c(gσ σ )4,

(8)

where the Fermi gas pressure and energy density are analyti-
cally given as [19]

PFG = 1

3π2

∫ kF

0
dk

k4

E∗(k)

= 1

8π2

[
2

3
E∗

F k3
F − m∗2E∗

F kF + m∗4 ln

(
E∗

F + kF

m∗

)]
,

(9)

εFG = 1

π2

∫ kF

0
dkk2E∗(k)

= 1

8π2

[
2E∗

F
3kF − m∗2E∗

F kF − m∗4 ln

(
E∗

F + kF

m∗

)]
.

(10)

The neutron Fermi momentum kF is given by the baryon
density n = k3

F /(3π2) in pure neutron matter, while the Fermi
energy is E∗

F =
√

k2
F + m∗2 with the neutron effective mass

m∗ = m − gσ σ . The scalar mean field is given by

gσ σ = (gσ /mσ )2[ns − bm(gσ σ )2 − c(gσ σ )3], (11)

where the scalar density ns is defined as

ns = 1

π2

∫ kF

0
dkk2 m∗

E∗(k)
= 1

m∗ (εFG − 3PFG). (12)
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FIG. 1. The influence of the parameters in the EoS (3) for the quark pressure as a function of the baryochemical potential: the a4 parameter
(left panel), the diquark pairing gap (middle panel) and the bag constant (right panel). The quark matter models are defined by the three
parameters in round brackets (a4, �[MeV], B1/4

eff [MeV]). For comparison, the pressure of pure neutron matter in the nonlinear Walecka (NLW)
model is shown by the black dashed line.

With these above expressions (9) and (10), the scalar density is

ns = m∗

2π2

[
E∗

F kF − m∗2 ln

(
E∗

F + kF

m∗

)]
. (13)

This analytic expression can be inserted in Eq. (11), which
can be solved as a transcendental equation for the scalar mean
field in dependence on the baryon density n. With this solu-
tion, the EoS (7) and (8) are determined and represent the EoS
P(ε) for the NLW model of neutron matter in parametric form.

In order to construct the transition from neutron matter
to quark matter, the pressure is required as a function of the
chemical potential. This is obtained from (7) and (8) by using
the thermodynamic relation

μ = (P + ε)/n. (14)

In Fig. 1 the influence of different parameters in the quark
model on the EoS is displayed and discussed. Throughout the
paper we use for characterizing the quark matter models a
shorthand notation with three parameters in round brackets
(a4,�[MeV], B1/4

eff [MeV]). For a comparison, the pressure of

pure neutron matter as a model for the hadronic phase in the
core of a neutron star is described by the nonlinear Walecka
(NLW) model, shown by the black dashed line. From the
relative position of the quark and neutron matter curves, one
can conclude for the possibility of a first-order phase transition
by a Maxwell construction and deduce its location from the
possible crossing of the curves. As one can see in the left
panel of Fig. 1, lowering the a4 parameter stiffens the quark
matter and makes a Maxwell construction impossible when
the slope dP/dμ (the density) of the quark matter curve is
lower than that for neutron matter. In such a case, a crossing
of both curves would be unphysical, because it would describe
a transition from quark matter at low chemical potentials to
neutron matter at higher ones since the system has to follow
the curve with the larger pressure. A first-order phase transi-
tion described by a Maxwell construction always leads to a
softening of the EoS.

The crossover construction discussed below will enforce
that the system switches for increasing chemical potentials
from the hadronic to the quark matter phase. In this case it

FIG. 2. The effect of varying the switch parameter μ0 on the pressure as a function of the baryochemical potential for � = 0 (left panel)
and � = 200 MeV (right panel). Increasing μ0 shifts the crossover transition to higher chemical potentials while a large diquark pairing gap
increases the quark pressure in the hybrid EoS.
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FIG. 3. Top row: Pressure as a function of the energy density for the two cases of Fig. 2 with vanishing diquark gap � = 0 (left panel),
� = 200 MeV (middle panel) for varying switch parameter and the case � = 0 for varying bag constant Beff at fixed μ0 = 1600 MeV (right
panel). Bottom row: Squared sound speed c2

s as a function of the energy density for the same cases as in the top panels.

is possible to model a transition from a soft to a stiffer EoS.
In the middle panel of Fig. 1, we examine the variation of the
diquark pairing gap �. For a larger gap the transition is shifted
to higher densities and it is accompanied with a stiffening of
the matter. An increase in the bag constant, as shown in the
rightmost panel, shifts the critical pressure of the Maxwell
construction (if it is possible as in this example) to higher
densities. A stiffening crossover transition, however, is moved
to lower densities by the increase of the bag constant.

C. Crossover EoS

In order to construct the crossover transition from neutron
matter to color superconducting quark matter, we apply the in-
terpolation method that was introduced in Ref. [8] and applied
in Ref. [9] for describing this crossover in neutron stars

P(μ) = S(μ)Pq(μ) + [1 − S(μ)]Ph(μ), (15)

whereby for the switch function we adopt the generalized
form

S(μ) = exp [−(μ0/μ)r], (16)

where r = 4, which was also used in Ref. [9]. Since P(μ)
is a thermodynamical potential, we can derive the other

thermodynamic relations from it as

n(μ) = dP(μ)/dμ

= S(μ)nq(μ) + [1 − S(μ)]nh(μ)

+ S′(μ)[Pq(μ) − Ph(μ)] (17)

and

ε(μ) = −P(μ) + μn(μ)

= S(μ)εq(μ) + [1 − S(μ)]εh(μ)

+ r

(
μ0

μ

)r+1

S(μ)[Pq(μ) − Ph(μ)], (18)

therein the relation S′(μ) = dS(μ)/dμ = rμr
0/μ

r+1 S(μ)
has been used. Higher-order exponents (r > 4) in the switch
function make the transition narrower and allow us to suppress
the quark matter below and the hadronic matter above the
transition.

In Fig. 2 we demonstrate how increasing the μ0 parameter
in the switching function shifts the position of the crossover
between hadronic and quark matter to higher chemical poten-
tials. While in the left panel for vanishing diquark pairing gap
the quark pressure is very similar to that of the NLW model for
hadronic matter and the set of crossover EoS covers a rather
narrow band, the increase of the quark pressure due to the
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FIG. 4. Pressure (top row) and c2
s (bottom row) as functions of the energy density for varying diquark gap (left columns), varying width

parameter r of the switch function (middle column) and varying switch position parameter μ0 (right column) for strong αs correction a4 = 0.3
(left and middle panels) and a4 = 0.243 (rightmost panels). For switch positions at not too high chemical potential, μ0 = 1200 MeV (left and
middle panels) and μ0 < 2000 MeV (right panels), one observes a stiffening of the EoS relative to the NLW neutron matter case.

large diquark gap � = 200 MeV in the right panel of Fig. 2
leads to a wider band of crossover EoS.

In Fig. 3 we show in the top row three cases of parametric
dependences of the pressure as a function of the energy den-
sity for which in the bottom row of panels the corresponding
squared sound speed is shown versus energy density. The
two leftmost cases correspond to the two panels of Fig. 2
with vanishing diquark gap � = 0 (left panel), � = 200 MeV
(middle panel) for varying switch parameter. The case � = 0
for varying bag constant Beff at fixed μ0 = 1600 MeV is
shown in the rightmost panels. Comparing the two leftmost
columns one observes that diquark pairing (color supercon-
ductivity) stiffens the EoS when the crossover transition
occurs at not too high (energy) densities. For switch param-
eters at or above μ0 = 2000 MeV, the EoS with and without
color superconductivity become indistinguishable. From the
rightmost panels one observes that in the presence of the
switch parameter, the variation of the bag constant has a minor
effect on the crossover EoS. In a narrow domain of energy
densities, the EoS switches from neutron matter to CSS quark
matter behavior.

In Fig. 4, we investigate the effect of varying the diquark
gap (left columns), varying the width parameter r of the

switch function (middle column), and varying the switch po-
sition parameter μ0 (right column) on the pressure (top row)
and the squared sound speed (bottom row) as functions of
the energy density for strong αs correction a4 = 0.3 (left and
middle panels) and a4 = 0.243 (rightmost panels). For switch
positions at not too high chemical potential, μ0 = 1200 MeV
(left and middle panels) and μ0 < 2000 MeV (right panels),
one observes a stiffening of the EoS relative to the NLW
neutron matter case.

Generally, a switching function can always be applied.
However, there is the question if such a crossover transition
describes a physical or an unphysical crossing. An unphys-
ical crossing is the case when at low densities (before the
crossing) the quark matter pressure is above the hadronic one
and vice versa at high densities (after the crossing). If such
an unphysical crossing appears, it is better to use a replace-
ment interpolation method than a mixing (see Ref. [20] for
a comparison), as it has been discussed in Refs. [21,22]. A
characteristic feature of such a crossover construction is that
it results in a stiffening of the EoS, which is a feature very
welcome for modern neutron star phenomenology [23].

There are several approaches to that problem. The easi-
est one defines upper and lower boundaries of the transition
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FIG. 5. Mass vs. radius (top panels) and tidal deformability vs. mass (bottom panels) for the EoS cases discussed in Fig. 2. None fulfills
simultaneously both observational constraints, from the combined observations by NICER and XMM Newton of the millisecond pulsar
J0740+6620 according to the analysis of Miller et al. [10] shown as the gray hatched region in the top panels and from the tidal deformability
of GW170817 as reported in Ref. [12].

region outside of which the respective EOS can be trusted and
inserts an interpolating function [21] in between.1

D. Calculation of astrophysical observables

From the equations of state, we derive possible neutron
star radii and masses. These can directly be compared to
observations from the combined observations by NICER and
XMM Newton of the millisecond pulsar J0740+6620 accord-
ing to the analysis of Miller et al. [10]. Additionally, the
tidal deformability  can be calculated for the considered
sequence of neutron star masses and be compared to the con-
straint obtained from the gravitational wave signal that was

1In the generalization to the QCD phase diagram at finite temper-
atures, the transition region of the EoS can either be replaced (for
example by an Ising model) or interpolated in a corridor between
the bordering hadronic and quark matter phases. Such a transition
corridor allows us also to insert a CEP with the characteristic critical
exponents in its vicinity [24–26]. On this basis the effects of a
CEP on the phenomenology (e.g., the hydrodynamical evolution of a
heavy-ion collision and related observables) can be studied.

observed for the binary neutron star merger GW170818 [12]
in the mass range M ≈ 1.4 Msun. To evaluate the neutron star
properties one has to solve the Tolman-Oppenheimer-Volkoff
(TOV) equations for a static nonrotating, spherical-symmetric
star [27,28]

dP(r)

dr
= G(ε(r)) + P(r))(M(r) + 4πr3P(r))

r(r − 2GM(r))
(19)

dM(r)

dr
= 4πr2ε(r), (20)

with P(r = R) = 0 and P(r = 0) = Pc as boundary condi-
tions for a star with mass M and radius R. The astrophysical
observables were calculated using the code by Motornenko
[29]. For all solutions of the TOV equations with the hybrid
neutron star EoS the crust EoS by Baym, Pethick, and Suther-
land (BPS) [30] has been added.

III. RESULTS

For the parametrization of the NLW model we use the
values given in the textbook by Glendenning [18], the ef-
fective mass m∗/m = 0.8, the incompressibility of symmetric
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FIG. 6. Like Fig. 5, but for the EoS cases discussed in Fig. 4. Only the color superconducting model with sharp crossover parameter
r = 6 and sufficiently large gap (� = 100, 120 MeV) at low crossover position μ0 = 1200 MeV can fulfill both constraints from observation
simultaneously.

nuclear matter at saturation K = 250 MeV and the asymmetry
energy at saturation Es = 32 MeV. With these phenomeno-
logical data the parameters mσ = 550 MeV, gσ /mσ = 8.692,
gω/mω = 4.0243, gρ/mρ = 4.4369, b = 8.898 × 10−3, and
c = 7.708 × 10−3. The parameter of the switch function is
chosen as μ0 = 1400, 1500, 1600, 1800 MeV.

It is interesting to consider the squared sound speed as a
quantity related to the stiffness of the EoS, applying Eq. (6).
Finally, we use the crossover EoS to solve the TOV equa-
tions for stellar structure and obtain the corresponding mass
radius and tidal deformability-mass sequences that can be
compared with observational data, see Figs. 5 and 6.

We distinguish two classes of parametrizations. The first
class has an O(αs) correction to the quark matter EoS based
on the standard one-loop running of the QCD β function that
results in a moderate stiffening of the EoS with a typical value
of a4 = 0.7. This class was considered in Ref. [9] and it would
allow a traditional Gibbs construction of the phase transition,
with values for � and Beff that would balance each other. The
second class uses much lower values for the a4 parameter
that could be motivated by a nonperturbative enhancement
of the strong coupling and a corresponding stiffening of the
quark matter EoS to a degree that exceeds the stiffness of
the nonlinear Walecka model EoS and would entail an un-

physical crossing in the P-μ plane if one were to attempt
a Gibbs construction. Typical values are a4 = 0.3 or lower.
One recognizes this class of crossover EoS by the effect that
their sound speed exceeds that of the NLW model at energy
densities that are typical for compact star interiors, see bottom
panels of Fig. 4. Such a behavior of the squared sound speed is
typical for the microscopic realization [31] of the quarkyonic
matter hypothesis [32] in which the unifying concept of quark
and hadron matter is realized according to which in high-
density matter baryons populate the surface of a Fermi sea of
quarks.

From the comparison with the recent mass-radius data of
the massive pulsar PSR J0740+6620 [10] that were obtained
by the Maryland-Illinois team of the NICER collaboration,
we may conclude that for the first class of models a too small
value for the switch function parameter μ0 < 1400 MeV could
be excluded, because it would lead to a too low maximum
mass of pulsars, which is excluded by observation, see also
Ref. [11]. A similar conclusion has been drawn by Kapusta
and Welle [9], but with a different value for the limiting
μ0 parameter. This may be attributed to the fact that in our
work we allow for color superconductivity in the quark matter
phase, which has an influence on the stiffness of the neutron
star matter in the relevant region that determines the maximum
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mass of pulsars. However, when considering in addition the
tidal deformability constraint from GW170817 [12], we have
found no parametrization of the quark matter model and the
switching function that would simultaneously fulfill both con-
straints from neutron star phenomenology.

For the second class of models, however, we have found
a parametrization that would fulfill both, tidal deformability
and mass-radius constraints. It corresponds to a4 = 0.3, a
diquark pairing gap of � = 120 MeV and B1/4

eff = 140 MeV
with a low switch function parameter μ0 = 1200 MeV, see
Fig. 4. A narrowing of the transition region by an increased
switch function exponent r = 6 helps to avoid a modification
of the resulting crossover EoS at low densities, where it should
remain in accordance with the known properties at nuclear
saturation as parametrized in the NLW model.

IV. CONCLUSIONS

We have performed a reanalysis of the switch function
parameters for a unified description of quark-hadron matter
with a crossover transition by employing modern mass-radius
and tidal deformability constraints from multimessenger as-
tronomy. We find that for a simultaneous description of these
constraints it is essential to enrich the pQCD ansatz for the
quark matter EoS with nonperturbative aspects. These are a
low a4 parameter pointing to a nonperturbative enhancement
of the strong coupling at low energies, a nonvanishing di-
quark pairing gap indicating the color superconducting state
of quark matter and an effective bag constant for confin-
ing effects. Moreover, we find it reasonable to narrow the
transition by using a larger exponent r =6 than in Ref. [9]
and favor a lower value of the switch function parameter

μ0 = 1200 MeV. The influence of such a low crossover on
the stiffness of the EoS is limited. In general, one should be
very careful when using such switching functions.

The present work uses the simplifying assumption of a
pure neutron matter EoS in the hadronic phase and massless
quarks in the quark matter phase so that no leptons in β

equilibrium needed to be considered. In a more realistic study,
these assumptions should be relaxed. In order to obtain the fa-
vorable crossover EoS in the multiparameter model presented
here, one should invoke a Bayesian analysis [21,33,34]. The
approach using the switching function should be contrasted to
the methods that employ an interpolating (polynomial) func-
tion within fixed limits for the density [20,21,35], to obtain
the crossover transition.
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