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We include effects of chiral symmetry and its restoration in the kinetic equations for baryon propagation and
explore the consequences for η, π 0, ρ, and dilepton production in heavy-ion collisions at (112)A GeV. Numerical
calculations are performed using the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) microscopic transport
model supplemented by the parity-doublet model for the mean fields of the nucleon and the N∗(1535) resonance.
In this chiral model, a strong drop of the Dirac mass of the N∗(1535) in the high-density stage of a collision
leads to a considerable enhancement in the production of this resonance as compared to the standard (nonlinear)
Walecka model. As the system expands, the Dirac masses of these abundant soft N∗(1535) resonances gradually
increase and ultimately cross the Nη decay threshold. As a result, an enhanced low-energy η production is
observed in the calculations with chiral mean fields. Comparing with data from the TAPS experiment on η and
π 0 production, we find that the chiral model improves the agreement for the mt spectra of η’s at small mt in heavy
colliding systems. A similar enhancement is also observed in the soft ρ production due to chiral symmetry and its
partial restoration. The resulting dilepton yields at low and intermediate invariant masses are slightly enhanced
due to these chiral effects, which further improves the agreement between GiBUU transport simulations and data
from the HADES experiment for C + C at 1A GeV.
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I. INTRODUCTION

Lattice QCD calculations predict the appearance of close in
mass hadrons of the same spin but opposite parity, i.e., parity
doubling, if chiral symmetry is restored [1,2]. In effective
theories for the baryonic sector of QCD, parity doubling can
be introduced within linear sigma models by using either
so-called naive or mirror assignments for the transforma-
tions of the chiral components of two opposite-parity fermion
species [3,4]. With the naive assignment, right-handed and
left-handed components of the two fermions transform sim-
ilarly, under chiral rotations. With the mirror assignment,
originally introduced in Ref. [5], on the other hand, the right-
handed component of the second fermion species transforms
like the left-handed component of the first one and vice versa
[see Eqs. (1) and (2) below]. Both assignments allow for chi-
rally invariant mixing terms between the two fermion species.
After diagonalization, however, the coupling between the two
fermions completely vanishes in the naive assignment. More-
over, both fermions become massless when chiral symmetry is
restored. In contrast, with the mirror assignment, the coupling
between the two fermions cannot be removed by diagonaliza-
tion [see Eqs. (17)–(19) below], and they become degenerate
in mass with chiral symmetry intact and unbroken. In this way,
the parity-doublet model (PDM) with mirror assignment al-
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lows for a chirally invariant common mass term whose origin
in QCD is attributed to the gluonic contribution to the scale
anomaly as the main origin of the nucleon mass. Spontaneous
chiral symmetry breaking then essentially generates only the
mass splitting between the two fermion species of opposite
parity, i.e., between the nucleon and the N∗(1535) resonance
as the lowest-lying negative parity partner of the nucleon,
in QCD. This PDM with mirror assignment, also referred to
as the mirror baryon model, is therefore used as a basis for
effective hadronic theories to describe the phenomenology of
a chiral phase transition inside dense baryonic matter [6–9].

The search for signals of such a transition from ordinary
nuclear matter to an even higher density phase with nearly
restored chiral symmetry, whether this is baryonic, quark,
or quarkyonic matter, is an important theoretical and exper-
imental problem. What the PDM as an effective hadronic
theory can provide, to address this problem, are experi-
mentally testable predictions from the assumed existence of
chirally symmetric baryonic matter at high density. One such
prediction, in qualitative agreement with the lattice stud-
ies [1,2], is that the mass of the lower-lying parity partner
such as the nucleon varies comparatively weakly with den-
sity while the higher-lying one such as the N∗(1535) drops
considerably, especially across the chiral transition [7–10].
The qualitative behavior of the parity-partner baryon masses
therefore resembles that of the masses of the chiral-partner
vector and axial-vector mesons ρ and a1 [10–12]. For dilepton
production in heavy-ion collisions, their chiral mixing and
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chiral symmetry restoration were argued to manifest them-
selves in bumpy structures in ω-ρ and φ regions [13]. A strong
low-energy resonance excitation peak at around 250 MeV in
both vector and axial-vector spectral functions, due to the
dropping N∗(1535) resonance mass across the chiral transi-
tion, was predicted as a possible signal in heavy-ion collisions
at a few GeV/nucleon from high statistics measurements of
an increased dilepton yield at correspondingly low invariant
masses [10].

Another possibility is to look for signals of an enhanced
production and abundance of the N∗(1535) resonance from
NN collisions. When chiral symmetry gets fully restored, the
partial densities of the N∗(1535) resonances and the nucleons
become equal to one another. This remains true inside nuclear
matter in thermal equilibrium as a consequence of equal Dirac
masses of the parity partners, assuming that the vector mean
fields of N and N∗(1535) are the same as well when chiral
symmetry is restored. In heavy-ion collisions thermal equilib-
rium is not necessarily expected to be reached. Nevertheless,
an increased N∗(1535) production due to the lower production
threshold in NN → NN∗ collisions should be observed, when
the PDM is used for the calculations of the baryonic mean
fields.

The N∗(1535) resonance has a large branching ratio
(≈30–55% [14]) for the ηN decay channel which makes this
resonance the most important channel of η production in
γ -nucleus reactions near threshold [15,16]. Since the PDM
predicts that the difference between the N∗(1535) and nucleon
Dirac masses decreases with increasing baryon density, the
N∗ → ηN decay channel closes at ρB ≈ 0.4 ρ0 according to
Ref. [17], where the impact of the PDM dynamics on the co-
herent η-mesonic nuclei photoproduction was discussed. This
was also suggested to be the reason for the A2/3 dependence of
the η-production cross section [18]. More recent PDM studies,
taking into account N∗-hole loop contributions to the η self-
energy, confirmed the strong decrease of the N∗(1535) → Nη

decay width in a nuclear medium [19].
In heavy-ion collisions, the compression-expansion dy-

namics of the bulk nuclear medium should lead to the
disappearance of the mean field effects on the mass difference
between N∗’s and nucleons and allow for N∗ → ηN decays
towards the end of the time evolution, even for slow N∗’s in
the central region of the colliding system. In contrast to the
situation in a static nuclear medium, this should then result
in an increased production of η’s due to the chiral mean field
effects in the PDM with chirally symmetric dense baryonic
matter.

In Ref. [20] π -N-� dynamics was studied both in a box
with periodic boundary conditions and in heavy-ion collisions
below 1A GeV on the basis of the Boltzmann-Uehling-
Uhlenbeck (BUU) model with the Skyrme energy density
functional Skχm∗ fitted to the equation of state (EOS) and
effective masses from chiral two- and three-body interactions.
The authors of Ref. [20] predicted a substantial enhancement
of pion production, due to threshold mean field effects, al-
though the π−/π+ ratio remains essentially unchanged.

The aim of our work is to directly study the effects
of partial restoration of chiral symmetry in heavy-ion col-
lisions at beam energies of (1−2)A GeV. We extend the

Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) transport
model [21] by the baryonic mean fields calculated on the basis
of the PDM. The in-medium production thresholds in GiBUU
are modified to take into account a stronger in-medium mass
drop of N∗(1535) as compared to the nucleon. In our numer-
ical analysis, we compare the calculations within the chiral
PDM and the nonlinear and not chiral Walecka model, and
demonstrate that the former leads to a significant enhancement
of low-transverse-mass η production at midrapidity. The com-
parison with data from the TAPS experiment on η production
shows that the PDM improves the low-mt behavior for heavier
colliding systems, Ar + Ca and Au + Au at 0.8A GeV, but
leads to some overestimation at low mt ’s for C + C at 0.8A
and 1.0A GeV. We have also calculated dilepton production
in C + C at 1A GeV where we observe increased contributions
from the ρ-meson direct decays at low invariant masses, and
from η-Dalitz decays at intermediate invariant masses within
the PDM, which improves the agreement with data from the
HADES experiment.

Our analysis is based on the parametrizations of the (ex-
tended) PDM from Refs. [7,22]. In the recent Ref. [23], the
extended PDM of Ref. [22] was included in the new Dae-
Jeon BUU (DJBUU) transport code that was then applied,
in particular, to the study of the proton directed flow v1

and nucleon rapidity distributions in Au + Au at 400A MeV,
showing a good agreement with available data from the FOPI
experiment on the rapidity dependence of v1, independent of
the choice of the incompressibility (K = 215 and 240 MeV)
and the chirally invariant PDM mass parameter (m0 = 600–
900 MeV). Inelastic channels were not discussed in Ref. [22],
however. Note that the sophisticated collision term and the
large number of degrees of freedom in the GiBUU code [21]
allow for studies of particle production in heavy-ion collisions
in a wide range of beam energies, ranging from approximately
hundreds A MeV up to approximately tenths A GeV.

The description of massive vector fields based on the Proca
formalism used, in particular, in the Walecka model, is still
questionable; see Ref. [12]. On the other hand, vector re-
pulsion is certainly needed for a realistic description of the
nuclear EOS. To this end, we will apply in this work contact
four-fermion interaction terms of the Nambu–Jona-Lasionio
type to describe vector repulsion. With a proper choice of
mass parameters and coupling constants for the correspond-
ing vector Hubbard fields, the Walecka model description is
restored for infinite nuclear matter, however.

The structure of our work is as follows: In Sec. II, the
PDM is described starting from the basic Lagrangians. The
in-medium dispersion relations for the nucleon and its parity
partner, and the equations of motion (EOMs) for the classical
σ , ω, and ρ fields are rederived. The dispersion relations are
then used in the kinetic equations for the particle propagation
in classical meson fields including elementary elastic and in-
elastic collisions as well as resonance decays. The in-medium
thresholds in the collision term are explained in Sec. II A. In
Sec. II B we present the calculations of the equation-of-state
of nuclear matter at zero temperature and of the density de-
pendence of the Dirac masses of the nucleon and the N∗(1535)
that show a chiral phase transition at high densities. In Sec. III,
the time evolution for central Au + Au collision at 1A GeV is
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studied. It is shown that the PDM leads to a dramatic enhance-
ment of N∗(1535) production at intermediate stages of the
collision, but only to a moderate enhancement of η and ρ pro-
duction. In Sec. IV we present a systematic comparison with
TAPS data on η and π0 production at (0.8–2.0)A GeV and also
provide predictions at lower beam energies, 0.6A GeV, i.e. far
below the quasifree η production threshold in pp collisions
(Ebeam = 1.255 GeV). Dilepton production is discussed in the
end of Sec. IV for the selected case of C + C at 1A GeV.
We conclude and discuss some possible next steps for future
extensions in Sec. V.

II. THE MODEL

We apply the parity doublet model (PDM) with mirror
assignment [4],

N1R → RN1R, N1L → LN1L, (1)

N2R → LN2R, N2L → RN2L. (2)

Here, N1 and N2 are the fields of nucleon (1) and its nega-
tive parity partner (2), while “R” and “L” denote the right-
and left-handed components: NiR = (1 + γ5)Ni/2, NiL = (1 −
γ5)Ni/2, i = 1, 2. The isospin SU(2) transformations R and L
act independently on the right- and left-handed components
of the nucleon fields, Eq. (1), and thus their combination
belongs to the direct product SU(2)R ⊗ SU(2)L, called a chiral
group. The mirror assignment in Eq. (2) entails that the right-
handed component of a negative parity partner transforms like
a left-handed nucleon and vice versa. The PDM Lagrangian is
written as follows:

L = N̄1[i∂/ + g1(σ + iγ5τπ)]N1

+ N̄2[i∂/ + g2(σ − iγ5τπ)]N2

− m0(N̄1γ5N2 − N̄2γ5N1) + Lmes + L0 + L1, (3)

where τ are the isospin Pauli matrices, and the combinations
of σ and π coupling terms to the baryons in Eq. (3) are invari-
ant under chiral rotations as in the original Gell-Mann-Lévy
model. The Lagrangian (3) includes nondiagonal coupling
terms between N1 and N2 baryon fields which are chirally
invariant:

N̄1γ5N2 = N̄1Rγ5N2L + N̄1Lγ5N2R

→ N̄1RR†γ5RN2L + N̄1LL†γ5LN2R

= N̄1γ5N2 (4)

(and similarly for the N̄2γ5N1 term), where the mirror assign-
ment, Eqs. (1) and (2), is used.

The (pseudo)scalar meson Lagrangian has the following
form:

Lmes = 1

2
∂μσ∂μσ + 1

2
∂μ �π∂μ �π

+ μ̄2

2
(σ 2 + π2) − λ

4
(σ 2 + π2)2

+ λ6

6
(σ 2 + π2)3 + εσ. (5)

The combination σ 2 + π2 is chirally invariant, and the εσ

term is included for the small explicit braking of the two-
flavor chiral symmetry.

Moreover, in Eq. (3) we have included isoscalar and
isovector four-fermion Nambu–Jona-Lasinio-type interaction
terms,

L0 = −G0(N̄1γ
μN1 + N̄2γ

μN2)2, (6)

L1 = −G1[(N̄1γ
μτN1 + N̄2γ

μτN2)2

+ (N̄1γ
μγ5τN1 − N̄2γ

μγ5τN2)2]. (7)

The form in Eq. (6) describes a local current-current interac-
tion in the total baryon number channel, repulsive for G0 > 0
and independent of the parity partner. The form in Eq. (7)
is determined by chiral symmetry together with parity. It
is unique, if we require it to be independent of the parity
partner also. To see this, first consider individual left- and
right-handed SU(2) currents jiL and jiR for both parity part-
ners. Due to the mirror assignment, the two chirally invariant
current-current interactions are then of the form ( j1L + j2R)2

and ( j1R + j2L )2. Their coupling strengths must be the same
because of parity which exchanges the two. It is now simply
a matter of defining total vector and axial-vector currents
as the sum and the difference of the two currents in these
bilinears, i.e., j = j1L + j2R + j1R + j2L ≡ j1 + j2 and jA =
−( j1L + j2R) + j1R + j2L ≡ jA1 − jA2, where jμi = N̄iγ

μτNi

and jμAi = N̄iγ
μγ5τNi are the usual vector and axial-vector

currents of parity partner i = 1, 2. This then leads to the form
in (7), and explains the relative minus sign in the axial-vector
current-current interaction.

Applying Hubbard-Stratonovich transformations to the
four-fermion short-distance interaction terms (6) and (7) these
are equivalently represented as follows:

L0 = m2
ω

2
ωμωμ − gωωμ(N̄1γ

μN1 + N̄2γ
μN2), (8)

L1 = m2
ρ

2
(ρμρμ + aμ

1 a1μ)

− gρN̄1(ρμ − γ5aμ
1 )γμτN1 − gρN̄2(ρμ + γ5aμ

1 )γμτN2,

(9)

where only the ratios m2
ω/g2

ω = 1/(2G0) and m2
ρ/g2

ρ =
1/(2G1) represent the independent model parameters, as de-
termined by the short-range interaction strengths G0 and G1.

We emphasize that the Hubbard fields ω, ρ, and a1 are
auxiliary fields to linearize the short-range current-current
interactions whose EOMs are the constraint equations,

ωμ =
√

2G0

mω

(N̄1γ
μN1 + N̄2γ

μN2), (10)

ρμ =
√

2G1

mρ

(N̄1γ
μτN1 + N̄2γ

μτN2), (11)

aμ
1 =

√
2G1

mρ

(N̄1γ
μγ5τN1 − N̄2γ

μγ5τN2). (12)

In particular, these Hubbard fields do not themselves represent
dynamical massive vector fields. Therefore, the parameters
mω and mρ in (8) and (9) do not necessarily have to represent
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the physical meson masses of ω and ρ either. While this is
only a matter of interpretation, it is important to remember
that these short-range interactions are not due to boson ex-
changes, but really represent the contact interactions G0 and
G1 which parametrize short distance QCD interactions beyond
any effective mesonic description. Because these interactions
determine only the ratios mω/gω and mρ/gρ , however, we
may nevertheless insert the physical ω and ρ masses here
without loss, as is usually done in the literature, and adjust
the dimensionless couplings gω and gρ accordingly.

The physical positive (N+) and negative (N−) parity baryon
fields that have definite masses are obtained by performing the
SO(4) transformation:(

N+
N−

)
=

(
cos � γ5 sin �

−γ5 sin � cos �

)(
N1

N2

)
, (13)

where the mixing angle � is obtained from the condition of
the diagonalization of the mass matrix [4] which gives

tan 2� = − 2m0

σ (g1 + g2)
. (14)

The corresponding values of the masses of the positive and
negative parity baryons are

m± = 1
2

[√
σ 2(g1 + g2)2 + 4m2

0 ± σ (g2 − g1)
]
. (15)

The Lagrangian (3) can be rewritten in terms of the physical
baryon fields as follows:

L = N̄+[i∂/ − m+ − igπN+N+γ5τπ

− (gωωμ + gρτρμ − ga1γ5τaμ
1 )γμ]N+

+ N̄−[i∂/ − m− − igπN−N−γ5τπ

− (gωωμ + gρτρμ + ga1γ5τaμ
1 )γμ]N−

+ m2
ω

2
ωμωμ + m2

ρ

2
(ρμρμ + aμ

1 a1μ)

− igπN+N−N̄+τπN− + igπN+N−N̄−τπN+
+ ga1N+N−N̄+γμτaμ

1 N− + ga1N+N−N̄−γμτaμ
1 N+ + Lmes,

(16)

where the coupling constants are

gπN+N+ = −g1 cos2 � − g2 sin2 �, (17)

gπN−N− = g2 cos2 � + g1 sin2 �, (18)

gπN+N− = g1 − g2

2
sin 2�, (19)

ga1 = gρ cos 2�, (20)

ga1N+N− = gρ sin 2�. (21)

The σ mean field represents the expectation value of the
scalar condensate 〈q̄q〉. In vacuum, the Goldberger-Treiman
relation yields σ = fπ with fπ = 93 MeV being the pion
decay constant. Below we will disregard the pion mean field
〈π〉 as it has negative parity and thus disappears in the nuclear

matter ground state. We will also disregard the isovector axial-
vector Hubbard field aμ

1 as its expectation value also vanishes
in spin-saturated nuclear matter.

As usual, we apply Lagrange’s EOMs

∂μ

(
∂L

∂∂μq

)
− ∂L

∂q
= 0 (22)

for the fields q ≡ σ, ων, ρν, N̄±, which give

∂μ∂μσ (x) − μ̄2σ + λσ 3 − λ6σ
5 − ε

= −
∑
i=±

∂mi

∂σ
〈N̄i(x)Ni(x)〉, (23)

ων (x) = gω

m2
ω

∑
i=±

〈N̄i(x)γ νNi(x)〉, (24)

ρν (x) = gρ

m2
ρ

∑
i=±

〈N̄i(x)γ ντNi(x)〉, (25)

[γ μ(i∂μ − Vμ) − m±]N±(x) = 0, (26)

where x ≡ (t, r) is Minkowski spacetime, and 〈· · · 〉 denotes
averaging over the actual state of the many-body system. V
stands for the vector Hubbard field matrix (in isospin space),

Vμ = gωωμ + gρτρμ. (27)

The EOMs for the baryons (26) have the form of Dirac
equations in external vector fields, with the vacuum masses
replaced by the Dirac masses m±. If the mesonic mean fields
vary slowly in space and time, and the baryons are fast enough
to adjust to these variations, then this equation can be solved
with a plane-wave ansatz N± ∝ exp(−ipx):

[γ μ p∗
μ − m±]N± = 0, (28)

where p∗
μ ≡ pμ − (Vμ)IzIz is the kinetic four-momentum of the

baryon with Iz = ±1/2. This gives the dispersion relation (in-
medium mass-shell condition)

(p∗)2 − m2
± = 0. (29)

Now we will require self-consistency, i.e., we calculate
the scalar densities 〈N̄±N±〉 and baryon currents 〈N̄±γ νN±〉,
〈N̄±γ ντN±〉, in Eqs. (23)–(25), assuming that the baryons
occupy certain states in momentum space while their Dirac
spinors satisfy Eq. (28). This gives the following expressions:

〈N̄±(x)N±(x)〉 = gs

∑
Iz=±1/2

∫
d3 p

(2π )3

m±
p∗0

f±,Iz (x, p), (30)

〈N̄±(x)γ νN±(x)〉 = gs

∑
Iz=±1/2

∫
d3 p

(2π )3

p∗ν

p∗0
f±,Iz (x, p), (31)

〈N̄±(x)γ ντ 3N±(x)〉 = gs

∑
Iz=±1/2

∫
d3 p

(2π )3

p∗ν

p∗0
τ 3

IzIz
f±,Iz (x, p),

(32)

where f±,Iz (x, p) are the phase-space distribution functions
(occupation numbers) that depend on the isospin projection
Iz, and gs = 2 is the spin degeneracy. We furthermore assume
that the state of the system is characterized by certain numbers
of protons or their parity partners (Iz = +1/2) and neutrons or
their parity partners (Iz = −1/2), without any isospin-mixed
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states, so that only the third isospin component of the baryon
current in Eq. (32) is nonvanishing, and hence only the third
isospin component of the ρ field in Eq. (25) is likewise non-
vanishing.

The distribution functions are normalized such that
gs f±,Iz (x, p) d3rd3 p

(2π )3 = (number of particles in the phase space

element d3r d3 p). For simplicity, we did not include the con-
tributions from antibaryons in Eqs. (30)–(32) (although this
can be readily done following Ref. [24]). Below, where it does
not cause confusion, we will drop the baryon type (±) and
isospin (Iz) indices for brevity.

Applying Liouville’s theorem, we can now write the ki-
netic equation for the baryons:

(
∂

∂t
+ ∂ p0

∂ p
∂

∂r
− ∂ p0

∂r
∂

∂ p

)
f (x, p) = Icoll[{ f }], (33)

where

p0 =
√

m2± + (p∗)2 + V 0 (34)

is the single-particle energy. The collision term Icoll[{ f }] in the
right-hand side (r.h.s.) of Eq. (33) is a functional of the phase-
space distribution functions of the various particle species.
The Vlasov equation is obtained in the limit Icoll → 0.

If the σ and ω fields are momentum independent (the
more general case is discussed, e.g., in Ref. [25]) one can
simplify their calculation by introducing the distribution func-
tions f ∗(x, p∗) in kinetic phase space. They are defined such
that gs f ∗(x, p∗) d3rd3 p∗

(2π )3 = (number of particles in the kinetic

phase space element d3r d3 p∗). With d3 p∗ = d3 p, we then
have f ∗(x, p∗) = f (x, p). After the variable transformation
p → p∗ in Eq. (33), one obtains the following equation:

(p∗
0)−1

[
p∗

μ∂μ + (p∗
μFαμ + m±∂αm±)

∂

∂ p∗α

]
f ∗(x, p∗)

= Icoll[{ f ∗}], (35)

where α = 1, 2, 3 and μ = 0, 1, 2, 3. Fμν = ∂μV ν − ∂νV μ is
the field strength tensor obtained from the vector Hubbard
field.

Equations (33)–(35) combined with the field EOMs
(23)–(25) obey local energy-momentum conservation, i.e.,
the energy-momentum tensor T μν satisfies the continuity
equation

∂νT μν = 0. (36)

Equation (36) can be directly proved if one takes into account
that collisions conserve the four-momentum density, which is
expressed as

∑ ∫
d3 p pμ Icoll[{ f }] = 0, (37)

where the sum is taken over all particle species. The ex-
plicit form of the energy-momentum tensor is given as

TABLE I. The sets of parameters of the PDM.

Set P3 [7] Set 2 [22]

m0 (MeV) 790 700
mσ (MeV) 370.63 384.428
mω (MeV) 783 783
mρ (MeV) 776
gω 6.79 7.05508
gρ 0 4.07986
g1 13.00 14.1708
g2 6.97 7.76222
λ6 f 2

π 0 15.7393
m+ (MeV) 939 939
m− (MeV) 1500 1535
K (MeV) 510.57 215

follows:

T μν = gs

∑
i=±

∑
Iz=±1/2

∫
d3 p

(2π )3

pμ p∗ ν

p∗ 0
fi,Iz (x, p) + ∂μσ∂νσ

− gμν

[
1

2
∂λσ∂λσ + μ̄2

2
σ 2 − λ

4
σ 4 + λ6

6
σ 6 + εσ

+ 1

2
m2

ωωκω
κ + 1

2
m2

ρρ
3
κρ

3,κ

]
. (38)

In the actual calculations we neglect the space-time deriva-
tives in the EOM (23) for the σ field which corresponds
to a static treatment of the meson Lagrangian. The energy-
momentum tensor is then given by Eq. (38) with space-time
derivatives of the σ field removed. In particular, in this ap-
proximation the three-momentum densities T i0, i = 1, 2, 3 are
then mean field independent.

Note that the form of the Lagrangian (16) corresponds
to the Lagrangians used in previous PDM based studies as
long as the vector mean fields are assumed to be given by
constant values, i.e., independent of space-time variables. In
order to obtain a reasonable description of the EOS of infinite
nuclear matter, we can therefore directly employ the model
parameters of these previous studies here as well. The two
sets of model parameters that we have used in our present
calculations are adopted from Ref. [7] and Ref. [22]. They are
referred to as Set P3 and Set 2, respectively, in the following,
and listed explicitly in Table I. It is assumed in both sets
that the negative parity partner of the nucleon is the N∗(1535)
resonance, although with somewhat different values of its pole
mass. The parameters μ̄ and λ of the meson Lagrangian (5) are
related to the π and σ -meson masses as follows:

μ̄2 = m2
σ − 3m2

π

2
+ λ6 f 4

π , (39)

λ = m2
σ − m2

π

2 f 2
π

+ 2λ6 f 2
π . (40)

These relations can be obtained by decomposing the nonlinear
self-interaction terms of the meson Lagrangian into powers of
π and �σ = σ − fπ and identifying the corresponding mass
terms, = −m2

ππ2/2 − m2
σ �σ 2/2, for pions and the σ meson.
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Substituting Eqs. (39) and (40) in the EOM of the σ field (23)
then determines the parameter in the symmetry breaking term
for the uniform vacuum solution,

ε = m2
π fπ . (41)

A. Collision term

The collision term Icoll[{ f ∗}] describes two- and three-body
collisions and resonance decays. Its detailed description can
be found in Ref. [21] and, with a focus on the dilepton pro-
duction channels, in the recent Ref. [26]. Since the GiBUU
transport model includes a long list of baryon resonances,
it must be specified which mean field potential is acting on
them. For simplicity, we assume that the scalar and vector
fields acting on all baryons except the N∗(1535) are identical
to the nucleon scalar and vector fields, respectively. It was
assumed in previous GiBUU calculations with the relativis-
tic mean field model that the scalar potentials acting on the
incoming and the outgoing baryons in two-body scatterings
B1B2 → B3B4 and resonance production and decays BM ↔
B′ are always the same. This allowed one to express the so-
called free invariant collision energy

√
sfree, that governs the

corresponding cross sections and decay widths, in terms of
incoming particles. This substantially simplifies calculations,
since the final channel is unknown apriori and is sampled
by Monte Carlo. Such an assumption is, however, no longer
true if the PDM is applied for the calculations of the nu-
cleon and N∗(1535) potentials. In the inelastic production
channel N1N2 → N3N∗

4 the scalar potentials of the nucleons
are S1 = S2 = S3 = m+ − mN while the scalar potential of
the outgoing resonance is S4 = m− − mN∗ where mN and
mN∗ are the vacuum masses of the nucleon and N∗(1535),
respectively. Therefore, we define the free invariant collision
energy as

√
sfree = √

s∗ − S3 − S4, (42)

where s∗ = (p∗
1 + p∗

2)2 is the in-medium center-of-mass
(c.m.) collision energy squared. Note that we still assume that
the vector potentials of all baryons are equal which leads to
the kinetic four-momentum conservation: p∗

1 + p∗
2 = p∗

3 + p∗
4.

Equation (42) correctly matches the vacuum and in-medium
thresholds, i.e., the condition

√
sfree � mN + mN∗ (vacuum)

is equivalent to the condition
√

s∗ � m+ + m− (in medium).
Note that, in the special case where the sums of the vector
self-energies of incoming and outgoing particles are the same,
our in-medium threshold condition coincides with those from
Refs. [20,27].

Some more details are in order for the dilepton spectra.
It is commonly accepted that the broadening of the ρ meson
plays a key role in the description of the dilepton spectra
from heavy-ion collisions [26,28–33]. In the present calcula-
tions, we take into account the collisional broadening of the
ρ-meson spectral function and apply the off-shell potential
ansatz in the propagation of ρ mesons according to Ref. [26].
The pn → pne+e− and pp → ppe+e− bremsstrahlung cross
sections based on the boson exchange model of Ref. [34]
are included. The correction (enhancement) factor of the
pn bremsstrahlung cross section according to Eq. (63) of

Ref. [26], that is tuned to describe the dilepton invariant mass
spectrum from reaction d p → e+e− pfastX at 1.25A GeV mea-
sured by HADES [35], is taken into account.

B. Infinite nuclear matter

This section deals with infinite nuclear matter at zero
temperature. To avoid misunderstanding we note that the
equations and numerical results of this section serve for the
qualitative purposes only and do not influence our transport
simulations directly.

Both sets of parameters listed in Table I are adjusted to
reproduce the saturation properties of nuclear matter, i.e.,

∂E (ρB)/ρB

∂ρB

∣∣∣∣
ρB=ρ0

= 0, (43)

E (ρ0)

ρ0
� −16 MeV, (44)

where

E (ρB) ≡ T 00(ρB) − T 00(0) − mNρB (45)

is the nonrelativistic energy density, and ρ0 = 0.16 fm−3 is
the nuclear matter density at saturation. However, they pre-
dict very different values of the incompressibility of infinite
nuclear matter, cf. Table I, which is defined as

K = 9ρ2
0
∂2E (ρB)/ρB

∂ρ2
B

∣∣∣∣
ρB=ρ0

. (46)

The value of K can be determined most accurately from the
isoscalar giant monopole resonance (ISGMR) centroid ener-
gies in heavy nuclei measured by inelastic α scattering. The
reviews of theoretical methods and experimental results on
ISGMR are given in Refs. [36,37] and on giant resonances in
general in Ref. [38]. By analyzing ISGMR in doubly magic
nuclei, like 208Pb, the authors of Ref. [37] concluded K =
240 ± 20 MeV where the uncertainty comes from the con-
crete form of the energy-density functional. At the same time,
open-shell nuclei are typically associated with lower values of
K . Recent Skyrme-Hartree-Fock RPA calculations of ISGMR
for large sets of nuclei [39,40] concluded K = 210–240 MeV
although larger values up to ≈260 MeV (from 68Ni) seem also
to be possible. Heavy-ion flow data analyses allow for a wider
range, K = 200–380 MeV [41]. The neutron star observables
seem to be consistent with K = 200–300 MeV [42]. Set P3
is thus certainly at the extreme upper end,1 while Set 2 yields
an EOS which is one of those with comparatively small K
values in agreement with ISGMR frequencies [43]. In addi-
tion, Set 2 includes the coupling to the ρ-meson which leads
to a nuclear symmetry energy, Esym(ρ0) = 31 MeV [22], in
agreement with other phenomenological models (cf. Ref. [44]
and references therein).

1We include calculations with Set P3 rather to demonstrate insen-
sitivity to the value of K for our purposes.
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The total energy density in uniform and isospin-symmetric
nuclear matter at zero temperature is expressed as follows:

T 00(ρB) = 2

π2

∑
i=±

p4
Fig

(
mi

pFi

)
− μ̄2

2
σ 2 + λ

4
σ 4

− λ6

6
σ 6 − εσ + gωω0ρB − m2

ω

2
(ω0)2, (47)

where pFi are the Fermi momenta of the nucleons (i = +) and
their negative parity partners (i = −),

ρB = 2

3π2

∑
i=±

p3
Fi (48)

is the baryon density, and

g(a) ≡
∫ 1

0
dx x2

√
x2 + a2

= 1

8

[
(1 + a2)3/2 +

√
1 + a2

−1

2
(1 + a2)2 log

(√
1 + a2 + 1√
1 + a2 − 1

)]
. (49)

The scalar field σ and the Fermi momenta pFi are calcu-
lated by solving the static and uniform version of Eq. (23),
i.e.,

∑
i=±

∂mi

∂σ
ρsi − μ̄2σ + λσ 3 − λ6σ

5 − ε = 0, (50)

where the partial scalar densities ρsi ≡ 〈N̄i(x)Ni(x)〉, see
Eq. (30), are expressed as

ρsi = 2p3
Fi

3π2
f

(
mi

pFi

)
, (51)

with

f (a) = 3a
∫ 1

0

dxx2

√
x2 + a2

= 3

2
a

[√
1 + a2 − a2

2
log

(√
1 + a2 + 1√
1 + a2 − 1

)]
. (52)

Requiring local chemical equilibrium, the chemical potentials
of the nucleons and the negative parity baryons should both
be equal to the baryon chemical potential μB, i.e.,

μ+ = μ− = μB, μi =
√

p2
Fi + m2

i + gωω0. (53)

Since the vector field does not depend on the sort of baryon,
this allows to express the Fermi momenta of the baryons as
functions of the σ field,

pFi(σ ) =
√

max
[
0, μ∗ 2

B − m2
i (σ )

]
, (54)

where μ∗
B = μB − gωω0 is the effective chemical potential (cf.

Ref. [7]), and the dependence of the masses on the σ field is
given by Eq. (15).

Equation (50) was solved numerically with respect to the
σ field for different values of μ∗

B treated as a free parameter.
After this, the zerocomponent of the vector field (ω = 0 in the
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FIG. 1. Energy per baryon as a function of the baryon density
calculated for Set P3 (dashed line), Set 2 (solid line), and NL2 (dotted
line). The inset shows the region near the normal nuclear matter
density.

rest frame of nuclear matter due to isotropy) simply follows
from the spacetime independent version of Eq. (24):

ω0 = gω

m2
ω

ρB. (55)

Figure 1 shows the equation of state for the two
parametrizations of the PDM from Table I and, for compar-
ison, for the nonlinear Walecka model parametrization NL2
of Ref. [45]. Set 2 and NL2 produce very similar EOSs for
baryon densities up to ρB < 3ρ0. In contrast, as a consequence
of the large bulk modulus, Set P3 predicts a very different EOS
around ρ0, in particular at subnormal densities.

In the left panel of Fig. 2 we compare the masses of the
nucleon and its negative parity partner as functions of the
baryon density for the two PDM parameter sets and the same
Walecka model EOS. At small and moderate baryon density
the mass of the negative parity baryon is larger than the effec-
tive chemical potential, i.e., m− > μ∗

B, and only the Fermi sea
of nucleons gets filled. At ρB � 1–1.4 fm−3, depending on the
parameter set, the mass of the negative parity baryons eventu-
ally falls below μ∗

B, see the right panel in Fig. 2, and their
partial density and Fermi sea also start to build up. Because of
the finite binding energy per baryon, their effective mass m−
drops, and one eventually reaches a discontinuous transition.
The value of the σ field decreases discontinuously as well, the
masses of nucleons and their negative parity partners suddenly
get very close to one another as a consequence, and their
partial baryon densities follow the same pattern. With further
increasing ρB, beyond this transition, the small residual σ field
due to explicit chiral symmetry breaking gradually disappears
completely, the parity partner baryons become fully degener-
ate in mass and their partial baryon densities quickly approach
each other as well. This effect is known as chiral symmetry
restoration within the PDM.
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In stark contrast, the nonlinear Walecka model, which has
no chiral symmetry in the first place, predicts that the masses
of nucleons and negative parity baryons both monotonically
drop with ρB in a way such that their mass splitting remains
roughly constant. This is a consequence of a universal de-
pendence m±(ρB) = m±(0) + gσ�σ (ρB) with the coupling
constant gσ typically taken to be the same for nucleons and
N∗ resonances.

Despite the fact that the baryon density at which the chiral
transition is predicted in the PDM mean field studies is too
high to be reached in heavy-ion collisions at energies available
at the SIS18 accelerator, even with Set 2 where ρcrit

B ≈ 6ρ0,2

the dependence of m± on the baryon density is drastically
different in the PDM and the nonlinear Walecka model. For
baryon densities up to two to three times ρ0 the most signifi-
cant difference thereby is the effective mass of the N∗(1535),
which drops much faster with increasing baryon density in
the PDM than it does in the Walecka model. As explained in
the Introduction, this might well have observable effects on
heavy-ion collisions at (1−2)A GeV.

It is well known that the combination of Fermi motion in
colliding nuclei with Lorentz boost results in subthreshold
production of hadrons. This basic mechanism is always in-
cluded in transport calculations. On the top of Fermi motion
effects, the mean fields may additionally enhance or suppress
subthreshold production depending on the imbalance between
potentials of incoming and outgoing particles [cf. Eq. (42)].

To assess these mean field effects, we will study η, ρ,
and dilepton production in the following sections. The main

2Fluctuations beyond mean field can bring the critical density ρcrit
B

of the chiral phase transition in the PDM considerably closer to the
saturation density ρ0 of normal nuclear matter [9,10] and therefore
have the potential to change this conclusion.

mechanism of η production is a two-step process NN →
NN∗(1535), N∗(1535) → ηN . The beam energy threshold of
η production in pp collisions is 1.255 GeV. Far above thresh-
old, the available phase space for the intermediate N∗(1535)
becomes large and one is less sensitive to mean field effects.
We will therefore focus on beam energies in the 1A GeV
region.

III. TIME EVOLUTION OF Au + Au CENTRAL
COLLISION AT 1A GeV

The time evolution of the central baryon density together
with that of the N∗(1535), η, and ρ multiplicities is shown
in Fig. 3. The most striking difference is seen in the time
dependence of the parity-partner multiplicity in Fig. 3(b). We
observe an order of magnitude enhancement of the N∗(1535)
maximum multiplicity for calculations with PDM mean fields
as compared to the calculation with the nonlinear Walecka
mean fields. This is the expected consequence of the faster
dropping m− with baryon density relative to the m+, with
the PDM sets, which lowers the threshold

√
s∗ for N∗(1535)

production. Probably less expected on the other hand is the
η multiplicity, which is remarkably insensitive to the mean
field effects: it is enhanced by only about 50–60% with the
PDM mean fields.3 This is because the abundant N∗(1535)’s
of the PDM calculations have too small invariant masses to
decay into the ηN final state. This is demonstrated in Fig. 4
which shows the time evolution of the N∗(1535) and nucleon

3Recall that the incompressibilities for the two PDM parametriza-
tions are extremely different; cf. Table I. That this has very little
influence on the time evolution of the central baryon density must
be due to the colliding system being far from the ground state where
the incompressibility is defined; see Eq. (46).
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FIG. 3. Time evolution of the central baryon density (a), N∗(1535) multiplicity (b), η multiplicity (c), and ρ multiplicity (d) for the
Au + Au central collision at 1A GeV. Line-style labels correspond to those in Fig. 1.

invariant mass distributions. In the high-density stages of the
collision (t � 20 fm/c), the excess of the N∗(1535)’s in the
PDM calculations is accumulated at invariant masses below
the Nη in-medium threshold, while the NL2 calculation pro-
duces even slightly more N∗(1535)’s above the Nη threshold.
This explains the faster initial growth of the η production
in the NL2 calculation. In the later stages, as the system
expands, the N∗(1535) distributions are shifted towards higher
invariant masses. Thus, the low-mass N∗(1535)’s move above
the Nη threshold and lead to an increased η production rate in
the PDM calculations. Since the rates of NN ↔ NN∗(1535)
processes are small during the expansion stage, the dynam-
ics of the η is dominated by the N∗(1535) ↔ ηN processes.
However, the N∗(1535) resonance has a large branching ratio
also for the πN final state.4 This results in an overall reduc-
tion of the η multiplicity due to the absorption on nucleons

4The GiBUU resonance parameters adopted from Ref. [46] include
the following branching ratios for the S11(1535) resonance: πN 51%,

ηN → N∗(1535) → πN . In the NL2 Walecka model calcula-
tion η absorption clearly wins over the N∗(1535) decays in the
expansion stage which is not the case in the PDM calculations
where the N∗(1535) multiplicity is larger. Overall, this results
in a somewhat larger final η multiplicity with PDM mean
fields.

The dynamics of ρ production is more complex. Here, we
have an interplay between N∗(1520) and N∗(1535) decays
into the ρN final state. As seen in Fig. 3(d), in the intermediate
stage of the reaction, for t � 30 fm/c, the ρ multiplicity rather
weakly depends on the type of mean field that is used (the
somewhat smaller maximum ρ multiplicity for Set P3 can be
explained by its stiffer EOS). At later times, however, the ρ

multiplicities differ significantly between PDM and Walecka
mean fields.

ηN 43%, ρN S-wave 2%, ρN D-wave 1%, σN 1%, πP11(1440) 2%.
The branching ratios for the D13(1520) resonance are πN 59%, π�

S-wave 5%, π� D-wave 15%, ρN 21%.
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Au + Au central collision at 1A GeV. The nucleon distributions are right shifted by the value of η mass. The contribution of the vector fields
is excluded. Line-style labels are as in the previous figures.

These differences can be understood from the time evo-
lution of the ρ invariant mass distributions shown in Fig. 5.
At t � 15 fm/c the spectrum of ρ masses is practically inde-
pendent on the used mean fields. This is because at this early
reaction stage ρ production is dominated by N∗(1520) →
ρN decays in either case. Recall that in the current PDM
calculations, we set the mean fields acting on all baryonic
resonances except the N∗(1535) equal to the nucleon mean
fields. Therefore, the channels mediated by resonances other
than the N∗(1535) are not expected to depend on the mean

fields in our calculations. At t � 20 fm/c, however, we ob-
serve a quickly growing ρ production below the two-pion
threshold where the ρ-meson spectral function is supported
by the ρ → e+e− partial width and by the collisional width
ρN → resonances (see Ref. [26] for detail). This soft part of
the ρ invariant-mass spectrum is populated by the decays of
low-mass baryon resonances that have a long lifetime. (Note
that the “hole” in the spectrum of ρ masses at M � 0.2 GeV
is certainly to some extent artificial. It would get at least
partially filled by including missing partial widths in the
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FIG. 5. Invariant mass distribution of ρ mesons at different times in Au + Au central collision at 1A GeV. Line-style labels as in the
previous figures.

vacuum ρ spectral function such as those from ρ → πγ or
also ρ → μ+μ−; see the discussion in Ref. [26]. At present,
there is no experimental identification of the ρ contribution
below the 2π threshold. This part of our results is therefore
largely uncertain and requires further studies in future. For
our present study it is irrelevant.) In PDM based calculations,
the multiplicity of low-mass resonances decaying into the ρN
channel is strongly enriched by N∗(1535)’s. This explains
the excess of soft ρ production which is also reflected in
the overall excess of the ρ multiplicity at large times in the
PDM.

IV. COMPARISON WITH EXPERIMENTAL DATA

The transverse mass spectra of η and π0 at midrapidity
have been measured by the TAPS Collaboration for the fol-
lowing systems: C + C at 0.8A, 1.0A, and 2.0A GeV [47],
Ar + Ca at 0.8A GeV [48], and Au + Au at 0.8A GeV [49].
For a thermally equilibrated source the mt spectra at y = 0
would be expected to behave exponentially,

d2σ

dy m2
t dmt

∝ e−mt /T , (56)
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FIG. 6. Transverse-mass differential cross sections for η and π0 production in C + C collisions at 0.8A, 1.0A, and 2.0A GeV. The rapidity
intervals around the midrapidity values (in parentheses) in the laboratory system are [0.42; 0.74] (0.61), [0.42; 0.74] (0.68), and [0.80; 1.08]
(0.90) for 0.8A, 1.0A, and 2.0A GeV, respectively. Experimental data are from Ref. [47].

which is known as the mt scaling observed for η and π0 pro-
duction experimentally. The explanation of mt scaling purely
in terms of thermal equilibrium might seem questionable,
however, at beam energies as low as (1−2)A GeV, especially
for light colliding systems such as C + C. Note that our trans-
port calculations do not rely on the assumption of thermal
equilibrium. In an off-equilibrium situation, on the other hand,
the mt spectra should depend on the details of particle pro-
duction and propagation in the nuclear medium. It is therefore
interesting to study how the mt spectra are influenced by the
PDM description of the mean fields. Figure 6 shows the mt

spectra of η’s and π0’s in C + C collisions. The π0 mt spectra
are in a good agreement with data and are not influenced by
the differences in the mean fields. This is expected, since
the scalar potential of the �(1232) resonance is set equal
to that of the nucleon in either, for the PDM as well as the
nonlinear Walecka model. In contrast, for η mesons we see
the enhancement at low mt ’s in the calculations with the PDM
mean fields at the lower beam energies of 0.8A and 1.0A GeV.
At 2.0A GeV this enhancement at low mt ’s disappears. Thus,
below the free kinematical threshold, the PDM mean fields
tend to enhance the production of slow η’s in the c.m. frame
of the colliding nuclei. It might seem quite surprising at first
that this mean field effect is visible even in the light C + C
system where far lower densities are reached than in the
heavier colliding nuclei (cf. Fig. 5 in Ref. [26]). The reason
of course is that the m− mass drops so much faster with
baryon density at low ρB in the PDM description; see Fig. 2.
In heavier systems at subthreshold energies, the enhancement
of η production at low mt ’s in calculations with PDM becomes
more pronounced, as demonstrated in Fig. 7. The variation of

the incompressibility K in the PDM sets has practically no
effect on the meson spectra.

The TAPS data for C + C do not appear to favor either
the PDM or the nonlinear Walecka mean fields. However, the
PDM calculations better describe the slope of the mt spec-
tra of η mesons at small mt ’s for Au + Au and Ar + Ca at
0.8A GeV.

The mt spectra of neutral pions in the heavier systems,
Au + Au and Ar + Ca, are practically not influenced by the
choice of mean field as we also saw for C + C before. Some
overestimation at large transverse masses at 0.8A and 1A GeV
has been also observed in previous BUU calculations [50] and
is known to improve when using in-medium NN ↔ N� cross
sections. In Figs. 8 and 9 we provide our predictions for the
mt and rapidity spectra of η’s and π0’s in Au + Au collisions
at 0.6A, 0.8A, and 2A GeV: There is a factor of 5 enhancement
in the η production at low transverse masses in the PDM cal-
culations for 0.6A and 0.8A GeV. Comparing the slopes and
the absolute values of the η and π0 transverse mass spectra
we observe that the PDM calculations are much closer to the
mt scaling regime. The mean field effects at large transverse
masses and/or large absolute values of rapidity generally be-
come small. Overall, the PDM leads to an about a factor of
2 larger η production cross section in Au + Au at 0.6A GeV:
15.4 ± 0.3 mb for the PDM (Set 2) versus 7.8 ± 0.2 mb with
the (NL2) Walecka model mean fields (the errors are due to
limited statistics). The production of π0’s at midrapidity is
also slightly enhanced in the PDM calculations due to the
N∗(1535) resonance contribution.

We close our comparison with addressing dilepton produc-
tion. Figure 10 shows the dilepton invariant mass spectrum
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from C + C at 1A GeV. The experimental acceptance filter is
taken into account in the calculations. The calculation with
Set 2 leads to a larger dilepton yield at Me+e− > 0.15 GeV.
This is due to enhanced contributions from the direct ρ decay
(component in red versus blue), the η Dalitz component

(yellow versus green), and to a lesser extend also from �

Dalitz decays (purple versus magenta). The reason for the
enhanced η and low-mass ρ components in the PDM calcula-
tions has already been discussed in Sec. III above. Moreover,
we see from Fig. 5 that some ρ excess appears in the PDM
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calculations above 2mπ at large times. The slightly enhanced
pion yield due to the N∗(1535) → πN decays leads to larger
secondary �(1232) production and thus to slightly larger
� → e+e−γ contribution. The pn bremsstrahlung compo-
nent dominating at the intermediate invariant masses (in the
Me+e− = 0.2–0.5 GeV range) is practically independent on the
choice of the mean field.

Figures 11 and 12 show the transverse momentum and
rapidity distributions of the dileptons in the low (Me+e− <

0.15 GeV) and the intermediate (0.15 < Me+e− < 0.50 GeV)
invariant mass regions. Although the direct ρ decay com-
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FIG. 10. e+e− invariant mass spectrum from C + C collisions at
1A GeV. Solid (black) and dotted (black) lines denote the total spec-
trum calculated with PDM (Set 2) and Walecka model (NL2) mean
fields, respectively. Other lines show different partial components of
the spectra as indicated. The pp and πN bremsstrahlung components
are included in the total spectra but are not shown. Experimental data
are from Ref. [51].

ponent in the low-mass region is strongly enhanced in the
calculation with the PDM (Set 2), this is still hidden under
the π0 Dalitz decay component which completely dominates
this region. The enhanced η Dalitz component in the in-
termediate invariant mass region for the PDM (Set 2) at
pe+e−

t ≈ 0.2 GeV/c almost fills the missing strength there.
Remaining discrepancies in the intermediate invariant mass
region are better visible in the rapidity distribution at small
and large rapidities. They are most probably due to the as-
sumed (for simplicity) isotropic decay of N∗(1535) to the ηN
final state.

V. SUMMARY AND OUTLOOK

To summarize, we have included parity-doublet model
(PDM) mean fields for the nucleon and its parity partner,
the N∗(1535) resonance, in simulations based on the GiBUU
microscopic transport model. The modified GiBUU model
has been applied to study η, π0 and dilepton production in
heavy-ion collisions at SIS18 energies. In-medium threshold
effects have been carefully taken into account which allows us
to make quantitative predictions for the N∗(1535) resonance
production. The main effect can be described as follows: The
quickly dropping Dirac mass of the N∗(1535) resonance with
baryon density in the PDM leads to an order of magnitude en-
hancement of N∗(1535) production in the intermediate stages
of central heavy-ion collisions at beam energies of about
1A GeV. Since the baryon density of the expanding nuclear
system decreases with time, the in-medium mass shift of the
produced N∗(1535) resonances gradually disappears pushing
them above the Nη threshold. This leads to a significant
enhancement of slow η production in the c.m. frame of the
colliding nuclei. This enhancement effect tends to be stronger
for lower beam energies, i.e., when going deeper into the
subthreshold region.

Since the N∗(1535) resonance is also coupled to the πN
and ρN decay channels, pion and intermediate ρ production

034914-14



EFFECTS OF CHIRAL SYMMETRY RESTORATION ON … PHYSICAL REVIEW C 105, 034914 (2022)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

 0  0.2  0.4  0.6  0.8  1

(a)

Me+e- < 0.15 GeV

dN
e+

e- /d
p te+

e-  [(
G

eV
/c

)-1
]

pt
e+e-

 (GeV)

12C + 12C, E=1A GeV

total, Set 2

total, NL2

ρ → e+e-, Set 2

ρ → e+e-, NL2

η → e+e-γ, Set 2

η → e+e-γ, NL2

Δ → Ne+e-, Set 2

Δ → Ne+e-, NL2
pn Brems, Set 2

pn Brems, NL2

π0 → e+e-γ, Set 2

π0 → e+e-γ, NL2

10-8

10-7

10-6

10-5

10-4

 0  0.2  0.4  0.6  0.8  1

(b)

0.15 GeV <  Me+e- < 0.50 GeV

dN
e+

e- /d
p te+

e-  [(
G

eV
/c

)-1
]

pt
e+e-

 (GeV)

12C + 12C, E=1A GeV

total, Set 2

total, NL2

ρ → e+e-, Set 2

ρ → e+e-, NL2

η → e+e-γ, Set 2

η → e+e-γ, NL2

Δ → Ne+e-, Set 2

Δ → Ne+e-, NL2
pn Brems, Set 2

pn Brems, NL2

FIG. 11. Transverse momentum distributions of dileptons pro-
duced in C + C collisions at 1A GeV in the invariant mass intervals
Me+e− < 0.15 GeV (a), 0.15 < Me+e− < 0.50 GeV (b). Solid (black)
and dotted (black) lines show the total spectra for PDM (Set 2) and
Walecka (NL2) mean fields, respectively. Other lines show partial
components as indicated. Experimental data are from Ref. [52].

are also influenced by the PDM. Pion production is governed
by intermediate �(1232) resonance production, however, and
thus changes only slightly. In contrast, the ρ production at low
invariant masses is strongly enhanced. This leads to a slight
enhancement in the production of low-invariant-mass dilepton
pairs in the PDM calculations as compared to using standard
(NL2) Walecka model mean fields. The η → e+e−γ Dalitz
decay component is also enhanced in the PDM, resulting
in a moderate increase in the production of dileptons in the
intermediate invariant mass range.

We believe that our present work opens the window to
further studies of chiral effects on particle production within
transport models. In particular, the GiBUU model allows one
to study the effects of the PDM mean fields in A(γ , η) re-
actions where a reduction of η production is expected due
to the dropping mass difference between N∗(1535) and nu-
cleon in nuclear medium [18]. Another open issue for the
future is the chiral description of mean fields for other bary-
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FIG. 12. Rapidity distributions of dileptons produced in C +
C collisions at 1A GeV in the invariant mass intervals Me+e− <

0.15 GeV (a), 0.15 < Me+e− < 0.50 GeV (b). Solid (black) and dot-
ted (black) lines show the total spectra for PDM (Set 2) and Walecka
(NL2) mean fields, respectively. Other lines show partial components
as indicated. Experimental data are from Ref. [52].

onic resonances, in particular, for the �(1232) that is of
utmost importance for pion production. In the present study,
for simplicity, we have assumed that the scalar field acting
on the �(1232) is the same as that for the nucleons. In
Ref. [53] a quartet scheme has been proposed to describe
the lightest baryons of each spin-parity. In this scheme, the
�(1232), �(1700), N (1520), and N (1720) form the chi-
ral quartet in the J = 3/2 sector. As a next step it should
therefore be interesting to study the effects of the chiral quar-
tet scheme in view of the currently puzzling situation with
the theoretical description of recent HADES data on pion
production [54].
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