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Global � polarization in heavy-ion collisions at energies 2.4–7.7 GeV:
Effect of meson-field interaction
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Based on the three-fluid model, the global � polarization in Au+Au collisions at 2.4 � √
sNN � 7.7 GeV

is calculated, including its rapidity and centrality dependence. Contributions from the thermal vorticity and
meson-field term (proposed by Csernai, Kapusta, and Welle) to the global polarization are considered. The
results are compared with data from recent and ongoing STAR and HADES experiments. It is predicted that
the polarization maximum is reached at

√
sNN ≈ 3 GeV, if the measurements are performed with the same

acceptance. The value of the polarization is very sensitive to interplay of the aforementioned contributions.
In particular, the thermal vorticity results in quite strong increase of the polarization from the midrapidity to
forward/backward rapidities, while the meson-field contribution considerably flattens the rapidity dependence.
The polarization turns out to be very sensitive to details of the equation of state. While collision dynamics become
less equilibrium with decreasing collision energy, the present approach to polarization is based on the assumption
of thermal equilibrium. It is found that equilibrium is achieved at the freeze-out stage, but this equilibration takes
longer at moderately relativistic energies.
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I. INTRODUCTION

Measurements of polarization of particles produced in
heavy-ion collisions give us access to a new class of collective
phenomena, i.e., collective rotation of the nuclear medium.
The STAR Collaboration at the Relativistic Heavy Ion Col-
lider (RHIC) observed nonzero global polarization of � and
�̄ at collision energies 7.7 � √

sNN � 200 GeV [1,2] and,
recently, multistrange hyperons [3] at 200 GeV. Local polar-
ization along the beam direction also was measured [4]. These
measurements demonstrated rising of the global polarization
with decreasing

√
sNN .

The spin polarization below 7.7 GeV is less explored.
While a simple extrapolation of this trend suggests that the
global polarization continues to rise as

√
sNN decreases, we

expect vanishing global polarization at
√

sNN = 2mN due to
the lack of system angular momentum. Therefore, a peak in
global polarization should exist in the region 1.9 � √

sNN �
7.7 GeV. Recent model calculations predict this peak in the
different places: at

√
sNN ≈ 3 GeV [5,6] and at

√
sNN ≈

7.7 GeV [7].
First data (some of them preliminary) on the global po-

larization of � were presented in Refs. [8–10] for energies
3 GeV, 7.2 GeV, and 2.4 GeV, respectively. The first two
energy points are obtained within STAR fixed-target pro-
gram (FXT-STAR) at RHIC [11], the third point by HADES
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Collaboration at GSI Helmholtzzentrum für Schwerionen-
forschung [12]. These data indicate that the peak in
global polarization is reached certainly below the energy of
7.7 GeV.

In this paper we present calculations of the global � po-
larization at energies 2.4–7.7 GeV. This energy range covers
the energies of the aforementioned FXT-STAR and HADES
experiments, as well as of the forthcoming experiments at the
Facility for Antiproton and Ion Research (FAIR) in Darmstadt
[13] and Nuclotron-based Ion Collider fAcility (NICA) in
Dubna [14].

The calculations are performed within the model of the
three-fluid dynamics (3FD) [15] combined with thermody-
namic approach to the particle polarization [16–18]. The
simulations are done with three different equations of state
(EoS’s): a purely hadronic EoS [19] and two versions of the
EoS with the deconfinement transition [20], i.e., a first-order
phase transition (1PT) and a crossover one. The physical input
of the present 3FD calculations is described in Ref. [21].
A brief report on this study has been already presented in
Ref. [6]. Here we present results of refined and extended
calculations, as described in Secs. III and IV. The thermo-
dynamic approach based on hadronic degrees of freedom
[16–18] well describes the global polarization of hyperons,
as was demonstrated by its realizations in various hydrody-
namical [22–29] and transport [30–36] models of heavy-ion
collisions. Though, this thermodynamic approach faces some
problems, e.g., in explaining the �-�̄ splitting, see recent
reviews in Ref. [37,38].
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FIG. 1. Time evolution of the longitudinal and transverse pres-
sure in the central region of Au+Au collision at various collision
energies (

√
sNN ). The simulations are performed with the 1PT EoS.

Star symbols on the curves mark the time instants of the mechanical
equilibration.

II. THERMALIZATION IN NUCLEAR COLLISIONS

The 3FD model takes into account nonequilibrium at the
early stage of nuclear collisions. This nonequilibrium stage
is modeled by means of two counterstreaming baryon-rich
fluids (p and t fluids). Newly produced particles, dominantly
populating the midrapidity region, are attributed to a fireball
(f) fluid. These fluids are governed by conventional hydrody-
namic equations coupled by friction terms in the right-hand
sides of the Euler equations.

The model [16–18] used to calculate the global polariza-
tion of � is based on thermodynamic concepts. At moderately
relativistic energies, the thermalization of the matter of collid-
ing nuclei is slow and hence the early nonequilibrium stage
of nuclear collisions can be quite long. Therefore, before
proceeding to model predictions it is instructive to consider
degree of the thermalization of the matter at the freeze-
out stage. Mechanical equilibration in the center region of
colliding nuclei was studied in Ref. [39]. Criterion of the
mechanical equilibration is equality of longitudinal and trans-
verse pressures with the accuracy no worse than 10%. It is
relevant to the nuclear collisions because the leading inequi-
librium at the initial stage of the collision is associated with
anisotropy of the momentum distribution along and transverse
the beam direction. Time evolution of these pressure com-
ponents in the central region of Au+Au collision at various
collision energies (

√
sNN ) is displayed in Fig. 1. The simula-

tions are performed with the 1PT EoS. Time instants, when
the equilibration happens, are marked by star symbols on the
curves in Fig. 1.

A peculiar time evolution of the pressure at the energy
of 11.5 GeV (see wiggle t = 5–6 fm/c) is a signal of the
mixed phase through which the system passes. At 7.7 GeV,
the mixed phase manifests itself only as a weak irregularity
in the evolution, since the system quickly passes this phase.
Results with the crossover EoS are very similar, of course,
without these irregularities.

FIG. 2. Specific entropy per net baryon (NB = 2A = 394) gener-
ated in Au+Au collisions at various energies

√
sNN = 2.4-11.5 GeV

within 1PT scenario [20] in the 3FD simulations. Star symbols on the
curves mark time instants of the thermalization, i.e., those when the
rapid growth of entropy is completed.

As seen, the mechanical equilibration is indeed slow at the
moderately relativistic energies, see Fig. 1. However, even at√

sNN = 2.42 GeV it is reached (≈ 9 fm/c) to the freeze-out
stage. The freeze-out stage is extended in time, though it is
completed at ≈ 20 fm/c from the beginning of the collision.
The end points of the evolution curves in Fig. 1 correspond to
the end of the freeze-out stage. The mechanical equilibration
is of prime importance for applicability of the thermodynamic
model [16–18].

The chemical equilibration and thus thermalization takes
longer. Evolution of entropy [40] (Fig. 2) shows that
at

√
sNN = 2.42 GeV the thermalization takes place at

≈12 fm/c. Estimation of the thermalization within other mod-
els [41–45] also indicates that it takes long time, i.e., of the
order of that in the 3FD or even longer, but it is completed be-
fore the freeze-out stage. The success of the statistical model
[46] at moderate energies also indicates the thermalization at
the freeze out.

III. GLOBAL POLARIZATION IN 3FD MODEL

In the thermodynamic approach [16–18], particle polariza-
tion is related to so-called thermal vorticity defined as

�μν = 1
2 (∂νβμ − ∂μβν ), (1)

where βμ = uν/T , uμ is collective local four-velocity of the
matter, and T is local temperature. Here we deal with uμ and
T of the unified fluid because the system is equilibrated at
the freeze-out stage, as argued in the previous section. In the
leading order in the thermal vorticity it is directly related to
mean spin vector of spin 1/2 particles with four-momentum
p, produced around point x on freeze-out hypersurface

Sμ(x, p) = 1

8m
[1 − nF (x, p)] pσ εμνρσ�ρν (x), (2)

where nF (x, p) is the Fermi-Dirac distribution function and m
is mass of the considered particle. The polarization vector of
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S-spin particle is defined as

Pμ
S = Sμ/S. (3)

The polarization of the � hyperon is measured in its rest
frame, therefore the � polarization is

Pμ
� = 2S∗μ

� , (4)

where S∗μ
� is mean spin vector of the � hyperon in its rest

frame. The zeroth component S0
� identically vanishes in the

� rest frame and the spatial component becomes [34]

S∗
�(x, p) = S� − p� · S�

E�(E� + m�)
p�, (5)

where E� =
√

m2
� + p2 . Substitution of the expression for

S from Eq. (2) and averaging this expression over the p�

direction (i.e., over np) results in the following polarization
in the direction orthogonal to the reaction plane (xz) [34]

〈P�〉np = 1

2m�

(
E� − 1

3

p2
�

E� + m�

)
�zx, (6)

where m� is the � mass, E� and p� are the energy and
momentum of the emitted � hyperon, respectively. Here we
put (1 − n�) � 1 because the � production takes place only
in high-temperature regions, where Boltzmann statistics dom-
inate.

Particles are produced across entire freeze-out hypersur-
face. Therefore to calculate the global polarization vector,
the above expression should be averaged over the freeze-out
hypersurface 
 and particle momenta

P�
� =

∫
(d3 p/p0)

∫



d
λ pλn�〈P�〉np∫
(d3 p/p0)

∫



d
λ pλ n�

. (7)

Here P� is averaged over the whole system and momenta of
emitted particles. Application of the experimental rapidity ac-
ceptance is performed in terms of a so-called hydrodynamical
rapidity

yh = 1

2
ln

u0 + u3

u0 − u3
, (8)

based on hydrodynamical four-velocity uμ. The d
λ pλ in-
tegration runs only over those cells, where condition |yh| <

yacceptance is met. Let us denote this restricted freeze-out hy-
persurface as 
�y. Of course, this is only imitation of the
actual experimental acceptance. Unfortunately, imitation of
transverse-momentum acceptance in the similar manner is
impossible because the transverse momentum is mainly de-
termined by thermal motion in the cell.

Similarly to previous 3FD simulations [6,25–27], a sim-
plified version of the freeze out is used. The freeze out
is isochronous that, in particular, implies (d3 p/p0)d
λ pλ =
d3 p d3x. The freeze-out instant is associated with time, when
the energy density 〈ε(t )〉 averaged over the central region (i.e.,
slab |z| � 4 fm) reaches the value of the average freeze-out
energy density in the same central region obtained in con-
ventional 3FD simulations with differential, i.e., cell-by-cell,
freeze out [47,48]. This actual freeze-out energy density, εfrz,
averaged over frozen out system, is illustrated in Fig. 3 for
two impact parameters and different EoS’s. It is important

FIG. 3. Average actual freeze-out energy density versus collision
energy

√
sNN in Au+Au collisions at impact parameters b = 2 and

8 fm calculated with different EoS’s. Lower set of (pale) lines corre-
sponds to b = 2 fm.

to note that values of εfrz in Fig. 3 are not parameters of
the 3FD model. They are automatically generated in the 3FD
simulations as a result of the implemented freeze-out dynam-
ics described in Refs. [47,48]. The only freeze-out parameter
is εfrz = 0.4 GeV/fm3, which has a meaning of a trigger
energy density, at which the freeze-out procedure starts. This
parameter is the same for all EoS’s and all collision energies.

We can simplify Eq. (7) by explicitly performing integra-
tion over d p. We reorganize terms in parentheses in Eq. (6)
and use the following relations:∫

d3 p d3x n� =
∫

d3x ρ� (9)∫
d3 p d3x E� n� =

∫
d3x T 00

� , (10)

where ρ� is the � density in the frame of calculation and T 00
�

is the 00 component of the partial energy-momentum tensor
related to the � contribution

T 00
� = (ε� + p�)u0u0 − p� (11)

with ε� and p� being the corresponding partial energy density
and pressure, respectively. ρ�, ε�, and p� are determined
by ideal-gas relations in terms of temperature, baryon, and
strange chemical potentials. Note that the system is described
by the ideal-gas EoS at the freeze-out stage. Thus, inserting
expression (6) for 〈P�〉np into Eq. (7) and performing the
above-described manipulations we arrive at

P�
� = 1

6

∫

�y

d3x(ρ� + 2T 00
� /m�)�zx∫


�y
d3x ρ�

. (12)

This is the final expression with which we perform our simu-
lations.

In previous calculations [6,25–27], the n� weight in
Eq. (7) was replaced by the energy-density weight. Moreover,
averaging of �zx and the term in parentheses in Eq. (6) was
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FIG. 4. Global � polarization in midrapidity region (|yh| < 0.8),
originated from the thermal vorticity, in Au+Au collisions at b =
8 fm as function of collision energy

√
sNN calculated with different

EoS’s. Result with contribution of the feed down from higher-lying
resonances (bold lines) and without them (thin lines). Data are from
Refs. [1,8,9] (STAR) and [10] (HADES).

decoupled. In the present approach we avoid these approxi-
mations.

A. Polarization transfer in two-body decays

Only a fraction of all detected �’s are produced directly at
the freeze-out stage. These are primary �’s. A fraction of �’s
originates from decays of heavier hyperons. The most impor-
tant feed-down channels are strong decays of 
∗ → � + π

and electromagnetic decays 
0 → � + γ . When polarized
particles decay, their daughters are themselves polarized be-
cause of angular momentum conservation. The amount of
polarization that is transferred to the daughter particle depends
on the momentum of the daughter in the rest frame of the
parent. For the mean, momentum-integrated, spin vector in
the rest frame, a simple linear rule applies

S∗
D = CS∗

P, (13)

where P is the parent particle, D is the daughter and C is
a coefficient, values of which are presented in Table I of
Ref. [17]. Making use of these C coefficients, we arrive at the
following expression for the observable � polarization:

(P�
� )obs. = N�P�

� + (5/3)N
∗P�

∗ − (1/3)N
0 P�


0

N� + N
∗ + N
0
, (14)

where P�
Y is the global polarization Y hyperon (Y =

�,
∗, 
0) calculated similarly to Eq. (12) and

NY =
∫


�y

d3x ρY (15)

is the total number of Y hyperons (Y = �,
∗, 
0) on the
freeze-out hypersurface 
�y. In Eq. (15) we neglected con-
tribution of the decay channel 
∗ → 
 + π with small
branching ratio (0.117), and hence put the branching ratio of
the 
∗ → � + π channel equal to unit.

In Fig. 4 we demonstrate the effect of the feed down from
higher-lying resonances on the global � polarization in midra-

pidity region (|yh| < 0.8). The impact parameter b = 8 fm
roughly roughly comply with the STAR centrality selection of
20–50% [1]. To associate these impact parameters with colli-
sion centrality, one should keep in mind that in the 3FD model
the colliding nuclei have a shape of sharp spheres without
the Woods-Saxon diffuse edge. This fact, implemented in the
Glauber simulations based on the nuclear overlap calculator
[49], results in this mean impact parameter, which is shifted by
≈1.5 fm down, as compared the result of Ref. [50]. The width
of this midrapidity region is chosen on the condition of the
best reproduction of the STAR acceptance |η| < 1 [1], where
η is pseudorapidity. This window is not that good for the low-
energy data [8–10], where rapidity acceptance is asymmetric
with respect to the midrapidity. However, it is still good in
view of flat rapidity dependence of the observed P�. Results
are presented for three EoS’s. As seen, the feed down reduces
P� by ≈25% at low energies and by ≈15% at 7.7 GeV. All
results presented below are calculated taking into account feed
down from higher-lying resonances.

IV. MESON-FIELD INDUCED POLARIZATION

In this section, meson-field-induced contribution to the
global polarization is discussed. It was proposed in Ref. [51]
primarily to explain the observed �-�̄ splitting in the global
polarization. We do not discuss this splitting in the present
paper because it deserves special separate discussion, but
rather study the effect of the meson-field-induced contribution
on the � polarization. Below, we briefly repeat derivation
of Refs. [51,52] with the same result but somewhat different
reasoning.

Let strong interaction among baryons be mediated by a
scalar field σ and a vector field V μ, as it assumed in the
Walecka model [53,54]. The effective Lagrangian of this
model is

Leff =
∑

j

ψ̄ j (i 	∂ − mj + gσ jσ − gV j 	V )ψ j

+ 1

2

(
∂μσ∂μσ − m2

σ σ 2
) − 1

4
V μνVμν + 1

2
m2

V VμV μ.

(16)

Here j labels the spin-1/2 baryons, and the field strength
tensor for the vector field is

Vμν = ∂μVν − ∂νVμ. (17)

In general, the Lagrangian may include a potential U (σ ) of
σ -field self-interaction, but its exact form is irrelevant here.
Therefore, we put U (σ ) = 0 for definiteness. The V field is
usually associated with the vector ω meson and σ , with the σ

meson. The σ field results in an attractive interaction and ω, a
repulsive interaction. gω j and gσ j are the coupling constants,
possible values of which can be found, e.g., in Ref. [55].

The σ and ω fields are treated in the mean-field approxi-
mation [53–55]:

∂2V ν + m2
V V ν =

∑
j

gV jJ
ν
j , (18)
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where Jμ
j = 〈ψ̄γ μψ〉 is the baryon current of j baryons,

in which baryons and antibaryons contribute with opposite
signs, and

∂2σ + m2
σ σ =

∑
j

gσ jns j, (19)

where ns j = 〈ψ̄ψ〉 is the scalar density, in which baryons
and antibaryons contribute with the same signs. It is ex-
pected that these interactions in terms of hadrons are relevant
at the freeze-out stage even if the preceding evolution was
dominated by the quark-gluon phase. At this stage the cor-
responding energy scale is much less than mω = 783 MeV
and mσ ≈ 600 MeV. Therefore, the derivatives in Eqs. (18)
and (19) can be neglected, and thus we arrive at the following
solution for the fields:

σ = 1

m2
σ

∑
j

gσ jns j, (20)

V ν = 1

m2
V

∑
j

gV jJ
ν
j � ḡV

m2
V

Jν
B . (21)

The V ν field can be approximately expressed through the
baryon current Jν

B = nBuν , where nB is the baryon density and
ḡV is the mean coupling constant of the vector meson.

Nonrelativistic reduction of the interaction between the
fields and the spin operator Ŝ of the � and �̄ hyperons is
performed by means of the Foldy-Wouthuysen transforma-
tion [56–58], i.e., an expansion in powers of the inverse of
baryon masses, which complies with neglecting derivatives in
Eqs. (18) and (19). The nonrelativistic interaction of the spin
with the meson fields reads

Ĥspin = gσ�

2m2
�

Ŝ · ∇σ × p̂ − gV �

m�

βŜ · BV

− i
gV �

4m2
�

Ŝ · ∇ × EV − gV �

2m2
�

Ŝ · EV × p̂. (22)

Here EV and BV are the vector-meson electric and magnetic
fields

Ei = Vi0, (23)

Bi = − 1
2εi jkV

jk, (24)

where i, j, k = 1, 2, 3, p̂ is the momentum operator of the �

or �̄, and

β =
(

1 0
0 −1

)
(25)

is the usual Dirac 4×4 β matrix, resulting in opposite signs
when acting on the � and �̄ spinors.

Let us turn to the density operator

ρ̂ = 1

Z
exp[−Ĥ/T + νQ̂/T + ω · (L̂ + Ŝ)/T ], (26)

where Ĥ is the Hamiltonian, T is the temperature, Q̂ stands
for conserved charges (baryon, electric, strangeness) with ν

being the corresponding chemical potentials. The angular ve-
locity ω plays the role of a chemical potential for the angular
momentum, consisting of the orbital (L̂) and spin (̃S) parts.

Inspecting the spin-dependent part of the Hamiltonian,
Eq. (22), we see that only the second and third terms on the
right-hand side can be associated with additional corrections
to the spin chemical potential, provided the equilibrium is
local. The first and fourth terms also produce the polariza-
tion, but a chaotic one, because its direction depends on the
momentum direction. However, they may induce a collec-
tive polarization, if there is a strong collective flow, i.e., if
particle momenta are dominantly aligned along certain direc-
tion. This polarization would be similar to that discussed in
Refs. [59–61]. The third term contains the extra derivative in
the nominator and the extra � mass (m�) in the denominator,
as compared to the second term. This combination amounts
to a smallness parameter, which has been already used when
neglecting derivatives in the mean-field equations (18) and
(19). Besides, only the sum of the third and fourth terms in
Eq. (23) is Hermitian, not the individual terms. Therefore, it is
reasonable to disregard them together. Thus, we can represent
the density operator relevant to the global polarization in the
following form:

ρ̂ = 1

Z
exp

[
−

̂̃H
T

+ ν

T
Q̂ + gV �

m�T
βŜ · BV + ω

T
· (L̂ + Ŝ)

]
,

(27)

where the term with the extra spin chemical potential from

Ĥspin is explicitly displayed, while ̂̃H denotes the rest part of
the Hamiltonian.

Derivation along the lines of Ref. [62] results in the
mean spin vector of the hyperons (Y = � or �̄) with four-
momentum p, produced around point x

Sμ
Y (x, p) = 1

4

(
�μ

c + βY
gV �

m�T
Bμ

V

)
, (28)

where β� = 1 and β�̄ = −1,

�μ
c = − 1

2εμρστ�ρσ pτ /m� (29)

is the comoving axial thermal vorticity defined in terms of
the thermal vorticity (1). Here we returned to the relativis-
tic treatment of the rotation, therefore the angular velocity
ω was replaced by the relativistic thermal vorticity. We can
make expression (28) completely covariant by identifying the
magnetic field Bμ

V with the comoving magnetic field

Bμ
V = Bμ

c = −εμρστVρσ pτ /m�. (30)

This is a certain ansatz because the corresponding interaction
(22) was originally derived in the nonrelativistic approxima-
tion. In explicitly covariant form Eq. (28) reads

Sμ
Y (x, p) = − 1

8m�

εμρστ pτ

(
�ρσ + βY

gV �

m�T
Vρσ

)
. (31)

The vector meson field enters this expression similarly to the
electromagnetic field interacting with magnetic moment of
the Y hyperon [17]. This expression is valid [62] (see also
Ref. [17]) in the leading order in the thermal vorticity and field
strength tensor. The Fermi factor [1 − nY (x, p)] was again
omitted because of its negligible effect at high temperatures
achieved in nuclear collisions.
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The further derivation is identical to that performed in
the previous section with the substitution (�ρσ + βY

gV �

m�T Vρσ )
instead of �ρσ . Finally we arrive to the following expression
for the meson-field contribution to the global polarization of
the Y hyperon (Y = � or �̄):

PV
Y = βY gV �

6m�T

∫

�y

d3x(ρY + 2T 00
Y /m�)Vzx∫


�y
d3x ρY

, (32)

which should be added to the thermal-vorticity term (12).
Here β� = 1 and β�̄ = −1, and Vzx is defined in terms of
the baryon current, Jν

B , by Eq. (21). The feed-down correction
(14) should be applied to the sum of thermal-vorticity and
meson-field terms.

For practical calculations the coupling constant gV � and
the mean coupling constant ḡV of the vector meson are
needed. A brief survey of various parametrizations of the
relativistic mean-field (RMF) model is presented in Ref. [51],
see also [63,64]. We use just one of the possible parametriza-
tions: ḡV = gV N = 8.646, gV � = 0.67gV N , and mV = mω =
783 MeV [65]. The mean coupling constant is associated with
the nucleon one because nucleons dominate in the baryonic
content of system at low energies considered here. The un-
certainty in the RMF-model parametrization results in the
corresponding uncertainty in the PV

Y calculation.
To estimate the scale of the additional V term, we present

the terms in parentheses in Eq. (31) as follows:

�zx + gω�

m�T
Vzx = �zx +

(
gω�ḡωn0

m�m2
ω

)
JB

zx

T n0
, (33)

where n0 = 0.15 fm − 3 is the normal nuclear density and

JB
μν = ∂μJB

ν − ∂νJB
μ (34)

is vorticity of the baryon current, see Eq. (21). The factor

gω�ḡωn0

m�m2
ω

≈ 0.1 (35)

is a natural scale of the additional V term. In practice, the
contribution of the V term can be greater (up to several tens
of percent) or less (down to several percent) or even have the
opposite sign, depending on spatial distributions of thermal
and baryon-current vorticities and values of the baryon density
at the freeze out.

Figure 5 demonstrates the effect of the meson-field contri-
bution to the global � polarization. As seen, the additional
meson-field term considerably reduces the � polarization
in rapidity window |yh| < 0.8 at low collision energies and
makes it closer to the STAR data at 3 GeV [8]. At the
same time this effect is small in narrower window |yh| < 0.4.
This is a result of the aforementioned spatial distributions of
thermal and baryon-current vorticities. In Fig. 6, the spatial
distributions of the proper-energy-density weighted relativis-
tic baryon-current zx vorticity, the similarly weighted thermal
zx vorticity, the temperature, and the proper baryon density in
the reaction plane (xz) at time instant t = 16 fm/c in the semi-
central (b = 8 fm) Au+Au collision at

√
sNN = 2.7 GeV are

presented. Calculations are performed with the crossover EoS.
This time instant of t = 16 fm/c is close to the freeze-out time
(16.8 fm/c) determined by means of the average freeze-out

FIG. 5. Global � polarization in midrapidity regions (a) |yh| <

0.8 and (b) |yh| < 0.4, originated from the thermal vorticity with
(bold lines) and without (thin lines) the meson-field contribution, in
Au+Au collisions at b = 8 fm as function of collision energy

√
sNN .

Results for different EoS’s are presented. Data are from Refs. [1,8,9]
(STAR) and [10] (HADES).

energy density in the central region obtained in conventional
3FD simulations, see Fig. 3.

Approximate borders of the regions corresponding to re-
strictions on the hydrodynamical rapidity yh, see Eq. (8), are
displayed by gray boxes in the JB

zx/(n0T ) panel of Fig. 6:
|yh| < 0.8 by the light-colored box and |yh| < 0.4 by the
dark-colored box). As seen, the baryon-current zx vortic-
ity and the thermal zx one achieve highest absolute values
at the participant-spectator border. Moreover, these values
are of the opposite sign. The near-border absolute value of
JB

zx/(n0T ) exceeds that of �zx. Panels (T ) and (nB/n0) of
Fig. 6 demonstrate that gradients of 1/T and nB/n0 also es-
sentially contribute to �zx and JB

zx/(n0T ), respectively, rather
than only vortical motion of the matter.

The |yh| < 0.8 region almost completely includes the
participant-spectator border. Therefore, the (|yh| < 0.8)-
region integrated baryon-current vorticity [multiplied by 0.1,
see (35)] considerably reduces the �zx polarization. The
|yh| < 0.4 region only slightly overlaps with the participant-
spectator border. Hence, the main contribution to the meson-
field contribution to the global polarization comes from the
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FIG. 6. Panels from left to right: (a) JB
zx/(n0T ), the proper-energy-density weighted relativistic baryon-current zx vorticity, Eq. (34), divided

by temperature (T ) and normal nuclear density (n0), (b) �zx , the similarly weighted thermal zx vorticity, (c) T , the temperature, and (d) nB/n0,
the proper baryon density in units of the normal nuclear density (n0) in the reaction plane (xz) at time instant t = 16 fm/c in the semicentral
(b = 8 fm) Au+Au collision at

√
sNN = 2.7 GeV. Calculations are done with the crossover EoS. z axis is the beam direction. Gray-shaded

boxes in the JB
zx/(n0T ) panel indicate approximate borders of the midrapidity regions |yh| < 0.8 (light-gray outer box) and |yh| < 0.4 (dark-gray

inner box), where yh is the hydrodynamical rapidity, see Eq. (8).

bulk, where the baryon-current vorticity is quite moderate.
Therefore, the V correction to the global polarization in the
|yh| < 0.4 region is small.

The effect of the meson-field contribution is negligible at
higher energies even in the (|yh| < 0.8) window, see Fig. 5.
The � polarization sometimes even increases, though only
slightly, because of the meson-field contribution. In particular,
it means that the meson-field-induced polarization does not
explain the �-�̄ splitting at the energy of 7.7 GeV. This is
in contrast to results of Ref. [52], where it did explain. The
reason is twofold. First, the (|yh| < 0.8) window becomes too
narrow to cover the participant-spectator border, where the
baryon-current vorticity and the thermal one achieve highest
absolute values. Second, the baryon density at the freeze out
decreases with the collision energy rise. Indeed, the peak
value of the baryon density in the (|yh| < 0.8) window at
the freeze out occurs precisely at these low collision energies
at b = 8 fm, as seen from Fig. 7. This peak is achieved, in
particular, because the spectator regions are partially included
in this (|yh| < 0.8) region. It seemingly contradicts the results
by Cleymans and Randrup [66], obtained in the statistical
model. They obtained the maximum baryon density at approx-
imately 8 GeV, when analyzing central collisions. The 3FD
model predicts a similar result for the central collisions: the
maximum nB is achieved at ≈ 8 GeV at b = 2 fm, see Fig. 7.

V. RAPIDITY DEPENDENCE

The STAR data [8] on rapidity dependence of the global �

polarization at
√

sNN = 3 GeV are presented for a wide range
of centrality selection 0–50 %. The nuclear overlap calculator
[49], based on the Glauber simulations, predicts the range of
impact parameters b = 0–8.8 fm for this centrality range. This
estimate takes into account that the colliding nuclei are sharp
spheres without the Woods-Saxon diffuse edge in the 3FD
model. Such a wide range cannot be represented by a single
impact parameter. Therefore, we need to perform averaging

over b:

〈P�〉 =
∫ bmax

0
bdb P�(b)

/ ∫ bmax

0
bdb, (36)

where bmax = 8.8 fm. Actual 3FD simulations of Au+Au col-
lisions were performed at discrete impact parameters b = 2, 4,
6, 8, and 11 fm. Therefore, we replace the integral in Eq. (36)
by a sum over impact parameters

〈P�〉 ≈
∑

bi=2,4,6,8fm

bi P�(bi )

/ ∑
bi=2,4,6,8fm

bi, (37)

where �b is canceled because bi points are equidistant.
The rapidity dependence of the global � polarization at 3

GeV, calculated accordingly to Eq. (37), is shown in Fig. 8.
Both the thermal vorticity and with additional vector-meson
contribution (bold lines in Fig. 8) quite well describe the

FIG. 7. Mean freeze-out baryon density in units of the normal
nuclear density, n0 = 0.15 fm−3, in midrapidity region (|yh| < 0.8)
in Au+Au collisions at impact parameters b = 8 fm (bold lines) and
b = 2 fm (thin lines) as function of collision energy

√
sNN . Results

for different EoS’s are presented.
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FIG. 8. Rapidity dependence of the global � polarization in
Au+Au collisions at

√
sNN = 3 GeV (centrality 0–50 %), origi-

nated from only the thermal vorticity (thin lines) and with additional
vector-meson contribution (bold lines). Results for different EoS’s
are presented. Data are from Ref. [8] (STAR).

STAR data [8] at |y| < 0.3. However, they overestimate the
data at |y| > 0.3. The vector-meson contribution somewhat
improves the agreement, especially with the crossover EoS,
but the overestimation at |y| > 0.3 persists.

This observation demonstrates once again that effects of
the thermal vorticity and vector-meson interaction become
large in rapidity ranges overlapping with the participant-
spectator border, see Fig. 6. Moreover, the above contributions
produce effects of opposite sign. Therefore, the observed
global � polarization is a result of a delicate cancellation of
the above contributions.

The rapidity dependence of the global � polarization at√
sNN = 7.7 GeV is shown in Fig. 9. It is compared with

preliminary STAR data for Au+Au collisions at
√

sNN =
7.2 GeV [9]. The STAR centrality selection is 20–60 %, which
corresponds to the impact-parameter range b = 5.6–9.7 fm

FIG. 9. Rapidity dependence of the global � polarization in
Au+Au collisions at

√
sNN = 7.7 GeV (b = 8 fm), originated from

only the thermal vorticity (thin lines) and that with additional vector-
meson contribution (bold lines). Results for different EoS’s are
presented. Preliminary STAR data for Au+Au collisions at

√
sNN =

7.2 GeV and centrality 20–60 % are from Ref. [9].

FIG. 10. Rapidity dependence of the global � polarization in
Au+Au collisions at

√
sNN = 2.4 GeV (b = 6 fm), originated from

only the thermal vorticity (thin lines) and with additional vector-
meson contribution (bold lines). Results for different EoS’s are
presented.

based on the overlap calculator [49]. Therefore, b = 8 fm can
be chosen to represent this range. While the STAR data are
presented by four subsets corresponding to different selections
of transverse momentum, pT , the 3FD results correspond to
averaging over the whole pT range.

In Fig. 9 we observe the same features as those for
√

sNN =
3 GeV in Fig. 8. The thermal vorticity with or without addi-
tional vector-meson contribution well reproduces the STAR
data [9] at |y| < 0.8 but overestimates the data at |y| > 0.8.
The vector-meson contribution somewhat reduces the dis-
agreement with data at |y| > 0.8.

In Fig. 10 we present our predictions for the ongoing
HADES experiment [10]. We avoid modeling Ag+Ag col-
lisions because this system contains of too few particles,
especially at low collision energies, to apply the hydrody-
namical description. Therefore, we present predictions for the
Au+Au collisions at

√
sNN = 2.4 GeV. The results for b = 6

fm are shown, which approximately corresponds to centrality
10–40 %. As seen, the basic patterns in Fig. 10 are the same as
those in Figs. 8 and 9. Only the difference of the results with
different EoS’s is larger.

VI. CENTRALITY DEPENDENCE

The global polarization of � hyperons in Au+Au colli-
sions is calculated at impact parameters b = 2, 4, 6, 8, and
11 fm. The displayed impact parameters are associated with
collision centrality by means of the Glauber simulations based
on the nuclear overlap calculator [49].

In Fig. 11, centrality dependence of the global � polariza-
tion in midrapidity region (|yh| < 0.8) in Au+Au collisions
at

√
sNN = 3 GeV originated from only the thermal vortic-

ity (thin lines) and with additional vector-meson contribution
(bold lines) is displayed. The experimental rapidity window
is asymmetric −0.2 < y < 1 [8]. However, it well complies
with the modeled window in view of flat experimental rapid-
ity dependence of the observed polarization, see Fig. 8. As
seen from Fig. 11, both the thermal vorticity and that with
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FIG. 11. Centrality dependence of the global � polarization in
midrapidity region (|yh| < 0.8) in Au+Au collisions at

√
sNN = 3

GeV originated from only the thermal vorticity (thin lines) and
with additional vector-meson contribution (bold lines). Results for
different EoS’s are presented. Data are from Ref. [8].

additional vector-meson contribution reasonably well (though
not perfectly) describe the observed centrality dependence.

At the energy of 7.7 GeV, see Fig. 12, the effect of the
additional vector-meson contribution becomes negligible be-
cause the rapidity window does not cover the regions of
the participant-spectator borders, as it has been already dis-
cussed in Sec. IV. The thermal vorticity with and without the
meson-field contribution reasonably well describes prelimi-
nary STAR data for 7.2 GeV energy.

Our predictions for the centrality dependence in Au+Au
collisions at

√
sNN = 2.4 GeV (HADES experiment) are pre-

sented in Fig. 13. We took the rapidity window |yh| < 0.6,
which is similar to that used for the Ag+Ag system in the
HADES experiment [10]. Here the situation is similar to
that at 3 GeV, see Fig. 11, only the centrality dependence is
weaker.

FIG. 12. The same as in Fig. 11 but for
√

sNN = 7.7 GeV. Pre-
liminary STAR data for Au+Au collisions at

√
sNN = 7.2 GeV are

from Ref. [9], only statistical errors are displayed.

FIG. 13. The same as in Fig. 11 but for the midrapidity region
(|yh| < 0.6) at

√
sNN = 2.4 GeV.

VII. EOS

All the above-presented calculations were performed with
three EoS’s. At moderately relativistic collision energies,√

sNN ∼< 4.5 GeV, all these EoS’s describe the hadronic mat-
ter, except for the crossover EoS containing the small QGP
admixture even at low energies. This is seen from Fig. 14,
where dynamical trajectories of the matter in the central
region of the colliding nuclei in semicentral (b = 8 fm) col-
lisions of Au+Au at

√
sNN = 2.7, 3.3, 4.9 GeV are displayed.

Only expansion stages of the evolution are displayed. The
evolution proceeds from top right to bottom left. Symbols on
the trajectories illustrate the expansion rate: they are spaced
1 fm/c apart. The yellow zone in Fig. 14 is a mixed-phase
region within the 1PT scenario. The critical temperature

FIG. 14. Dynamical trajectories of the matter in the central box
of the colliding nuclei (4 fm × 4 fm × 4 fm/γcm), where γcm is the
Lorentz factor associated with the initial nuclear motion in the c.m.
frame, for semicentral collisions (b = 8 fm) of Au+Au at

√
sNN =

2.7, 3.3, 4.9 GeV. 1PT, crossover and hadronic trajectories are dis-
played. The trajectories are plotted in terms of baryon density (nB)
and temperature (T ). Only expansion stages of the evolution are
displayed. Symbols on the trajectories illustrate the expansion rate:
they are spaced 1 fm/c apart. The yellow zone is a mixed-phase
region within the 1PT scenario.
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Tc = 173 MeV for the 1PT EoS looks too high nowadays,
cf. [67]. This is because the 1PT and crossover EoS’s in
Ref. [20] were fitted to old, still imperfect lattice data [68–70].
However, this shortcoming is not severe for the reproduction
of bulk observables in heavy-ion collisions.

In spite of that all the considered EoS’s describe the
hadronic matter at moderately relativistic collision energies,
they are not identical. Indeed, the corresponding dynamical
trajectories in the hadronic phase are different, see Fig. 14,
though close to each other. Therefore, differences in pre-
dictions of these EoS’s can be considered as an uncertainty
resulting from EoS ambiguity in the hadronic phase. All the
considered EoS’s give almost identical predictions for bulk
[21,71–73] and even flow [74–76] observables at moderately
relativistic collision energies. The polarization turns out to be
more sensitive to details of the EoS.

VIII. SUMMARY

Based on the 3FD model, the global � polarization in
Au+Au collisions at moderately relativistic energies, 2.4 �√

sNN � 7.7 GeV, was calculated, including its rapidity and
centrality dependence. Contributions of the thermal vorticity
and meson-field interaction [51] to the global polarization
were considered. Feed down from higher-lying resonances
was also studied, which as found reduces the polarization
by ≈25% at lower energies and by ≈15% at 7.7 GeV. The
results were compared with data from recent and ongoing
experiments [8–10]. It is predicted that the global polarization
increases with the collision energy decrease. A maximum is
reached at

√
sNN ≈ 3 GeV, if the measurements are performed

with the same acceptance.
The value of the polarization is very sensitive to interplay

of the aforementioned different contributions. In particular,
the thermal vorticity predicts quite strong increase of the
polarization from the midrapidity to forward/backward rapidi-
ties, while the meson-field contribution considerably flattens
the rapidity dependence. The meson-field contribution is large
at the participant-spectator border and hence considerably re-
duces the polarization at forward/backward rapidities, while
it is practically negligible at the midrapidity. As a rule, it

improves agreement of calculated polarization with available
data. Note that one of many possible parametrizations of
the meson-field interaction was used in the present calcula-
tions. It indicates the order of magnitude and character of
the produced effect. The details may be different for other,
more refined parametrizations, e.g., such as those developed
in Refs. [64,77,78] for astrophysical applications.

The simulations were performed with three different EoS’s.
In spite of that, all the considered EoS’s describe the hadronic
matter at

√
sNN ∼< 4.5 GeV, they are not identical. The polar-

ization turns out to be more sensitive to details of the EoS
than bulk and even flow observables. The EoS crossover is
somewhat preferable, although the data reproduction is far
from being perfect. This could be a result of imperfectness
of the crossover EoS, in view of high sensitivity of the global
polarization to the EoS. Alternatively, this may indicate that
the effect of the thermal-shear contribution [79–81] should
be additionally explored. Authors of Ref. [29] found that at
the energy of 19.6 GeV the effect of the thermal shear is
negligibly small at the freeze-out stage. Whether this is so at
moderately relativistic energies remains to be seen.

All presently available approaches to the particle polar-
ization, i.e., the thermodynamic approach used here [16–18]
and that based on the chiral-vortical effect [82–87], require
the thermal equilibrium at the freeze-out stage. At the same
time the collision dynamics becomes less and less equilibrium
with the collision energy decrease. This becomes a problem at
low energies. We argue that the equilibrium is achieved at the
freeze-out stage, only this equilibration takes longer.
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