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The possible presence of deconfined matter in the cores of massive neutron stars is the subject of a large
debate. In this context, it is important to set limits on the size and characteristics of a hypothetical quark
core compatible with the present astrophysical constraints. To this aim, we present a Bayesian analysis of
the properties of nonrotating hybrid stars at equilibrium with quark matter cores, as described by the SU(3)
Nambu–Jona-Lasinio (NJL) model. The hadronic phase is described by a unified metamodeling approach, with
a prior parameter space covering the present uncertainties on nuclear matter properties with nucleonic degrees
of freedom. The parameter space of the NJL model includes vector-isoscalar and vector-isovector couplings
and, additionally, an effective bag constant for the quark pressure is introduced as a free parameter. The phase
transition is assumed to be first order with charge neutral phases, following the Maxwell construction. Our
Bayesian framework includes filters on the experimental and theoretical low-density nuclear physics knowledge
(atomic masses, ab initio calculations of the EoS) and high density constraints from astrophysical observations
(maximum mass of J0348 + 0432, binary tidal deformability of the GW170817 event). We find that microscopic
vector interactions play an important role in quark matter in order to stiffen the equation of state sufficiently to
reach high star masses, in agreement with previous studies. Even within a very large prior for both the hadronic
phase and the quark phase and the important freedom brought by the effective bag constant, our posterior
quark cores tend to be relatively small and only appear in very heavy stars (M � 2M�). Coincidentally, the
inclusion of the nucleon-quark transition (deconfinement transition) only weakly affects the radii of compact
stars, foreshadowing a very low observability of a possible phase transition using x-ray radii measurements.
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I. INTRODUCTION

The color confinement and the characterization of the
phase structure of quantum chromodynamics (QCD) at finite
temperature and density remains a challenge to this day, after
years of experimental and theoretical efforts. If not at all well
understood theoretically, the color deconfinement of QCD is
at least quite well described at finite temperature and zero
or small density, for example by lattice QCD (LQCD) cal-
culations or in earthbound experiments in hadronic colliders.
It occurs as a crossover deconfinement phase transition (PT)
around a temperature kBT0 ≈ 160 MeV [1–5].

One of the most decisive results in QCD would be to de-
termine its degrees of freedom and equation of state (EoS) at
finite temperature and large density, a region where LQCD is
not applicable in general and experiments cannot easily reach
as of yet. Hence, the proof of the existence and the character-
ization of a deconfinement transition in compact stars would
be a fundamental achievement.

*a.pfaff@ip2i.in2p3.fr

It is often assumed that neutron stars may be a laboratory to
study high density quark phases of QCD, albeit a very distant
one, despite the fact that no direct probe of deconfined matter
can be measured (in contrast, probes such as the dileptons
can give us more direct information in colliders). One has to
rely on less direct information such as x-ray spectra or grav-
itational wave (GW) signals during mergers that need to be
interpreted via effective models of QCD to gain information
on the QCD transition characteristics; see Refs. [6–10] for
some recent works.

In the absence of a satisfactory and controlled computation
of the EoS from first-principles QCD with quark and gluonic
degrees of freedom [11,12], a large number of phenomeno-
logical approaches have been proposed, such as bag models,
the quark-meson coupling model, and Nambu–Jona-Lasinio
(NJL) models [13–24], all dependent on different and largely
unconstrained parameters. To appreciate the model depen-
dence of the predictions, it is therefore very important to
perform studies where the parameter space is largely studied,
at least in the framework of a specific effective approach
[25–27]. In this regard, the Bayesian tool has proved to be es-
sential in order to extract useful information on the parameter
space from the available experimental constraints [28–33].
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In this paper, we propose an approach along those lines
within a Bayesian framework based on hybrid EoSs with
the Nambu–Jona-Lasinio (NJL) model on the quark matter
side and a general metamodelization of nucleonic matter on
the hadronic side. We confirm previous results with similar
techniques and models [27,34] showing that it is possible to
have quark cores in high-mass neutron stars respecting the
current astrophysical constraints, but that unfortunately the
observations are still not accurate enough to decide on the ex-
istence of a deconfined core. These conclusions are reinforced
by the fact that, with respect to the work of Refs. [27,34], we
use a fully controlled nucleonic EoS, that contains a unified
treatment of the NS crust, and includes both constraints from
nuclear mass measurements and from ab initio nuclear theory.

This paper is organized as follows. In Sec. II, we will
review our methods: the models used on the hadronic and
quark sides, the modelization of the transition as first order,
particularly focusing on the role of the so-called bag con-
stant, and finally the Bayesian framework. In Sec. III, we will
present our results: the posterior distributions of the parame-
ters and the resulting EoS are first discussed, then we will take
a look at the parameters and observables correlations, finally
concluding on the possibility of having quark cores in heavy
neutron stars.

II. METHOD

In this section, we present the models used to construct the
hybrid equations of state, as well as the method employed to
implement the subsequent Bayesian analysis of hybrid stars
properties. Throughout all this paper, we use the natural unit
system in which h̄ = c = 1.

A. The nuclear metamodel

In order to explore consistently the current theoretical
uncertainty on the nuclear equation of state, we use at low
densities a metamodel of nuclear matter [35,36] extended
to include surface terms [37–39] to allow a consistent and
unified description of the crust. This approach is based on
the hypothesis that the total baryonic density nB can be
simply written as the sum of the neutron nn and proton np

densities, nB = np + nn. The energy per particle of infinite
nuclear matter eN is expressed as a Taylor expansion in the
rescaled baryon density x = (nB − nsat )/3nsat and the isospin
asymmetry δ = (nn − np)/nB around the saturation density of
symmetric nuclear matter nsat:

eN (nB, δ) = Esat + 1

2!
Ksatx

2 + 1

3!
Qsatx

3 + 1

4!
Zsatx

4

+ δ2

(
Esym + Lsymx + 1

2!
Ksymx2

+ 1

3!
Qsymx3 + 1

4!
Zsymx4

)
+ · · · . (1)

The coefficients of this expansion, also known as the nuclear
empirical parameters (NEPs), entirely determine the nuclear
density functional as long as it remains an analytic function,

which is the case as long as no phase transition occurs and the
EoS remains nucleonic in nature.

To improve the convergence of the expansion, a nonrel-
ativistic kinetic term (which involves noninteger powers of x
and δ) is added, and an exponential correction factor governed
by an additional parameter b is applied in order to control the
behavior of the EoS in the zero-density limit (see [37,40] for
details). The final expression for the energy per baryon reads

eN = 3

20m
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3π2nB

2

)2/3[(
1 + κsat

nB
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)
f1 + κsym

nB
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f2

]

+
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(
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α + V iv
α δ2

)xα

α!
− (ais + aivδ2)x5e−b nB

nsat , (2)

where m = 939 MeV is the nucleon mass, and the isospin
dependence of the kinetic energy term is governed by the
functions

f1(δ) = (1 + δ)5/3 + (1 − δ)5/3, (3)

f2(δ) = δ((1 + δ)5/3 − (1 − δ)5/3). (4)

The interaction parameters V is
α and V iv

α of the metafunc-
tional Eq. (2) are one-to-one related to each of the NEPs in
Eq. (1), while the two parameters κsat and κsym are linked
to the Landau effective mass m�

sat and isospin mass splitting
�m�

sat at saturation. The parameters ais and aiv are entirely
fixed by the condition at zero density. Explicit expressions
for each of these quantities can be found in Ref. [35]. We
will gather the full parameter set in a compact form with the
quantity XN :

XN = {nsat, Esat, Ksat, Qsat, Zsat, Esym, Lsym,

Ksym, Qsym, Zsym, m�
sat,�m�

sat, b}. (5)

In order to correctly describe the inhomogeneous structure
corresponding to the crust of neutron stars, it is crucial to
take into account the finite size effects such as surface and
Coulomb, associated to the crust energetics in addition to the
bulk part governed by Eq. (1). We use a compressible liquid
drop model (CLDM) to describe the mass of a finite nucleus
with Z protons and A = N + Z nucleons as [37,38]

M(A, Z ) = Nmn + Zmp + eN (n0, I ) + Ec + Es, (6)

where mn(p) are the bare neutron and proton masses, n0 is
the equilibrium bulk density of the nucleus which, in the
vacuum, corresponds to the equilibrium density of nuclear
matter at asymmetry δ = I = (N − Z )/A, Ec = 3e2Z2/5R is
the Coulomb energy of a uniformly charged sphere of radius
R = (3A/(4πn0))1/3, and the surface energy Es is given by

Es(A, Z ) = 4πR2σ + 8πRσc. (7)

The isospin dependent surface and curvature tensions σ, σc

are taken as [37,38,41,42]

σ (A, Z ) = σ0
24 + bs

(Z/A)−3 + bs + (N/A)−3
, (8)

σc(A, Z ) = 5.5 σ0,c
σ

σ0

(
β − Z

A

)
, (9)
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TABLE I. Minimal and maximal value considered for each of the parameters of the two phases of the hybrid EoS.

nsat Esat Ksat Qsat Zsat Esym Lsym Ksym Qsym Zsym B�

X (fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) m�
sat/m �m�

sat/m b ξω ξρ (MeV fm−3)

Xmin 0.15 −17.5 190 −1200 −4000 27 20 −400 −2000 −5000 0.6 −0.1 1 0 0 −20
Xmax 0.17 −14.5 300 1000 5000 37 80 300 5000 5000 0.8 0.2 10 0.5 1 20

The additional parameters Xσ = {σ0, σ0,c, bs, β} entering
Eqs. (8) and (9) should in principle be added to our parameter
set in the nucleonic sector. However, since the mass of nu-
clei is inherently dependent on both bulk and surface effects,
our precise experimental knowledge of nuclear masses brings
strong correlations between the parameters describing the two
effects. We take advantage of this correlation to fix the surface
parameters Xσ for each parameter set XN , by performing a fit
of the experimental masses [43] using a least-squares method.

It was verified in [35] that an expansion up to fourth order
in x and first order in δ2, such as the one proposed by Eq. (2),
has enough flexibility to accurately reproduce the behavior of
a very large class of nuclear models up to densities a few times
saturation density. Therefore, this metamodel can be used
to freely explore the theoretical uncertainty on the nuclear
EoS, allowing an in-depth study of the role of each NEP
independently of the correlations that might emerge within a
specific choice of the nuclear energy functional. In this spirit,
and taking into account the current experimental knowledge
on the lowest order NEP, we consider a flat prior distribution
for the parameters in XN within intervals given in Table I.

B. The NJL model

We describe the deconfined quark matter phase using the
three-flavor SU(3) NJL model [13,44–48]. This model has
been widely used in the literature as an effective model of
QCD, in hadronic physics [49–51], and astrophysics [52,53]
alike. Its main feature is the reproduction of the symmetry
properties of QCD, most notably the mechanism of spon-
taneous breaking of the chiral symmetry and its restoration
at finite temperature and chemical potential. The Lagrangian
density of this model reads

LNJL = q(i/∂ − m̂0)q + GS

8∑
a=0

((qτ aq)2 + (qiγ5τ
aq)2)

− Gω((qγ μτ 0q)2 + (qγ μγ 5τ 0q)2)

− Gρ

8∑
a=1

((qγ μτ aq)2 + (qγ μγ 5τ aq)2)

− K (det f [q(1 + γ5)q] + det f [q(1 − γ5)q]). (10)

The first term can be recognized as the relativistic free
(Dirac) Lagrangian, describing the propagation of noninter-
acting fermions. Here, the fermions are the u, d, s quarks,
represented by the color triplet and flavor triplet spinor q.
The small quark bare masses, which introduce a small explicit
chiral symmetry breaking, are gathered in the diagonal matrix
in flavor space, m̂0 = diag(m0,u, m0,d , m0,s).

The subsequent terms of Eq. (10) describe contact in-
teractions that emerge as the simplest way to write an
interaction with only quark degrees of freedom that sat-
isfies the flavor symmetries characterized by the group
SU(3)V × SU(3)A × U(1)B. The first three of these terms,
involving the flavor Gell-Mann matrices τ a, introduce four-
quark pointlike interactions in the scalar (S), vector-isoscalar
(ω) and vector-isovector (ρ) channels. All potential effects of
color superconductivity, which involve four-quark coupling
terms in additional channels [54,55], are neglected for sim-
plicity in this exploratory work. The last term comprising
determinants in flavor space (also known as the ’t Hooft term)
ensures that the axial symmetry group U(1)A is broken, mim-
icking the axial anomaly of QCD [56–60].

It is worth mentioning that the form of the NJL four-
fermion Lagrangian can be directly derived by carrying out
a Fierz transformation of a global color current-current in-
teraction (which is itself an approximation of the QCD
gauge interaction). Following this procedure, fundamental re-
lationships emerge between the coupling constants in each
interacting channel, yielding in particular Gω = Gρ = GS/2
[13,46]. For this reason, it is very often assumed that
Gω = Gρ = GV , and the value GV = GS/2 is considered as
a reference. However, enforcing these relationships is not
needed in order to meet the symmetry requirements of the
theory.

The effective NJL interaction is meant to replace the
gauge interaction coupling the quarks to the gluon dynam-
ics in QCD. Therefore, the coupling constants we consider
here (GS , Gω, Gρ , K) can be interpreted to encode all
the gluonic contribution of the strong interaction. Since the
four-fermion operators have dimension 6, the NJL model is
nonrenormalizable. Consequently, it must be interpreted as
an effective field theory, which is only valid up to a certain
cutoff energy scale �. The parameter � can also be inter-
preted as the scale at which the strong interaction vanishes,
a crude approximation for the property of asymptotic freedom
of QCD.

Note that we will use the NJL model to describe the quark
matter phase, which we freely call the deconfined phase al-
though there is no actual description of color confinement in
our framework. Therefore, in the remainder of this paper, we
will use interchangeably the terms “deconfinement transition”
and “nuclear-quark transition” (NQ transition) to refer to the
transition from nucleonic degrees of freedom to quark degrees
of freedom.

In the mean field approximation, the grand potential of the
NJL model can be decomposed into three terms:

�NJL = �q + �V + Beff = −PNJL, (11)
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where in the zero temperature approximation, each term reads
[13,14]:

�q = −2Nc

∑
f

∫ |p|<pF, f d3 p

(2π )3

p2

3E f

= − Nc

24π2

∑
f

[
pF, f μ̃ f

(
3m2

f − 2p2
F, f

)

+ 3m4
f ln

(
m f

pF, f + μ̃ f

)]
, (12)

�V = −2

3
Gω(nu + nd + ns)2 − Gρ (nu − nd )2

− Gρ

3
(nu + nd − 2ns)2, (13)

Beff = 2GS

∑
f

〈q f q f 〉2 − 4K
∏

f

〈q f q f 〉

− 2Nc

∑
f

∫ |p|<� d3 p

(2π )3
E f − �0. (14)

Here pF, f = �(μ̃ f − m f )
√

μ̃2
f − m2

f is the Fermi momentum
of the quarks of flavor f = u, d, s and E f =

√
p2 + m2

f . The
vacuum pressure −�0 is determined such that the total pres-
sure of the model PNJL vanishes at zero density. The quark
number densities n f and chiral condensates 〈q f q f 〉 can be
calculated using

n f = Nc

3π2
p3

F, f , (15)

〈q f q f 〉 = − Nc

2π2
m f

[
�

√
�2 + m2

f − pF, f μ̃ f

+ m2
f ln

(
μ̃ f + pF, f

� +
√

�2 + m2
f

)]
. (16)

The mass m f and effective chemical potential μ̃ f for each
flavor are determined in the mean field approximation by
a minimization of the grand potential with respect to these
parameters, which yields

mi = mi,0 − 4GS〈qiqi〉 + 2K〈q jq j〉〈qkqk〉, (17)

μ̃i = μi − 4
3 (Gω(ni + n j + nk ) + Gρ (2ni − n j − nk )),

(18)

where i, j, k denotes any permutation of the u, d, s flavors.
The former equation illustrates the mechanism of spontaneous
chiral symmetry breaking in the NJL model, through which
quarks acquire a dynamical mass proportional to the chiral
condensates (plus a small contribution due to the bare quark
masses). The latter expresses the effects of vector interactions:
quarks obtain an effective chemical potential μ̃ f which is
shifted to a lower value than the (physical) chemical potential
μ f . Once all these quantities have been fixed, the energy
density of the model can be easily computed with the usual

TABLE II. Model parameters used for the quark phase taken
from [14]. These parameters are assumed fixed in our EoS prior.

m0,u (MeV) m0,d (MeV) m0,s (MeV) � (MeV) GS�
2 K�5

5.5 5.5 135.7 630 1.781 9.29

thermodynamic formula:

ρNJL = −PNJL +
∑

f

μ f n f . (19)

In the NJL model, vacuum parameters are fixed to re-
produce known properties of low-energy hadronic physics
such as the meson mass spectrum. The resulting values of
this fit, taken from [14], are given in Table II. In this work
however, the repulsive vector couplings in the isoscalar (ω)
and isovector (ρ) channels are introduced as free parameters,
as they have been reported to be crucial in order to stiffen
the EoS enough for hybrid stars to reach the 2M� threshold
[14,61,62]. This can be further justified as there are QCD
effects, neglected in the NJL effective model approximation,
that would lead to an in-medium modification of the coupling
constants (for example, instanton effects at high temperature
can affect the effective vector coupling constant [63]). Hence
it is usually accepted to treat those parameters as free when
studying dense quark matter.

We use as parameters the vector to scalar coupling ratios
ξω = Gω

GS
and ξρ = Gρ

GS
, which we vary considering a flat dis-

tribution in the intervals [0.0,0.5] and [0.0,1.0], respectively.
In [14,34,61,64], it was also suggested that an additional pa-
rameter B� could be introduced to increase the freedom one
has on the quark EoS parametrization. This parameter, very
analogous to the bag constant in the MIT bag model of QCD,
simply shifts the pressure and energy density of the quark
phase without affecting other thermodynamic quantities, fol-
lowing

PQ = PNJL + B�, (20)

ρQ = ρNJL − B�. (21)

In general, the bag constant is a pressure characteristic
of the QCD vacuum, related to its nontrivial structure, for
instance due to the presence of a quark condensate in the
hadronic phase. In principle, B� can be computed within a
given model (here by fixing the value of �0 above), but the
NJL model is missing the QCD gluonic degrees of freedom
which should also contribute to the bag pressure. It is therefore
justified to allow deviations from the NJL prescription and
take this parameter as free. The effective bag constant B� is
added to the parameter space of the quark phase, with a flat
distribution in the interval [−20 MeV fm−3, Bmax], where the
value of Bmax depends on the hadronic and quark models, and
is discussed in Sec. II C 2 below. We denote by X the entire
hybrid parameter space, given by the reunion of the nuclear
parameters XN and the three free parameters in the quark
sector {ξω, ξρ, B�}.
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C. The nuclear-quark phase transition

1. Maxwell versus Gibbs construction

We assume that the deconfinement phase transition transi-
tion is first order and connect the two phases via the Maxwell
construction. The phase transition point is calculated by as-
suming mechanical and baryochemical equilibrium between
the two phases:

PN = PQ, μN = μQ. (22)

Since we work under the zero temperature approximation in
both phases, thermal equilibrium is also automatically ful-
filled. It was pointed out by Glendenning [65] that in the
one-dimensional Maxwell construction, where the order pa-
rameter is given by the baryonic charge nB and the charge
neutrality condition nC = 0 is enforced separately in the two
phases, charge equilibrium cannot be achieved because the
electron chemical potentials are in principle different in the
two phases: μe,N �= μe,Q. According to this argument, ther-
modynamic consistency would rather require the separate
equality of the two chemical potentials μB and μC (or equiva-
lently, the neutron and electron chemical potentials μN and
μe) within a two-dimensional Gibbs construction involving
the two independent conserved charges nB and nC [65–67].
However, it was argued by Chomaz et al. [68,69] that the
long range character of the electromagnetic interaction im-
plies that the total charge cannot be associated with a chemical
potential, even if it is a conserved quantity. This reduces
the dimensionality of the order parameter and guarantees the
thermodynamic consistency of the Maxwell construction.

In the core of a neutron star, the transition between
hadronic and deconfined matter might well occur through an
inhomogeneous phase consisting of coexisting individually
charged domains of (less dense) hadronic and (more dense)
quark matter [70–75]. However, because of the divergence of
the Coulomb energy density at the thermodynamic limit if the
net electric charge is not zero, those domains must be meso-
scopic and the interface energy not negligible, thus preventing
a phase coexistence ruled by a standard Gibbs construction. It
was suggested that the energy balance of the interface should
favor the presence of the mixed inhomogeneous phase, thus
quenching the first-order phase transition [76]. However, the
finite size effects at the interface between quark and hadronic
matter are directly proportional to the surface tension between
the two phases. Since the value of this surface tension is un-
known to this day (and in addition should in principle depend
on the model used to describe both phases), the exact structure
of the mixed phase is very much uncertain. Interestingly, in the
limit of very high surface tension, the structured mixed phase
becomes energetically disfavored and the Maxwell picture is
recovered.

For these reasons, we stick to the simple first-order phase
transition ruled by the Maxwell construction in the present
study.

2. The role of B�

As introduced in Sec. II B, besides the freedom one has
with the vector coupling constant, the quark equation of state
can gain some extra flexibility by introducing the effective

FIG. 1. Pressure difference �P = PQ − PN as a function of
baryon chemical potential μ for different values of the parameter B�

(from bottom to top: B�=−Bmax, −Bmax/2, 0, Bmax/2, Bmax). The
nuclear model is the meta version of DDME2 [77], while the quark
model uses ξω = 0.25 and ξρ = 0, for which Bmax = 9.59 MeV fm−3.
The dots indicate the chemical potential of the phase transition for
each value of B�.

bag constant parameter B�. The determination of a physically
relevant interval for the value of this parameter requires some
discussion, that we now address.

The effect of B� is very clear: if positive, it reduces the
free energy of the quark phase and therefore pulls back the
transition density, pressure, and chemical potential to lower
values. If negative, the opposite behavior should be observed.
This effect can be seen on Fig. 1, where the pressure difference
between the quark phase and nuclear phase �P = PQ − PN

is plotted as function of the chemical potential for different
values of B�. The other parameters are chosen arbitrarily for
illustrative purposes. We recall that in the grand canonical en-
semble, the thermodynamically preferred phase has the lowest
free energy � = −P, or equivalently the highest pressure.
Therefore, if �P < 0 (> 0) the nuclear (quark) phase is the
most stable. The phase transition occurs when �P = 0.

In Fig. 1, we indeed observe the expected behaviors de-
pending on the sign of B�. If B� is negative, �P is negative at
small chemical potentials and eventually becomes positive if
μ reaches high enough values. In principle, B� can be lowered
arbitrarily towards the negative values; this will simply push
the phase transition to higher and higher densities, such that
eventually quark matter never appears in stable NS configura-
tions. Conversely, if B� is positive, the phase transition occurs
earlier as expected with the NJL prescription. In addition
to this obvious effect, another feature is visible in Fig. 1:
we can see that for very low chemical potentials the quark
phase becomes thermodynamically favored over the nuclear
phase when B� > 0. This is of course unphysical, and only a
transition for which �P goes from a negative value (nuclear
phase favored) to a positive value (quark phase favored) can
be considered as physically meaningful. Therefore, if B� > 0
we assume that the nuclear phase is favored until �P reaches
positive values a second time. This also means that B� cannot
exceed a limiting value, denoted here as Bmax and defined by

Bmax = | min
μ

(PNJL − PN )|. (23)

If B� > Bmax, the quark phase would be thermodynami-
cally favored over all possible densities, which is of course
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inconsistent with our knowledge of low-energy nuclear
physics. If B� = Bmax, we also notice that the density discon-
tinuity of the phase transition �n (which corresponds to the
slope ∂�P

∂μ
at the phase transition point on Fig. 1) vanishes.

The value of Bmax depends very much on the nuclear and
quark parameters chosen, but typically lies in the range 5–100
MeV fm−3.

In [14,64] it was suggested that the value of B� could be
tuned so as to enforce the deconfinement transition to occur
simultaneously with chiral symmetry restoration in the NJL
model. The chemical potential of the chiral phase transition
μχ was determined explicitly if the transition was first order,
or by a maximization of the chiral condensate susceptibilities
if the transition was a crossover (which typically happens with
finite values of the vector couplings). Then the corresponding
value of B� was calculated such that �P = 0 at μ = μχ :

B�
χ = PN |μ=μχ

− PNJL|μ=μχ
. (24)

Because the chiral phase transition usually happens at rela-
tively low density,1 B�

χ has to take a positive value to reduce
the density of the deconfinement transition. By construction,
we always have B�

χ � Bmax since we do impose �P = 0 at
some chemical potential, which could not be achieved oth-
erwise. However, this construction is not always consistent,
since we cannot guarantee that μχ does not correspond to
the unphysical �P = 0 solution pictured in Fig. 1 (see the
yellow line second from the top with B� = Bmax/2). In other
words, we do not impose that the baryon density of the quark
phase is higher than that of the nuclear phase at μχ . Therefore,
even though choosing B� = B�

χ is possible, it does not always
end up making the chiral transition and the deconfinement
transition simultaneous. For a specific set of models, this
method might be suitable, because it may work in some cases,
but it cannot be applied systematically to a large number
of randomly generated models for a Bayesian analysis. We
observed that this method typically fails if vector interactions
are high enough, because they tend to increase the range of
chemical potentials in which ∂�P

∂μ
< 0 and make the chiral

transition smoother.
In [34,61], B� was taken as a free parameter, taking pos-

itive values of the order of 10 MeV fm−3. The restriction
B� � Bmax was not mentioned. In the following, we will
adopt two different hypothesis. In the conservative hypothesis,
which we call HA, we stick to the original NJL prescription
and keep B� = 0. In the second one, called HB, we add B� to
our set of model parameters for the prior equations of state
and choose a prior distribution range of [−20, 20] MeV fm−3,
while always enforcing the physical limitation B� < Bmax. The
range is centered around zero, as there is a priori no clear
theoretical reason to prefer positive or negative values.

1The chirally broken phase is composed of quarks with high ef-
fective mass, which therefore do not contribute much to the density
or pressure. Only beyond the chiral symmetry restoration does the
density start to increase significantly. Typical transition densities lie
in the range 1–2 times nuclear saturation density for our parametriza-
tion.

D. Bayesian analysis

In this section, we describe the different steps that were
followed in order to obtain the posterior distributions of our
Bayesian analysis. The results will be presented in the next
section.

First, we generate a prior sample for the parameters of
both the nuclear and the quark model. On the nuclear side,
a set of ≈108 models is produced with empirical parameters
generated randomly following flat and uncorrelated distribu-
tions in the ranges defined in Table I. On the quark side, 121
different EoSs are generated under β-equilibrium and charge
neutrality conditions, with 11 different evenly spaced values
for each vector parameters in the intervals ξω ∈ [0.0, 0.5] and
ξρ ∈ [0.0, 1.0]. We choose to use a grid for the distributions of
ξω and ξρ instead of a random flat prior for practical reasons:
since the quark EoS are already computed beforehand, we
gain significant computation time not having to generate a
new one for each hybrid model considered. As the quark EoS
has fewer parameters than the nuclear one in our framework,
we do not require as many different models to explore the
whole parameter space. The very large nuclear sample is mo-
tivated by the fact that stringent theoretical constraints exist on
the behavior of the energy per particle of pure neutron matter
from many-body perturbation theory using chiral effective
interactions [78,79]. We will include these constraints as a
pass-band filter following previous works [37–39] which will
sensibly reduce the size of our sample to about 10 000 models,
the minimum statistics needed for a convergence of the results
presented in this paper. On the other side, we have checked
that the limited number of quark EoSs is sufficient to cover all
the possible behaviors of the quark branch within the reduced
set of parameters of the NJL model. The difference between
the statistics in the two phases can be further understood from
the fact that we want to explore the parameter space associated
with the existence of a quark core, and it is expected that
this depends on the stiffness of the hadronic branch of the
EoS. Since the latter is modeled by a polynomial expansion in
density with both positive and negative contributions, a large
sample is needed to ensure the convergence of the predictions.

To ensure the compatibility of the parameter set with the
ab initio calculation of low density nuclear matter, for ten
evenly spaced densities in the range [0.02, 0.2] fm−3, the
energies per particle of the model for both symmetric and
pure neutron matter are compared to the corresponding chiral
effective field theory (χEFT) energy bands from [78]. The
nuclear model is then rejected if it predicts an energy more
than 5% away of the uncertainty of the ab initio calculation.

For each successful set of nuclear parameters, the EoS of
neutron star matter (i.e., with β equilibrium and charge neu-
trality) is then calculated, including the inhomogeneous phase
in the outer and inner crusts. For the crust calculation, a fit of
the surface parameters Xσ is performed on the nuclear mass
table of AME2012, thus guaranteeing a consistency between
bulk and surface properties. The computation is carried out
with increasing density until no solution to the β-equilibrium
condition is found, or if the model breaks one of the following
thermodynamic consistency conditions:

(i) 0 � c2
s � 1,
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(ii) dP
dnB

> 0,

(iii) esym = 1
nB

∂ρ

∂δ2 |nB
> 0.

In the quark phase, the previous conditions are always
met by construction. In this way, we ensure that we always
consider hybrid EoS that are thermodynamically consistent.
If one of the previous conditions is broken before the EoS
reaches 2nsat, the model is discarded since we expect nuclear
matter to be stable until at least ≈2nsat. Note that, anticipating
our results, a transition to quark matter below 2nsat is highly
unlikely anyway in our model.

To build the hybrid EoS, we then attempt to carry
out a Maxwell construction with each of the 121 quark
EoS. In the case of hypothesis HB, a bag parameter B� is
added to the quark EoS, randomly generated in the range
[−20, 20] MeV fm−3 for each pair of models. If no phase tran-
sition can be constructed (either because the phase transition
is located in a region where the nuclear EoS is not thermo-
dynamically consistent anymore, or because B� > Bmax), the
hybrid model candidate is discarded.

For each hybrid EoS obtained, we solve the Tolman-
Oppenheimer-Volkoff (TOV) equations for spherical non
rotating stars [80,81] and compute the maximum mass
MTOV associated with each EoS. In order to account for
the observation of pulsar masses above 2M� (where M�
is the solar mass), models which cannot sustain stars with
2M� are discarded. We have checked that implementing
a likelihood filter based on the mass measurement from
radio-timing observations of pulsar PSR J0348 + 0432 [82],
MJ0348 = 2.01 ± 0.04 M�, instead of the rough elimination
of models with MTOV < 2M�, does not change the results
presented below. Finally, if the maximum pressure achievable
by the model PTOV is lower than the pressure of the phase
transition Pt , we also discard the model as it would mean
quark matter cannot be reached in compact stars. In this way,
we only consider hybrid models for which hybrid stars are
possibly realized. The whole set of successful hybrid EoSs
constitutes our prior sample.

The posterior distributions of observables O(X) that can be
computed given the set X of parameters of the hybrid EoS are
conditioned by likelihood models of the different observations
and constraints ck according to the standard definition

P(O|c) = NP(O)
∏

k

wk (ck ), (25)

where N is a normalization factor, and P(O) is the prior
distribution:

P(O) = 1

Ntot

Ntot∑
i=1

δ(O(Xi ) − O) (26)

with Ntot the total number of prior models.
Two different constraints ck are used in the present study,

coming from low energy nuclear physics and astrophysical
observations respectively.

The first constraint concerns the quality of reproduction of
the NN = 2149 nuclear mass measurements compiled in the

AME2012 mass evaluation [43]:

wAME = 1

N
exp

(
− χ2

AME

2

)
, (27)

where χAME is the evaluation of the quality of the fit,

χ2
AME = 1

ν

NN∑
i=1

(
M (i) − M (i)

AME

σ (i)

)2

. (28)

Here, M (i)
AME and M (i) represent respectively the experimen-

tal and theoretical nuclear masses, the latter being calculated
within a compressible liquid drop model approximation
[Eq. (6)] using the best-fit surface and curvature parameters
for each EoS model (see Sec. II A above); σ (i) represents the
systematic theoretical error, and ν = NN − 4 is the number of
degrees of freedom.

Second, we add another layer of filters by confronting the
tidal deformability predictions of each model to the results
obtained by the LIGO-VIRGO Collaboration (LVC) using
the gravitational wave measurements from the GW170817
event [83]. From the analysis of the signal, the probability
distribution functions (PDFs) of the binary tidal deformability
�̃ and of the lowest mass component M2 were extracted. The
associated likelihood weight wGW 170817 reads

wGW 170817 =
∑

j

p(M )
LVC

(
M ( j)

2

)
p(�)

LVC(�̃( j) ). (29)

Here, the pLVC functions are the PDFs taken from the LVC

data, and (M ( j)
2 ) j is a set of mass values that was chosen to

probe the entire likelihood range of M2. In this work, we used
an evenly spaced grid of 27 points between 1.1 and 1.36 M�.
Since we know very precisely the chirp mass of the system
(M = 1.186 ± 0.001 M�), we can determine the mass M1 of
the heaviest object by inverting the following relationship,
neglecting the chirp mass uncertainty:

M = (M1M2)
3
5

(M1 + M2)
1
5

, (30)

which yields the result

M1 = y(M, M2) + M5

3M3
2 y(M, M2)

, (31)

y(M, M2) =
⎛
⎝ M5

M2
2

+
√

M10

M4
2

− 4M15

27M9
2

2

⎞
⎠

1
3

. (32)

Then, for the values of M ( j)
1 and M ( j)

2 , we calculate the
associated tidal deformabilities �

( j)
1 and �

( j)
2 for each model

solving the usual equations from general relativity [84,85].
The binary tidal deformabilities are then calculated using the
formula

�̃ = 16

13

(M1 + 12M2)M4
1�1 + (M2 + 12M1)M4

2�2

(M1 + M2)5
, (33)

which eventually allows us to compute the weight of Eq. (29)
for each model considered.

We can observe that Eq. (29) supposes statistical indepen-
dence between �̃ and the mass M2 of the lower component.
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(a)

(b)

(c)

FIG. 2. Top and middle: Posterior distributions of the NJL vec-
tor interaction couplings ξω and ξρ with hypotheses HA (yellow on
the left) and HB (blue on the right) (see text for details). Bottom:
Posterior distribution of the bag parameter B� (in units MeV fm−3)
with hypothesis HB. Each histogram is normalized such that the sum
of each bin height is equal to 1.

It was checked in [39] that the results are not modified if we
consider instead the full joint posterior distribution of �̃ and
q = M2/M1 from Ref. [83].

With an initial sampling of 108 nuclear models, the pos-
terior size is of around 100 000 models, with around 3000
different nuclear models surviving all the filters and producing
at least one viable hybrid EoS. This makes an average of about
30 hybrid models per nuclear model.

III. RESULTS

In this section are gathered all the results obtained from
the analysis of the posterior distributions. A summary of the
numerical results for each quantity examined is shown in
Table V in the Appendix.

A. Model parameters posteriors

1. Quark sector

First, we show on Fig. 2 the posterior distributions of the
parameters of the quark EoS: the vector couplings ξω, ξρ

and the effective bag constant B�. In the case of the vector
couplings, two different distributions are obtained depending

on the hypothesis made on the parameter B�, namely HA for
which B� = 0 (yellow) and HB for which B� is allowed to vary
(blue); see Sec. II C 2 for details. Interestingly, we can see that
the presence or not of this extra parameter only marginally
influences the values of the couplings that lead to hybrid
stars. In both cases, we observe that the distribution of the ω

coupling has a relatively wide peak around ξω ≈ 0.15. On one
hand, low values of ξω result in a relatively soft quark EoS at
high densities which will struggle to reach high MTOV (unless
the threshold of 2M� has already been reached before the PT).
In addition, the ω channel tends to push the phase transition
to larger densities, such that low values of ξω are typically
associated with stars with sizable quark cores, but unable to
reach high mass and are therefore discarded in our posterior.
On the other hand, high values of ξω stiffen the quark EoS too
much, which pushes the phase transition to too high densities.
The latter effect is, however, slightly reduced by positive
values of the bag pressure B�, which decreases the density of
the PT while not affecting the stiffness of the EoS. In the case
of the ρ channel, the posterior distributions of the coupling
are as flat as the prior, indicating that (i) the possibility of an
hybrid star is essentially ruled by the vector-isoscalar coupling
ω, and (ii) the mass and tidal polarizability measurements are
not sensitive to this coupling, which is mainly linked to the
flavor composition of the deconfined matter. While essentially
only positive values of B� were previously considered in the
literature [14,34,61,64], we can see from the lower panel
of Fig. 2 that negative values of B� do not strongly hinder
the possibility of hybrid stars: with a flat prior in the range
[−20, 20] MeV fm−3, B� remains relatively well distributed,
although an overall slight preference for positive values is
observed. Values that are too large tend to be rejected more
often as they are more likely to exceed Bmax, while too low
values might push the PT to unreasonable densities.

2. NEP

In Fig. 3, we show histograms of the posterior distributions
of the ten nuclear empirical parameters (NEPs) controlling
the behavior of the hadronic EoS. For each parameter, the
distribution obtained in the hybrid star hypothesis (with HB)
is compared to the one corresponding to the hypothesis that
no phase transition occurs, i.e., with stars entirely made of
nucleonic matter. Therefore, the difference between the two
distributions quantifies how much the hypothesis of the ex-
istence of a nuclear-quark PT at high density can affect our
conclusions on these parameters. Somehow not surprisingly,
we see that the lower order NEPs (nsat, Esat, Esym, Lsym) are
only weakly affected by the hypothesis, if at all. Indeed, these
parameters only drive the behavior of the EoS around satu-
ration density and do not influence the high density behavior
where quarks may be involved. More surprisingly, the high
order parameters in the asymmetry sector are also negligi-
bly influenced by the condition that a PT occurs. Only the
isoscalar sector is slightly affected: the average values of both
Ksat and Qsat are indeed increased by the assumption of a
deconfinement PT, while that of Zsat is decreased. This effect
is easy to understand. For a given quark EoS, quarks tend to
appear at lower densities (and are hence favored) if the nuclear
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

FIG. 3. Posterior distributions of the isoscalar (left column) and
isovector (right column) nuclear empirical parameters. On each
panel, the blue histogram on the left corresponds to the posterior
distribution for hybrid stars under the hypothesis HB, while the red
one on the right is associated with a purely nucleonic EoS. Same
normalization as Fig. 2.

EoS is stiffer. Therefore, stiff nuclear EoSs (i.e., with high
values of Ksat and Qsat) are more likely to be compatible with
a quark EoS to form a viable hybrid EoS. However, in order
to compensate this effect, the values of Zsat must be lowered
in order to keep a causal and thermodynamically stable EoS,
and further satisfy the constraints from χEFT.

For a more quantitative comparison of the distribution,
we gathered in Table III the mean values obtained for
each NEP and for both assumptions. We also calculated the
Kolmogorov-Smirnov statistic KKS associated with each pair
of statistical distributions displayed in Fig. 3, defined for the
quantity X by

KKS (X ) = sup
x

|FQ,X (x) − FN,X (x)|, (34)

where FQ,X (resp. FN,X ) is the empirical distribution function
associated to the posterior distribution of parameter X in the
hybrid (resp. nuclear) hypothesis. A large value of KKS indi-
cates that the distributions are very different, while a low value
indicates the distributions are similar. This analysis confirms
the visual findings of Fig. 3: only Ksat and Zsat are significantly
influenced by the requirement that a PT takes place.

It is interesting to observe that present laboratory con-
straints from the energy of the giant monopole resonance
excitation point towards a compressibility value Ksat = 230 ±
20 MeV [35,86]. This would suggest that the existence of
hybrid stars is disfavored by the present empirical knowledge,
at least in the hypothesis that the quark phase is satisfactorily
described by the NJL model.

B. Equation of state

The resulting posterior distributions of the EoS and the
sound speed are shown in Figs. 4 and 5, comparing the two
different hypotheses on the composition of the NS core. At
low densities, the hybrid and nuclear EoSs are in perfect
agreement, which is reasonable since in both calculations
matter is purely hadronic in this density regime. The slight
preference for stiffer nuclear EoS of the hybrid hypothesis
does not bring any meaningful difference on average, as the
deviation of the pressure, barely visible in Fig. 4, is at most of
2.5% around ρ ≈ 1.5ρsat. However, as we exceed the average
PT density (which is about 3.5ρsat), the phase transition soft-
ens the EoS and lowers the pressure, since the pressure has to
stay constant in the whole range of the discontinuity.

Note that while each individual model presents a pressure
plateau as well as a discontinuity in the sound speed, this
nonanalytic behavior is hardly visible in the global distribu-
tion, because of the large exploration of both the hadronic
and quark parameter space. This underlines the difficulty of
getting unequivocal signals of a potential first order phase
transition from static observables only. In particular, the peak
structure of the sound speed is due to the fact that quark EoSs
are usually softer than nuclear ones due to the overall increase
in the number of degrees of freedom. It is interesting to note

TABLE III. Results of the Kolmogorov-Smirnov statistical test used to compare the posterior distributions with two different hypotheses
on the content of the star (hybrid-HB and purely nuclear).

nsat Esat Ksat Qsat Zsat Esym Lsym Ksym Qsym Zsym

X (fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

Average hybrid 0.163 −15.9 263 177 656 30.9 47.4 −62.8 1211 11
Average nuclear 0.163 −15.9 255 105 1620 31.0 46.9 −70.5 1225 297
KKS 0.029 0.024 0.137 0.110 0.217 0.042 0.027 0.047 0.032 0.058
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FIG. 4. Comparison of the posterior EoS in the hypothesis of
presence (blue) or absence (red) of PT. The darker (resp. lighter)
regions correspond to 1σ (resp. 2σ ) uncertainty areas. The average
and 1σ uncertainty on the NQ transition density ρt as well as on
the central density of the maximum mass configuration ρTOV (in the
hybrid hypothesis) are also displayed for reference.

that this particular behavior of the sound speed is also a feature
of the quarkyonic model [87,88], a very different approach to
describe the deconfinement phase transition at suprasaturation
densities.

FIG. 5. Comparison of the posterior sound speed evolution as a
function of pressure in the hypothesis of presence (blue) or absence
(red) of PT. The darker (resp. lighter) regions correspond to 1σ

(resp. 2σ ) uncertainty areas. The average and 1σ uncertainty on the
NQ transition pressure Pt as well as on the central pressure of the
maximum mass configuration PTOV (in the hybrid hypothesis) are
also displayed for reference.

C. NS static properties

The posterior distributions of various properties of the
hybrid stars are displayed in Fig. 6, again comparing the
results for the two different hypotheses HA and HB for the B�

parameter (see Sec. II C 2). We see that the transition density
nt and transition pressure Pt are well peaked around a most
favored value of about 0.42 fm−3 for nt and 115 MeV fm−3

for Pt . Similar to what is observed on Fig. 2, the inclusion
of a possible additional bag pressure B� has a very marginal
effect on these distributions. We can observe, however, that
very early PTs (nt � 2nsat) cannot be obtained with hypothesis
HA, as they are only made possible by large positive values of
B�. One has to keep in mind that B� would have had a much
more important effect on the location of the PT if we had not
chosen a prior for B� centered around 0.

Concerning the distribution of the density discontinuity
�n, we observe an interesting double peak structure which
gets suppressed once B� is allowed to vary. This behavior is
linked to the effect of the vector couplings on the PT, and will
be better understood from the correlation analysis that will be
shown later in this section. We also note that in hypothesis
HB both very small (�n ≈ 0) and very large (�n > 0.4 fm−3)
are enabled by the additional freedom, which prefigures an
important correlation between this quantity and B�.

In the bottom panel, we show the distributions of the
mass at the transition Mt , radius of the quark core RQ,TOV

and central strangeness fraction xs = ns/(nu + nd + ns) in the
maximum mass configuration. We observe that, for most
EoSs, quarks only appear in very massive stars above 2M�.
The inclusion of B� allows for quark to appear in stars of
much lower mass, even below the canonical mass of 1.4M� in
some cases, but these models remain statistically insignificant.
We also observe, independently of the hypothesis HA or HB,
that quark cores tend to remain relatively small, even in the
maximum mass configuration. This is associated with the fact
that the phase transition (and in particular the density discon-
tinuity) considerably softens the EoS and makes quark matter
cores quickly unable to balance the gravitational pressure. In
addition, because our quark matter EoSs are overall softer
than the nuclear ones, stars with large cores may struggle
to reach the 2 solar mass threshold and are therefore more
often rejected by the associated filter. However, we remark
that it is still possible to build stars above 2 solar masses
with quark cores that reach about half of the star’s radius.
These conclusions might also be relaxed by the presence of
a mixed phase smoothening the first-order PT and allowing
quarks to appear at lower densities than the ones predicted in
our framework [33,62,75].

On the last panel, we see that it is possible to reach a
broad range of strangeness in the quark core, from xs = 0
(no strangeness allowed) and sometimes nearly reaching xs =
1/3 (flavor-symmetric quark matter). This diversity can be
explained by our large exploration of the possible behaviors
of the quark EoS, with the parameter ξρ in particular playing
an important role in the flavor balance at high density. As a
consequence, strange quarks pretty much always appear in
the heaviest stars in our model, with a maximal strangeness
content of about 0.2 on average. Interestingly, the central
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(a) (b) (c)

(d) (e) (f)

FIG. 6. Posterior distributions on major properties of hybrid stars, with hypotheses HA (yellow on the left) and HB (blue on the right) (see
text for details). From left to right and top to bottom: transition density nt , transition pressure Pt , density discontinuity �n, total mass at the
phase transition Mt , radius of the quark core in the maximum mass configuration RQ,TOV and maximal strangeness at the star center xs. Same
normalization as Fig. 2.

strangeness distribution, just like �n, exhibits a double peak
structure that gets blurred out once the freedom on B� is
included in the model.

In order to compare the results of our analysis with current
available data on NS radii, we calculated the radii distribu-
tions for two different pulsars: PSR J0030 + 0451 (M =
1.44+0.15

−0.14M�) and PSR J0740 + 6620 (M = 2.08+0.07
−0.07M�),

whose masses have been recently evaluated experimentally
using relativistic Shapiro time delay measurements [90,91].
The radii of these two pulsars have been estimated via x-
ray measurements with the NICER telescope [89,92–94]. In
Fig. 7, we compare the posterior distributions of radii of each
pulsar from the NICER analysis of Miller et al. [89,94] to
our results, with and without the introduction of a NQ phase
transition. We first see that the mean values of the distributions
are very much in agreement with the NICER measurements
for both pulsars and in both of our approaches. However, the
distributions inferred from NICER data are much wider than
the ones obtained with our analysis, with a standard deviation
about 3 times larger for J0030 and up to 5 times larger for
J0740 (see Table IV for a summary of the comparison). There-
fore, we conclude that the present experimental uncertainties
on radii from x-ray measurements are still too large to put
significant additional constraints on the theoretical models,
and unfortunately do not bring more information than what
can already be inferred from our knowledge of nuclear physics
and the analysis of the GW170817 signal.

It is also interesting to compare the results obtained with
the two assumptions on the content of the stars. For J0030,
there is very little difference noticeable, which is to be ex-
pected since the mass of this pulsar is considerably lower than
the average mass at which the phase transition occurs (see the
bottom left panel of Fig. 6). Therefore, in both hypotheses we

expect J0030 to be made entirely of nuclear matter, whose
parametrization will only differ through the quark slight
preference for stiffer nuclear EoS (Fig. 3), and eventually

(a)

(b)

FIG. 7. Comparison of the posterior distributions of our analysis
with both hybrid (blue histogram on the left) and purely nuclear (red
histogram on the right) hypotheses and the NICER results of Miller
et al. [89] (green dashed line) for the radii of the J0030 + 0451 (M =
1.44+0.15

−0.14M�) and J0740 + 6620 (M = 2.08+0.07
−0.07M�) pulsars. Each

distribution was normalized to unit area.
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TABLE IV. Mean, standard deviation, and minimum and max-
imum values of the posterior distributions of the radius (in km) of
the J0030 and J0740 pulsars, for our two different models and the
analysis of NICER data.

Pulsar Model Mean σ Min Max

J0030 Hybrid 12.9 0.4 10.6 14.3
Nuclear 12.9 0.4 11.1 14.7
NICER 13.1 1.2 8.9 19.7

J0740 Hybrid 12.9 0.4 10.5 14.3
Nuclear 13.1 0.4 11.1 14.8
NICER 13.9 2.1 2.8 26.6

does not affect the radius distribution. In contrast, we see
a meaningful difference in the posteriors of J0740, with the
hybrid models predicting slightly smaller radii than the purely
nuclear models. This is a direct consequence of the PT, which
softens the EoS and reduces the radius as mass increases.
However, since most models cannot sustain large quark cores,
the difference on the predicted radius remains small.

In Fig. 8, we compare the posterior distributions of the
weighted-average dimensionless tidal deformability �̃ from
the two hypotheses on the star content, to the posterior dis-
tribution of [83] extracted by Bayesian inference from the
GW170817 signal, given by the green line. This is exactly the
probability distribution function appearing in the calculation
of our Bayesian weights from GW170817 in Eq. (29). In
order to make a legitimate comparison, we show for each
hypothesis the posterior distributions before (full lines) and
after (histograms) the implementation of the GW170817 filter.
Similarly to previous analyses employing a large exploration
of the nucleonic EoS parameter space [39,95], we can see that
our prior distribution only agrees with the high �̃ part of the
experimental spectrum; that is, it suggests considerably high
stiffness within the interval compatible with the GW obser-
vation (�̃ < 800 at the 90% level, with a low-spin prior and

FIG. 8. Comparison between the GW170817 �̃ PDF from the
LVC analysis of the gravitational wave signal [83] and our posterior
distributions with the hybrid (blue histogram on the left) and purely
nuclear (red histogram on the right) hypotheses. The solid lines give
the distributions obtained when the LVC filter [weights of Eq. (29)]
is not included. The thick blue line is associated with the hybrid case,
and the thin red line with the purely nuclear case. Each distribution
was normalized to unit area.

using the PhenomPNRT waveform model in Ref. [83]). Once
the GW170817 filter is applied, our posterior estimation is
�̃ = 740 ± 127 in the hybrid hypothesis and �̃ = 728 ± 124
in the purely nuclear case. Again, including the possibility of
a first-order phase transition towards quark matter (blue curve
and histogram) only marginally modifies the distributions ob-
tained supposing a purely nucleonic content (blue curve and
histogram). This is due to the fact that, in the present model,
hybrid stars are only realized for very high NS mass which
were not explored by the GW170817 event.

D. Parameters and observables correlations

We have calculated the Pearson correlation coefficients
among all the different model parameters and neutron star ob-
servables introduced above, and show in this section only the
quantities where a non-negligible correlation was observed.
All results shown in this section assume a PT to quark matter
with the hypothesis HB.

In Fig. 9 are shown different two-dimensional (2D)
histograms highlighting striking correlations between the pa-
rameters. On the top panel, we see that there is a clear
anticorrelation between the two different vector channel cou-
plings ξω and ξρ . Both of these parameters tend to stiffen
the quark EoS and consequently increase the density of the
phase transition. Therefore, if both of them are too low, the
PT happens relatively early, but the quark EoS is not stiff
enough to reach high MTOV. On the other hand, if they are
simultaneously high, the quark EoS becomes too stiff and the
PT becomes unreachable by compact star densities. The latter
effect could be mitigated if we allowed B� to take very large
values in order to decrease “manually” the transition density,
and allow for stiff quark matter to occur at lower densities. It is
also interesting to notice that the canonical values of the vector
couplings obtained via Fierz transformations (ξω = ξρ = 0.5)
are not favored once we require that quarks must appear in-
side neutron stars and we apply the astrophysical constraints,
highlighting again the importance of the freedom on both of
these parameters in our framework.

In the middle and bottom panel we show the dominant
correlations between the baryonic density jump �n associated
with the phase transition, and the parameters of the quark
phase. These pictures help to understand the different role
played by the vector couplings ξω and ξρ , in particular the
role of ξω discussed after Fig. 2. We can see that, due to
the anticorrelation between ξω and ξρ discussed above, viable
hybrid solutions can be obtained even in the case ξω = 0,
provided the vector-isovector coupling is as important as the
scalar coupling. However, because strong interactions in the
ρ channel also allow for strange quarks to appear at much
lower densities, the quark EoS is significantly softened at
high densities, such that the development of a substantial
quark core is hindered. As observed above and showed by the
positive correlation ξρ − �n, these high couplings push the
transition towards very high density values that might not be
reached in the core of the star. As a consequence, only very
specific stiff nuclear EoS allowing a sufficiently early phase
transition can lead to a nonvanishing quark core. This specific
class of models gives rise to the second peak in the �n and
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FIG. 9. 2D histograms highlighting the correlation between the
quark model parameters and the EoS density discontinuity �n. The
normalization was chosen such that the sum of each bin height is
equal to 1.

xs distribution of Fig. 6, and to the second branch visible in
the correlation B�-�n (lower panel of Fig. 9). Conversely,
if the extra stiffness needed in the quark EoS to produce a
highly massive NS is obtained via the vector-isoscalar cou-
pling (ξρ = 0 and ξω ≈ 0.3), the density jump is relatively
small, the extra softness produced by the phase transition
negligible, and a much larger class of nuclear EoSs are com-
patible with the possibility of a PT. This category of EoS will
also lead to the formation of sizable quark cores in heavy
stars. Note that when the effective bag parameter is removed,
this effect is even more striking, since the additional freedom
provided by B� tends to wash away the correlations between
the parameters. The lower panel of Fig. 9 shows indeed that B�

is also largely correlated to �n (remember that �n vanishes
when B� = Bmax). In particular, positive values of B� allow
the phase transition to be pushed towards lower densities as
seen in Fig. 1, even for large values of ξρ . Consequently, the
two branches in the B�-�n plane merge together. This effect

FIG. 10. 2D correlation histograms between the radius of the
quark core in the maximum mass configuration RQ,TOV with density
discontinuity �n and the maximum mass MTOV. Same normalization
as Fig. 9.

explains why the double peaked structure of Fig. 6 fades away
when the effective bag pressure is added to the parameter
space.

2D histograms can also reveal interesting properties of
hybrid stars as predicted by the NJL model. In particular, in
Fig. 10 we show that the size of the quark core is strongly cor-
related to the density discontinuity �n of the phase transition.
Indeed, we observe that large discontinuities result in a very
low stability domain for the quark phase, which consequently
cannot reach a substantial proportion of the star. This further
amplifies our previous conclusions above on the effect of
the vector couplings. A similar correlation (not shown here
because less striking) holds between RQ,TOV and the transition
density nt . This correlation is very easy to understand; if the
transition happens at very high densities close to the core
density for the maximum mass, there is no room for quarks
to appear in the core. Inversely, a PT at low density means
that quark matter rapidly takes over as the main constituent of
the star, and large quark cores can be formed before reaching
gravitational instability. These findings are in good agreement
with Ref. [34].

In addition, we highlight an interesting feature of hybrid
stars in the correlation between the size of the quark core
and MTOV. In the bottom panel of Fig. 10, we remark that it
is impossible with our model to produce stars that are both
very massive (M � 2.5M�) and holding a sizable quark core.
Therefore, our hypothesis would be in strong disagreement
with the results of the analysis of the GW190814 gravitational
wave event [96] if it turned out that the lower mass component
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FIG. 11. 2D correlation histograms of the radius of the quark
core RQ,TOV vs the strangeness fraction at the center of the star xs,
as well as transition density nt vs radius at the transition Rt . Same
normalization as Fig. 9.

(2.50–2.67 M�) of the merger was a compact star. This is
again in good agreement with the findings of Ref. [34].

Finally, Fig. 11 shows the correlation between the size of
the quark core and the strangeness fraction for the maximal
mass configuration (upper panel), and the correlation between
the total star radius at the PT and the transition density (lower
panel). The upper correlation shows that, though our hybrid
stars are characterized by an important strangeness content
(see also Fig. 6 above), an important extension of the quark
core is only possible for a limited amount of strangeness, since
strangeness tends to destabilize the quark core as the EoS be-
comes too soft. This shows again that large values of ξρ , which
typically result in a strong PT (i.e., with large �n) to a strange-
rich quark EoS, are not compatible with large quark cores.

The negative correlation between the radius Rt and the
transition density illustrates the somewhat paradoxical feature
that while quarks indeed soften the EoS and reduce the radius
of the mass-radius sequence, they are more likely to appear at
low densities if the nuclear EoS is stiffer (see Fig. 3), that is
if the nuclear EoS itself produces large radii. This means that
measuring a large radii at some mass ≈2M� would disfavor
the presence of a deconfined core at said mass, but make
it more likely to appear at larger masses. This statement is,
however, mitigated by the fact that stiff EoSs are known to
reach the TOV maximum mass configuration at considerably
smaller densities than soft EoSs, such that even small transi-
tion densities may not be attainable in NS cores.

IV. SUMMARY AND CONCLUSIONS

In the present paper, we have performed an extensive
Bayesian analysis on the different characteristics of hybrid
stars, as obtained if the quark matter is described by the NJL
effective model of QCD, and the phase transition is obtained
by the Maxwell construction.

A partially agnostic approach is employed for the hadronic
part of the EoS, using a flexible metamodelling technique that
allows exploring all the possible density dependences com-
patible with an analytic behavior of the dense matter energy
functional, and at the same time respects the nuclear physics
constraints imposed by ab-initio modeling of homogeneous
matter, as well as nuclear mass measurements.

Concerning the quark EoS, the NJL model is built to
respect the flavor symmetry constraints of QCD and the
parameters are fixed by vacuum meson properties, with the ex-
ception of the vector-isoscalar and vector-isovector couplings
taken as free parameters. A varying effective bag constant
which allows extra freedom in the localization of the phase
transition is also introduced.

A large variation of the parameter space, both in the
hadronic and in the quark sector, produces general predic-
tions for the properties of hybrid stars, with a likelihood
conditioned by the constraints given by the different recent
observations on static NS properties from radio, x rays, and
gravitational waves.

In agreement with previous studies, we confirm that
present observations on the mass, radii, and tidal polarizabil-
ity are not constraining enough to discriminate between the
purely nucleonic scenario and the transition towards quark
matter.

We additionally find that the nuclear matter properties are
only slightly modified by the condition that a quark core
exists at least in the most massive NS. However, an indi-
cation towards the existence of hybrid stars could be given
by an increased stiffness of the nuclear EoS in the isoscalar
sector, with respect to the present values extracted from the
giant monopole resonance excitation at subsaturation den-
sities. Such measurements are potentially available through
relativistic heavy ion collisions [97].

Our study stresses the importance of vector interactions in
quark matter in order for hybrid stars to reach sufficiently high
masses. We also report an important correlation between the
vector-isoscalar and vector-isovector couplings.

Our prediction for the transition density to quark mat-
ter is nt = 0.48 ± 0.09 fm−3, with a density discontinuity
�n = 0.206 ± 0.106 fm−3. This relatively high value of
the transition density implies that a quark core would be
only present in the most massive NS, Mt = 2.12 ± 0.15 M�.
For such massive hybrid stars, a non-negligible quark core
RQ = 2.3 ± 2.2 km is predicted, and the depth of deconfined
matter can reach values as large as ≈9 km if the couplings are
such that the strangeness content is limited to less than ≈10%.

According to our study, the most important signature that
distinguishes hybrid stars from nucleonic stars is given by the
behavior of the sound speed as a function of the pressure. The
distribution of the latter is given by a characteristic peaked
structure, which is common to other effective approaches
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dealing with the modeling of deconfinement. If this structure
will probably be hardly accessible from static observables
such as the tidal polarizability, we may expect that the un-
derlying discontinuity will affect in an important way the
dynamic properties of the after-merger, that will be accessible
by next-generation interferometers.

Finally, it is important to stress that these conclusions are
obtained within a specific framework for the quark EoS. A
more important contribution of deconfined matter in compact
stars may be obtained if additional freedom is taken in the
quark EoS, for example by the introduction of color supercon-
ductivity [54,55,61], a crossover treatment of the PT [33,62],
or other effects of QCD [19,31,98,99].
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APPENDIX: SUMMARY OF THE RESULTS

The posterior average, standard deviation, and minimum
and maximum values of the different parameters and observ-
ables discussed in the text are summarized in Table V.

TABLE V. Summary of the posterior mean, standard deviation,
and minimal and maximal values for the model parameters and
various properties of the EoS in the hybrid case with hypothesis HB.
For the definitions of the different quantities, see the text.

Unit Mean σ Min Max

nsat fm−3 0.163 0.005 0.15 0.17
Esat MeV −15.90 0.55 −17.18 −14.50
Ksat MeV 263.7 26.6 190.0 300.0

TABLE V. (Continued.)

Unit Mean σ Min Max

Qsat MeV 184 328 −777 1000
Zsat MeV 612 2004 −3992 5000
Esym MeV 30.9 1.2 27.2 34.5
Lsym MeV 47.4 9.2 22.7 75.3
VV Ksym MeV −61 94 −310 300
Qsym MeV 1220 792 −958 4964
Zsym MeV −14 2790 −4995 5000
m�

sat/m 0.702 0.059 0.6 0.8
�m�

sat/m 0.051 0.088 −0.1 0.2
b 4.23 2.56 1 10
ξω 0.20 0.14 0 0.5
ξρ 0.47 0.32 0 1
B� MeV fm−3 1.4 10.9 −20 20
�n fm−3 0.206 0.106 0.001 0.610
�ρ 1015 g cm−3 0.50 0.27 0.001 1.7
nt fm−3 0.48 0.09 0.24 0.98
Pt MeV fm−3 138 50 17 492
μt MeV 1337 86 1042 1770
ρt 1015 g cm−3 0.91 0.21 0.41 2.2
μe,N MeV 223.2 49.9 22.8 372.3
μe,Q MeV 81.9 14.7 28.5 110.1
Mt M� 2.12 0.15 0.87 2.59
Rt km 13.0 0.5 10.4 14.6
MTOV M� 2.16 0.10 2.00 2.59
MTOV − Mt M� 0.04 0.10 0.00 1.14
nTOV fm−3 0.77 0.12 0.48 1.51
PTOV MeV fm−3 166.2 45.9 58.1 492.8
ρTOV 1015 g cm−3 1.59 0.29 0.93 3.65
MQ,TOV M� 0.13 0.23 0.00 1.62
RQ,TOV km 2.3 2.2 0.0 9.9
xs,TOV 0.15 0.07 0.00 0.31
R1.4 km 12.9 0.3 11.1 14.0
�1.4 648 113 223 1164
R2.0 km 13.1 0.4 10.6 14.5
�2.0 73 19 12 166
RTOV km 12.9 0.5 10.4 14.6
�TOV 38 15 9 162
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