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Using the string melting version of a multiphase transport model, we focus on the evolution of thermodynamic
properties of the central cell of parton matter produced in Au + Au collisions ranging from 200 GeV down to
2.7 GeV. The temperature and chemical potentials have been calculated based on both Boltzmann and quantum
statistics in order to locate their evolution trajectories in the QCD phase diagram. We demonstrate that the
trajectories can depend on many physical factors, especially the finite nuclear thickness at lower energies.
However, from the evolution of pressure anisotropy, only partial thermalization can be achieved when the
partonic systems reach the predicted QCD phase boundary. It provides some helpful insights to studying the
QCD phase structure through relativistic heavy-ion collisions.
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I. INTRODUCTION

The ultrarelativistic heavy-ion collisions at the BNL Rel-
ativistic Heavy Ion Collider (RHIC) and the CERN Large
Hadron Collider (LHC) have created partonic matter at ex-
treme conditions of temperature and energy densities, the
quark-gluon plasma (QGP), which is governed by the quan-
tum chromodynamics (QCD) theory. The first-principles
lattice QCD calculation shows that the transition from
hadronic to the partonic matter at zero baryon chemical po-
tential μB is a smooth crossover [1–3]. But the calculation of
phase transition in the QCD phase diagram at finite baryon
chemical potential still has large uncertainties [4–6], espe-
cially regarding the conjectured endpoint of the first-order
phase transition boundary that is the so-called QCD criti-
cal endpoint (CEP) [7–9], due to the famous sign problem
[10–12].

To explore the nature of the QCD phase diagram, the beam
energy scan (BES) program at RHIC is searching for the QCD
critical point with Au + Au collisions at a large range of
collision energies [13–18]. The fireballs created in Au + Au
collisions at different energies freeze-out at different points
of the QCD phase diagram. Because certain singularities will
appear at the CEP in the thermodynamic limit [19], we expect
to observe certain nonmonotonic behavior if the evolution
trajectory of the colliding system is close enough to the CEP.
For example, event-by-event fluctuations of various conserved
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quantities are proposed as possible signatures of the existence
of the CEP [20–22] because they are proportional to the
corresponding susceptibilities and correlation lengths. Many
recent experimental results on net-proton fluctuations hint that
a critical point might have been reached during the evolution
of Au + Au collisions at a low collision energy [14,18,23],
which serves as a main motivation for the upcoming research
projects such as those at FAIR in Germany, NICA in Russia,
and HIAF in China.

On the other hand, it is difficult to connect thermal
properties of static QCD matter with the experimental mea-
surements, since relativistic heavy-ion collisions involve
different dynamical evolution stages. To study the full evo-
lution history of the thermodynamic properties of the QCD
matter with a dynamical transport model may serve as a bridge
between the gap [24,25]. In this work, we investigate the
space-time evolution of the parton matter created in Au + Au
collisions at different energies, including transverse flow, ef-
fective temperature, and conserved charge chemical potential
by using the string melting version of a multiphase transport
(AMPT) model [26].

The paper is organized as follows. Section II briefly in-
troduces the string melting version of AMPT model and the
improvements that we make. Comparison of the space-time
evolution of transverse flow at different collision energies
are presented in Sec. III A. We then discuss the space-time
evolution of the effective temperature and chemical potentials
in Sec. III B. We show the trajectories of Au + Au collisions
at different energies in the QCD phase diagram in Sec. III C.
We present the space-time evolution of pressure anisotropy to
discuss the systems are in equilibrium or nonequilibrium in
Sec. III D. Finally, a summary is given in Sec. IV.
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II. A MULTIPHASE TRANSPORT MODEL INCLUDING
THE NUCLEAR THICKNESS

The string melting version of the AMPT model consists of
fluctuating initial conditions from the heavy-ion jet interaction
generator (HIJING) model [27]. In this model, minijet partons
and strings are produced from hard processes and soft pro-
cesses, respectively. With the string melting mechanism, all
parent hadrons from the fragmentation of the excited strings
are converted into partons. The interactions among these par-
tons are described by Zhang’s parton cascade (ZPC) model
[28], which includes elastic two-body scatterings based on the
leading order pQCD gg → gg cross section:

dσ

dt
= 9πα2

s

2

(
1 + μ2

s

)
1

(t − μ2)2
. (1)

In the above, αs is the strong-coupling constant (taken as
0.33), while s and t are the usual Mandelstam variables. The
effective screening mass μ is taken as a parameter in ZPC for
the parton scattering cross section, and we set μ as 2.265 fm−1

leading to a total cross section of about 3 mb for elastic scat-
terings in the default setting. The AMPT model implements
a spatial quark coalescence model, which combines nearby
freeze-out partons into mesons or baryons, to describe the
transition from the partonic matter to the hadronic matter. The
final-stage hadronic evolutions are modeled by an extension
of a relativistic transport model (ART) including both elas-
tic and inelastic scatterings for baryon-baryon, baryon-meson
and meson-meson interactions [29]. Our other parameters
are taken as same as those from Ref. [25,30], which can
reasonably reproduce many experimental observables such
as rapidity distributions, pT spectra, and anisotropic flows
[30–32] for both Au + Au collisions at RHIC and Pb + Pb
collisions at LHC energies.

To study heavy-ion collisions at low energies, we have
improved the string melting AMPT by modeling the finite
nuclear thickness, which has been shown to be important for
nuclear collisions at lower energies [33–35]. In our conven-
tion, the x axis is chosen along the direction of the impact
parameter b from the target center to the projectile center,
the z axis is along the projectile direction, and the y axis is
perpendicular to both the x and z directions. We consider the
moment when the projectile and target nuclei contact each
other as the starting time t = 0, while the proper time τ is
defined as (t2 − z2)1/2. The spatial density of nucleons inside
projectile or target follows the Woods-Saxon distribution. As
shown in Fig. 1(a), for a nucleon inside a hard-sphere pro-
jectile located at an initial position of (xi, yi, zi), the thickness
length l of target that the projectile nucleon punches through
can be calculated as follows,

l (xi, yi, b) = 2
√

R2 − (xi ± b/2)2 − y2
i , (2)

where R is the hard-sphere radius of colliding nuclei, and ±
applies to projectile or target nucleons, respectively. As shown
in Fig. 1(b), the time te when the projectile nucleon enters the
target in the center-of-mass frame of a Au + Au collision can

FIG. 1. The schematic diagrams of a Au + Au collision with
an impact parameter b in the x-z plane. (a) Consider a projectile
nucleon N (small open circle) at a location of (xi, yi, zi) at the
starting time t = 0. (b) The projectile nucleon enters the target
nucleus at t = te(xi, yi, zi, b). (c) The wounded nucleon from the
projectile produces parent hadrons at a location of (xH , yH , zH ) at
t = tH (xi, yi, zi, b). (d) The projectile nucleon leaves the target nu-
cleus at t = te(xi, yi, zi, b) + dt .

be calculated as follows:

te(xi, yi, zi, b) =
√

R2 − b2/4 − [l (xi, yi, b)/2 ± zi]

2sinh yCM
, (3)

where yCM is the projectile rapidity in the center-of-mass
frame.

Since parent hadrons are produced by interactions between
projectile and target nucleons, as shown in Fig. 1(c), the pro-
duction time of parent hadrons, tH , is obtained by sampling
according to a time profile based on the probability function
[33],

d2ET

dydtH
= an[(tH−te)(te + dt−tH )]n dET

dy
, tH ∈ [te, te + dt ],

(4)
where we take the power as n = 4, an = 1/d2n+1

t /β(n +
1, n + 1) is the normalization factor with the β function of
β(a, b), and dt = l/(2 sinh yCM ) is the duration time during
which the projectile nucleon completely crosses the target
nucleus. The parent hadrons produced by same projectile or
target nucleon are assumed to be produced at the same time of
tH . Then the longitudinal coordinate of a parent hadron can be
obtained as follows:

zH = zi ± tH sinh yCM, (5)

while its transverse coordinates (xH , yH ) are set to the trans-
verse positions of the projectile or target nucleon.

In the following, the partons are generated by string melt-
ing after a formation time:

t f = EH/m2
T,H , (6)
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FIG. 2. Proper-time evolution of parton density averaged over
the transverse area of the overlap volume within space-time rapidity
|ηs| < 0.5 in b = 0 fm Au + Au collisions at different energies.

where EH and mT,H represent the energy and transverse
mass of the parent hadron. The initial positions of partons
from melted strings are calculated from those of their par-
ent hadrons using straight line trajectories. As a result, the
initial condition of partonic matter after considering the finite-
thickness effect is used for the parton cascade simulations in
this study.

To study the thermodynamics properties of partonic mat-
ter, we focus on the space-time evolution of partonic matter
during the process of parton cascade only in this study. Using
the string-melting version of the AMPT model with the finite-
thickness effect, 10 000 events of Au + Au central collisions
(0%–5% centrality modeled with b � 3 fm) are generated for
each energy (

√
sNN = 200, 62.4, 39, 27, 19.6, 11.5, 7.7, 4.9,

and 2.7 GeV) which can be provided by the RHIC, FAIR, and
NICA facilities.

III. RESULTS AND DISCUSSIONS

A. Space-time evolution of transverse flow

First, the densities of formed partons averaged over the
transverse area of the overlap volume within space-time ra-
pidity |ηs| < 0.5 as functions of proper time in b = 0 fm
Au + Au collisions at different energies are shown in Fig. 2.
The nuclear transverse area AT [33] is defined as

AT =
{
πR2

A, t � dnuclei
t /2

πR2
A

[
1 − (

1 − 2t/dnuclei
t

)2]
, t < dnuclei

t /2,
(7)

with RA = 1.12A1/3 fm, A = 197, and dnuclei
t = 2RA/sinh yCM

is the duration time for two nuclei of the same mass number
A with b = 0 fm to cross each other in the center-of-mass
frame. The density increases with the proper time at first
because more partons are produced. Higher density is reached
at higher collision energy. With the expansion of the fireball,
the density decreases gradually. Both the increase and the
decrease become slower at lower collision energies, since

the nuclei have a larger thickness at lower collision energies
which slows down the evolution, especially in the longitudinal
direction.

At the same time, the radial flow is calculated by employ-
ing �β = (

∑
i �pi/

∑
i Ei ), where the sum over index i takes into

account all partons in the cell for all events of a given collision
system. Flow component along the x direction βx as functions
of coordinate x and space-time rapidity ηs at different times in
cells within 0.5 < y < 0.5 fm in central Au + Au collisions
at

√
sNN = 200 GeV and 7.7 GeV are shown in Fig. 3. We

can see the antisymmetry of the transverse flow along the x
axis in space-time rapidity, after averaging over many events
of central collisions. The flow is very small at the early time
τ = 0.2 fm/c and then develops rather faster, especially at
larger x [25].

Figure 4 shows the transverse flows of partons in the
two selected cells at (x, y) = (1 fm, 0 fm) and (x, y) =
(7 fm, 0 fm) within space-time rapidity |ηs| < 0.5 as func-
tions of proper time in central Au + Au collisions at different
energies. The transverse flow is bigger further away from
the center of the overlap volume of central collisions [25].
We see that the transverse flow increases with time for
both the inner cell and the outer cell in the beginning. Because
the parton density increases faster at higher collision energy,
the transverse flow grows faster at higher collision energy for
both the inner and outer cells. However, compared with the
case of parton density in Fig. 2, the development of transverse
flow generally shows a time delay is slower.

B. Space-time evolution of temperature and chemical potentials

In the AMPT model, the energy-momentum tensor T μν

can be calculated by averaging over particles and events in
a volume V [24], i.e.,

T μν = 1

V

∑
i

pμ
i pν

i

Ei
. (8)

In the rest frame of a small volume cell, the energy density
can be given by ε = T 00, while the pressure components are
related to the energy-momentum tensor by Px = T 11, Py =
T 22, Pz = T 33. The net conserved charge number densities nB,
nQ, and nS can be calculated for the given volume as well.
Therefore, the corresponding chemical potentials μB, μQ, and
μS , and T can be obtained by numerical solving Eqs. (A12)
after the net conserved charge densities nB, nQ, and nS and
ε are obtained through the AMPT model. Note that, in this
study, we only extract μ and T values for the center cell,
for which the rest frame is assumed to be A + A collision
center-of-mass frame.

Figure 5 shows the proper-time evolution of net baryon
number density nB, net electric charge density nQ, net
strangeness number density nS , and energy density ε for the
central cell, defined as the cell within (|x| < 0.5 fm, |y| <

0.5 fm) and the space-time rapidity range of |ηs| < 0.5, in
central Au + Au collisions at three selected beam energies
from the AMPT-SM model. At the top RHIC energy of 200
GeV, the results with and without the finite nuclear thickness
are almost the same [33,34]. With the decrease of the beam
energy, the peak energy and charge densities are reached later
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FIG. 3. Transverse flow component βx along the x axis (0.5 < y < 0.5 fm) as functions of x and ηs at different proper times in central
Au + Au collisions at

√
sNN = 200 GeV (first row) and 7.7 GeV (second row).

due to the longer time that two nuclei take to cross each
other. Therefore, it is important to consider the finite nuclear
thickness effect for simulating heavy-ion collisions at low
beam energies [33–35]. Note that we show the results with the
finite nuclear thickness effect in the rest of this paper, unless
stated otherwise. In addition, we see that the net strangeness
number density can be negative at low energies in the central
cell. This is because of the large baryon density, which leads
to most s in 
 but most s̄ in K. Since the quark formation
time is inversely proportional to the parent hadron transverse
mass in AMPT’s string melting, s from 
 has a smaller
formation time than s̄, which produces negative nS at early
times.

The two-dimensional (2D) distributions of extracted local
temperature from Boltzmann statistics as functions of coor-

FIG. 4. Proper-time evolution of transverse flow component
βx of partons within space-time rapidity |ηs| < 0.5 in the cells
at (x, y) = (1 fm, 0 fm) (filled symbols) and (x, y) = (7 fm, 0 fm)
(open symbols) in central Au + Au collisions at different energies.

dinate x and space-time rapidity at different proper times
in central Au + Au collisions at

√
sNN = 200 and 7.7 GeV

are shown in Fig. 6. We can see that the highest temper-
ature is reached at the center of the overlap region after
the two nuclei overlap completely (τ ≈ 0.2 and 4 fm/c
for 200 and 7.7 GeV, respectively). After that moment, the
temperature decreases with the evolution of the expanding
system.

The proper-time evolutions of the baryon chemical poten-
tial μB and temperature T for the central cell in central Au +
Au collisions at different beam energies from the AMPT-SM
model are shown in Figs. 7(a) and 7(b), respectively. We

FIG. 5. Proper-time evolution of net baryon number density
nB (first row), net electric charge density nQ (second row), net
strangeness number density nS (third row), and energy density ε

(fourth row) for the central cell in central Au + Au collisions at
200 GeV (left column), 27 GeV (middle column), and 4.9 GeV
(right column) with (solid) and without (dashed) including the finite
nuclear thickness.
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FIG. 6. Contour plots of the effective temperature from Boltz-
mann statistics as a function of the x coordinate and space-time
rapidity ηs at different proper times in central Au + Au collisions
at

√
sNN = 200 GeV (top row) and 7.7 GeV (bottom row) for the

parton matter within |y| < 0.5 fm.

can see that both baryon chemical potential and temperature
increase with time at first, then they decrease with time, which
indicates that the collision system is first compressed and
heated, and then becomes dilute and cools down due to the
expansion. However, the energy dependencies of the baryon
chemical potential and temperature are different. Figure 7(b)
shows that a higher temperature is reached at a higher collision
energy; in contrast, the highest baryon chemical potential is
achieved at an intermediate energy of

√
sNN = 7.7 GeV, as

shown in Fig. 7(a). In general, the time evolution at lower
energies is slower than that at higher energies due to the
influence of the finite nuclear thickness. The proper-time
evolutions of the chemical potentials of electric charge μQ and
strangeness μS for the central cell in central Au + Au colli-
sions at different beam energies from the AMPT-SM model
are shown in Figs. 8(a) and 8(b), respectively. We obtain
positive μS but negative μQ. The μS is seen to be roughly pro-

FIG. 7. Proper-time evolution of (a) baryon chemical potential
μB and (b) temperature T for the central cell in central Au + Au
collisions at different energies.

FIG. 8. Proper-time evolution of chemical potentials of
(a) strangeness μS and (b) electric charge μQ for the central cell in
central Au + Au collisions at different energies.

portional to μB, i.e., μS ≈ 1/3μB, while the magnitude of μQ

is very small. We observe that the magnitudes of two chemical
potentials increase with time at first, and then decrease with
time, which follow a similar trend as μB.

C. Trajectories in the QCD phase diagram

In Fig. 9, we present the event-averaged evolution trajec-
tory of the central cell of the partonic matter produced in
central Au + Au collisions at different beam energies from
the moment when the baryon chemical potential reaches the
maximum value to the moment when it reaches the crossover
curve in the QCD phase diagram of temperature and baryon
chemical potential. Note that the crossover phase boundary
is obtained from the functional renormalization group (FRG)
method with Nf = 2 + 1, which agrees well with the phase
boundary from the lattice QCD [6]. From the filled symbols
that represent the full consideration in which all chemical
potentials and quark mass are included, we find that the par-
tonic stage can last 3.4–4.8 fm/c if the time when the system
stays above the phase boundary is counted, which is consistent
with the previous AMPT results for mid-central Au + Au
collisions [36], but longer than the lifetime for the matter
averaged over the transverse area from a semi-analytical cal-
culation [35]. If we take the location of the critical endpoint
at (TCEP, μBCEP ) = (107, 635) MeV from the FRG calculation,
the beam energies lower than 4.9 GeV [6,37] seem to be the
most promising to reach the CEP, which could be accessed at
fixed-target experiments at RHIC. Note that it has been found
that the chemical and kinetic freeze-out parameters extracted
from the AMPT model agree with the RHIC experimental
measurements [38].

We further study the influences of the μQ, μS , and quark
current mass mq on the event-averaged evolution trajectories
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FIG. 9. AMPT results on the average trajectories of the central
cell in central Au + Au collisions at different energies in the QCD
phase diagram. Three cases are compared: (I) μQ = 0, μS = 0,
mq = 0 (open symbols); (II) μQ �= 0, μS �= 0, mq = 0 (half open
symbols); (III) μQ �= 0, μS �= 0, mq �= 0 (filled symbols). The black
curve shows the crossover phase boundary with the critical endpoint
obtained from the functional renormalization group approach with
Nf = 2 + 1 [6]. The corresponding lifetime during which each tra-
jectory stays in the QGP phase is also shown.

(see Appendix A), as shown by half-open and open symbols
in Fig. 9. We can see that the influence of the quark mass
is so small that the filled and half-open curves most overlap,
because the current quark masses we use here are very small
compared with the temperature and baryon chemical poten-
tial. However, we can observe that there is a large difference
between filled or half open and open symbols, which indicates
that μQ and μS are important for drive the evolution of the
system.

Furthermore, we check whether the different statistics (see
Appendices A and B) can result in a difference of trajec-
tories in the QCD phase diagram. We compare the results
from Boltzmann statistics (filled symbols) and the quantum
statistics (open symbols) in Fig. 10. We can see that with the
decrease of collision energy, the difference between the two
trajectories from the two statistics becomes larger. In general,
a higher μB is obtained by the quantum statistics than that
obtained by Boltzmann statistics, since the Pauli exclusion
begins to play a role as μB increases, while this effect is
absent in the Boltzmann statistics. Because the AMPT model
assumes Boltzmann statistics, the results in the rest of this
paper are presented using Boltzmann statistics.

In addition, the finite thickness of nuclei is expected to
affect the evolution trajectories in the QCD phase diagram,
especially at low energies [33–35]. In Fig. 11 we compare
the average trajectories with and without including the finite
thickness for the central cell in central Au + Au collisions
at different energies in the QCD phase diagram based on
full consideration of Boltzmann statistics. We do not see any
obvious change of evolution trajectory for the top RHIC en-

FIG. 10. The average trajectory of the central cell in central
Au + Au collisions at different energies in the QCD phase diagram
of temperature versus baryon chemical potential from Boltzmann
statistics (filled symbols) and the quantum statistics (open symbols).

ergy, but the difference becomes more and more significant
with the decrease of collision energy. For lower energies,
the results without considering the finite-thickness effect start
at much higher temperature and larger baryon chemical po-
tential. For example, when considering the finite-thickness
effect, the trajectory for 2.7 GeV disappears below the phase-
transition boundary. Therefore, it is clearly necessary to
properly include the finite nuclear thickness effect, especially
for simulating heavy-ion collisions at low beam energies.

We note that the above results come from the average
of 10 000 central Au + Au events. However, event-by-event

FIG. 11. The average trajectory of the central cell in central
Au + Au collisions at different energies in the QCD phase diagram
from Boltzmann statistics with (filled symbols) and without (open
symbols) including the finite nuclear thickness
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FIG. 12. AMPT results on event-by-event trajectories of the cen-
tral cell in central Au + Au collisions at different beam energies in
the QCD phase diagram.

fluctuations cannot be neglected, and these fluctuations could
affect the search for the CEP of the QCD phase diagram.
Figure 12 shows the event-by-event trajectories of central
Au + Au collisions at different beam energies from the
AMPT-SM model. To suppress the effect from volume fluctu-
ation, a multiplicity cut is further applied in which we divide
the total central events into 100 bins by multiplicity and only
use the events in one middle bin around the average. Even so,
we can see that the fluctuation of evolution trajectory is still
large, especially at high energies, which could be due to larger
volume fluctuations at higher energies.

It should be noted that the QGP created in high-energy
heavy-ion collisions, which may consist of gluons and quarks
in or near chemical and thermal equilibrium, should be
governed by nonperturbative QCD interactions, which are
missing in our model. Furthermore, the method that we used
to extract temperature and baryon chemical potential only
works for a noninteracting parton system in principle. Our
extraction method assumes that all partons in the cell are
in full thermal and chemical equilibrium [25]; therefore, the
extracted temperature and chemical potentials are the effective
values if the system is in partial thermal and/or chemical
equilibrium. In addition, we focus on the central space-time
rapidity and only study the partonic matter without the subse-
quent phase transition and hadronic evolution.

D. Equilibrium or nonequilibrium

In the central cell of central Au + Au collisions, due to the
cylindrical symmetry around the beam axis, the two trans-
verse pressure components Px and Py are equal. Therefore,
the transverse pressure can be defined to be PT = (Px + Py)/2
[24], while the longitudinal pressure PL is just Pz. For a sys-
tem in thermal equilibrium, its pressure must be isotropic,
which satisfies the relation of PT = PL = P; otherwise, we
define the total pressure as P = (Px + Py + Pz )/3. Therefore,
a pressure anisotropy parameter PL/PT is defined to describe
the degree of pressure anisotropy of the system. The closer the

FIG. 13. AMPT results for the time evolution of the pressure
anisotropy parameter when its temperature and baryon chemical
potential are above (filled symbols) and below (dotted curves) the
phase boundary in the QCD phase diagram in the central cell in
central Au + Au collisions at different beam energies.

value of PL/PT is to unity, the closer the system is to the state
of thermal equilibrium.

Figure 13 shows how the pressure anisotropy parameter in
the central cell evolves with proper time in central Au + Au
collisions at different beam energies. For Au + Au collisions
at 200 GeV, we can see that PL/PT keeps increasing, but still
cannot reach unity up to 5 fm/c. It indicates that, even for
the top RHIC energy, the central cell of the system actually
does not reach thermal equilibrium when it arrives at the phase
boundary in the AMPT model, which is consistent with previ-
ous results [24,25]. For lower energies, PL/PT first increases
up to a peak and decreases into a valley, and finally increases
gradually due to the finite nuclear thickness. However, none
of them reaches thermalization during the partonic stage. It
shows that it is indeed different from the equilibrium evolution
of hydrodynamical models.

The total pressure can be extracted from the Boltzmann
statistical model via

P(T ) =
∑

i

di

∫
d3 p

(2π )3

p2

3Ei(p, T )
fB(p, T ), (9)

where di is the degeneracy of partonic matter, fB(p, T ) is
the Boltzmann statistical distribution function, and T is the
temperature extracted from the Boltzmann statistical model.
Figure 14 compares the pressure from three diagonal com-
ponents of the energy-momentum tensor (PDC) and from the
Boltzmann statistical model (PBoltzmann) in the central cell for
central Au + Au energies. One can find that they are dif-
ferent, especially for earlier time at lower energies, which
indicates more extreme nonequilibrium of the system exists
there. The effective temperature can be defined locally by
the ratio between the average of the diagonal components of
the energy-momentum tensor and the density of all particles
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FIG. 14. AMPT results on the time evolution of (a) the pressure
from three diagonal components of the energy-momentum tensor
(PDC ; open symbols) and the Boltzmann statistical model (PBoltzmann;
filled symbols) in the central cell in central Au + Au energies, and
(b) the ratio of PDC and PBoltzmann.

[39]. The effective temperature extracted from the diagonal
components of the energy-momentum tensor and the Boltz-
mann statistical model in the central cell are shown in Fig. 15.
One can see that the effective temperatures extracted from
the diagonal components of the energy-momentum tensor are
different from our temperature, especially for lower energies,
although they give consistent trends. It is not only due to
the nonequilibrium of the system but also because our tem-
perature extraction also considers the chemical potentials of
conserved charges, especially the baryon chemical potential.

FIG. 15. AMPT results on the time evolution of the effective
temperature extracted from transverse (dotted curves), three (dashed
curves) diagonal components of the energy-momentum tensor, and
the Boltzmann statistical model (solid curves) in the central cell in
central Au + Au collisions at (a) 200 GeV, (b) 27 GeV, (c) 11.5 GeV,
and (d) 4.9 GeV.

In this sense, we should emphasize again that since the parton
systems in Au + Au collisions at different energies from the
AMPT model are not in complete equilibrium, the thermo-
dynamic properties that we extracted above could be only
approximate.

IV. SUMMARY

We have studied the space-time evolution of the parton
matter produced in central Au + Au collisions at different
collision energies using the AMPT model with string melting
and the finite nuclear thickness effect. The space-time evolu-
tion of parton density and transverse flow is first presented
for different collision energies. Then we extract the effective
temperature and chemical potentials of the partons in the cen-
tral cell based on Boltzmann statistics and quantum statistics.
The temperature and baryon chemical potential first increase
and then decrease with time, but their dependencies on the
collision energy are opposite. By investigating the evolution
of the partonic matter created in Au + Au collisions from 2.7
to 200 GeV, we obtain their evolution trajectories in the QCD
phase diagram. The results indicate that the partonic state in
the central cell exists for 3.4–4.8 fm/c over this wide range of
energies, and the trajectory depends on the statistics and
whether the finite nuclear thickness is considered. We ob-
serve that the event-by-event trajectory fluctuates widely
in the phase diagram. However, the evolution of pres-
sure anisotropy indicates that only partial thermalization
can be achieved when the partonic systems reach the
predicted QCD phase boundary. Further studies of the evo-
lution and the thermodynamic properties of the matter
in heavy-ion collisions are indispensable for studying the
QCD phase structure and the search for the critical point in
experiments.
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APPENDIX A: BOLTZMANN STATISTICS OF
PARTONIC MATTER

In Boltzmann statistics, for the noninteracting thermal
equilibrium system of up, down, or strange quarks and gluon,
the net parton number density and energy density are

nq = Nc

π2

∫ ∞

0
p2[e−(E (p)−μq )/T − e−(E (p)+μq )/T ]d p, (A1)
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εq = Nc

π2

∫ ∞

0
p2E (p)[e−(E (p)−μq )/T + e−(E (p)+μq )/T ]d p,

(A2)

ng = N2
c − 1

π2

∫ ∞

0
p2e−E (p)/T d p, (A3)

εg = N2
c − 1

π2

∫ ∞

0
p2E (p)e−E (p)/T d p, (A4)

where E (p) = (p2 + m2
q )1/2 is the energy of parton, T is the

temperature, Nc = 3 is the number of colors, nq, εq, ng, εg, mq,
and μq are the net quark number density, the quark energy
density, the gluon number density, the gluon energy density,
the quark mass, and the quark chemical potential, respectively.
q represents the up, down, or strange quark. In this study, the
quark masses are taken to be the current quark masses from
the PDG [40], e.g., mu = 2.16 MeV/c2, md = 4.67 MeV/c2,

and ms = 93 MeV/c2. Relations among different chemical
potentials are

μu = 1
3μB + 2

3μQ, (A5)

μd = 1
3μB − 1

3μQ, (A6)

μs = 1
3μB − 1

3μQ − μS, (A7)

where μB, μQ, and μS are the chemical potentials of baryon
number, electric charge, and strangeness, respectively. Fur-
thermore, the net conserved charge density and total energy
density are

nB = 1
3 (nu + nd + ns), (A8)

nQ = 1
3 (2nu − nd − ns), (A9)

nS = −ns, (A10)

εtotal = εu + εd + εs + εg. (A11)

We can obtain the four equations for conserved charge densities nB, nQ, and nS and εtotal as

nB = 2

π2
T

[
m2

d K2

(
md

T

)
sinh

(
μB − μQ

3T

)
+ m2

s K2

(
ms

T

)
sinh

(
μB − μQ − 3μS

3T

)
+ m2

uK2

(
mu

T

)
sinh

(
μB + 2μQ

3T

)]
,

nQ = − 2

π2
T

[
m2

d K2

(
md

T

)
sinh

(
μB − μQ

3T

)
+ m2

s K2

(
ms

T

)
sinh

(
μB − μQ − 3μS

3T

)
− 2m2

uK2

(
mu

T

)
sinh

(
μB + 2μQ

3T

)]
,

nS = − 6

π2
m2

s T K2

(
ms

T

)
sinh

(
μB − μQ − 3μS

3T

)
,

εtotal = 6

π2
T

[
8T 3 + m3

uK1

(
mu

T

)
cosh

(
μB + 2μQ

3T

)
+ 3m2

uT K2

(
mu

T

)
cosh

(
μB + 2μQ

3T

)

+ m3
s K1

(
ms

T

)
cosh

(
μB − μQ − 3μS

3T

)
+ 3m2

s T K2

(
ms

T

)
cosh

(
μB − μQ − 3μS

3T

)

+ m3
d K1

(
md

T

)
cosh

(
μB − μQ

3T

)
+ 3m2

d T K2

(
md

T

)
cosh

(
μB − μQ

3T

)]
, (A12)

where K1 and K2 are Bessel functions of the second kind. Specially, if mq is neglected, Eqs. (A12) can be simplified as

nB = 4T 3

π2
sinh

(
μB − μQ − 3μS

3T

)
+ 4T 3

π2
sinh

(
μB − μQ

3T

)
+ 4T 3

π2
sinh

(
μB + 2μQ

3T

)
,

nQ = −4T 3

π2

[
sinh

(
μB − μQ − 3μS

3T

)
+ sinh

(
μB − μQ

3T

)
− 2 sinh

(
μB + 2μQ

3T

)]
,

nS = −12T 3

π2
sinh

(
μB − μQ − 3μS

3T

)
,

εtotal = 12T 4

π2

[
3 cosh

(
μB − μQ − 3μS

3T

)
+ 3 cosh

(
μB − μQ

3T

)
+ 3 cosh

(
μB + 2μQ

3T

)
+ 4

]
. (A13)

Furthermore, if μQ and μS are neglected, Eqs. (A13) can be
simplified as

nB = 12T 3 sinh[μB/(3T )]

π2
,

nQ = 0,

nS = −12T 3 sinh[μB/(3T )]

π2
,

εtotal = 48T 4

π2
+ 108T 4 cosh[μB/(3T )]

π2
. (A14)
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APPENDIX B: QUANTUM STATISTICS OF
PARTONIC MATTER

In quantum statistics, the net parton number and energy
densities are

nq = Nc

π2

∫ ∞

0
p2

[
1

e(E (p)−μq )/T + 1
− 1

e(E (p)+μq )/T + 1

]
d p,

(B1)

εq = Nc

π2

∫ ∞

0
p2E (p)

[
1

e(E (p)−μq )/T + 1
+ 1

e(E (p)+μq )/T + 1

]
d p,

(B2)

ng = N2
c − 1

π2

∫ ∞

0

p2d p

eE (p)/T − 1
, (B3)

εg = N2
c − 1

π2

∫ ∞

0

p2E (p)d p

eE (p)/T − 1
. (B4)

Similar to Boltzmann statistics, using the relations (A5)–(A7),
we can also get four equations about μB, μQ, μS , and T
under quantum statistics. Specially, if mq is neglected, the four
equations can be simplified as

nB = 1

27π2
μ3

B − 1

9π2
μ2

BμS + 1

9π2
μB

[
3
(
π2T 2 + μ2

S

) + 2μQμS + 2μ2
Q

]

− 1

27π2

(
9π2μST 2 − 2μ3

Q + 3μ2
QμS + 9μQμ2

S + 9μ3
S

)
,

nQ = 1

9π2
μQ

(
6π2T 2 + 2μ2

B − 2μBμS + 3μ2
S

) + 1

9π2
μS

(
3π2T 2 + μ2

B − 3μBμS + 3μ2
S

) + 1

9π2
μ2

Q(2μB + μS ) + 2

9π2
μ3

Q,

nS = − 1

27π2
μ3

B + 1

9π2
μ2

B(μQ + 3μS ) − 1

9π2
μB

(
3π2T 2 + μ2

Q + 6μQμS + 9μ2
S

)

+ 1

27π2

(
μQ + 3μS

)(
9π2T 2 + μ2

Q + 6μQμS + 9μ2
S

)
,

εtotal = 1

36π2
μ4

B − 1

9π2
μ3

BμS + 1

6π2
μ2

B

(
3π2T 2 + 2μ2

Q + 2μQμS + 3μ2
S

)

− 1

9π2
μB

(
9π2μST 2 − 2μ3

Q + 3μ2
QμS + 9μQμ2

S + 9μ3
S

)

+ 1

36π2

[
3π2T 2

(
19π2T 2 + 12μ2

Q + 12μQμS + 18μ2
S

) + 6μ4
Q + 4μ3

QμS + 18μ2
Qμ2

S + 27μ4
S + 36μQμ3

S

]
. (B5)

Furthermore, if μQ, μS , and mq are neglected, Eqs. (B5) can
be simplified as

nB = μ3
B

27π2
+ μBT 2

3
,

nQ = 0,

nS = − μ3
B

27π2
− μBT 2

3
,

εtotal = μ4
B

36π2
+ μ2

BT 2

2
+ 19π2T 4

12
. (B6)
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