
PHYSICAL REVIEW C 105, 034906 (2022)

Collective flow at SIS energies within a hadronic transport approach:
Influence of light nuclei formation and equation of state

J. Mohs ,1,2 M. Ege,2 H. Elfner ,3,2,1 and M. Mayer2

1Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main, Germany
2Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany

3GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany

(Received 13 January 2021; revised 4 August 2021; accepted 22 February 2022; published 21 March 2022)

Collective flow observables are known to be a sensitive tool to gain insights on the equation of state of nuclear
matter from heavy-ion collision observations. Towards more quantitative constraints one has to carefully assess
other influences on the collective behavior. In this work a hadronic transport approach SMASH (simulating many
accelerated strongly interacting hadrons) is applied to study the first four anisotropic flow coefficients in Au +
Au collisions at Elab = 1.23A GeV in the context of the recently measured data by the HADES Collaboration.
In particular, the formation of light nuclei is important in this energy regime. Two different approaches are
contrasted to each other: A clustering algorithm inspired by coalescence as well as microscopic formation of
deuterons via explicit cross sections. The sensitivity of directed and elliptic flow observables to the strength of
the Skyrme mean field is explored. In addition, it is demonstrated that the rapidity-odd v3 coefficient is practically
zero in this energy regime and the ratio of v4/v

2
2 is close to the value of 0.5 expected from hydrodynamic

behavior. This study establishes the current understanding of collective behavior within the SMASH approach
and lays the ground for future more quantitative constraints on the equation of state of nuclear matter within
improved mean-field calculations.
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I. INTRODUCTION

In heavy-ion collisions the anisotropy of the particle pro-
duction in the transverse plane is described in terms of flow
coefficients. In transport calculations flow observables were
shown to be very sensitive to nuclear potentials and the equa-
tion of state (EoS) [1,2]. Hence one can put constraints on
the EoS by comparing hadronic transport calculations with
experimental flow data.

Depending on the active degrees of freedom in the different
transport approaches, different conclusions about the strength
of the mean-field interactions are drawn. Approaches mainly
based on nucleons and pions with sophisticated potentials
including momentum-dependent interactions as described in
Refs. [3,4] come to the best agreement with the wealth of
existing FOPI data [5], when mean fields corresponding to
a “soft” equation of state are employed [6–8]. The nuclear
potential depends on the relative momentum as p-A experi-
ments show and the subthreshold production of kaons is best
described with soft momentum-dependent potentials [9]. In
transport approaches where the mean fields lacks a momen-
tum dependence, a hard EoS was found to agree with the
data [10–12]. This is similar in recent approaches with many
resonance states like UrQMD that arrive at the same quality
of agreement with experimental data upon incorporating po-
tentials corresponding to a “hard” equation of state [13–15].
Modifying the equation of state via modifications of the col-
lision term offers an orthogonal avenue to study collective
behavior within transport approaches [16].

The nuclear equation of state at high densities is relevant
also for the dynamical description of neutron-star mergers.
After the first detection of gravitational wave signals [17],
there is a large interest in sophisticated theoretical calculations
of their detailed evolution which is relevant for the nucleosyn-
thesis including different assumptions about the equation of
state of QCD matter at high densities (see Refs. [18,19]
for recent examples). Despite the isospin difference that is
encoded in the symmetry energy that can also be extracted
from heavy-ion reactions [20,21], further knowledge on the
equation of state is important. Before a quantitative extraction
of the equation of state, including uncertainty quantification
using Bayesian techniques, is sensible, all possible systematic
uncertainties in the transport approaches need to be under-
stood. One of those is the formation of light clusters that
incorporates about 35% of the nucleons in heavy-ion reactions
at SIS-18 energies (see Fig. 41 in Ref. [22]). Models based
on a quantum-mechanical calculations where the coalescence
of nucleons is catalyzed by the surrounding nuclear matter
[23], calculations in momentum space [24,25], statistical co-
alescence in a fireball model [26,27], a model applying the
density-matrix approach [28], and coalescence models based
on phase-space separation in the final state of a transport
calculation [29] have been devised. In addition, more compre-
hensive dynamical approaches [30,31] have been developed.
Using coalescence, protons and deuterons are predicted to
follow a constituent number scaling [15].

In this work we assess how SMASH (simulating many
accelerated strongly interacting hadrons) [32,33] performs
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compared with recent measurements of flow coefficients
at SIS-18 energies [34,35] with a rather simple Skyrme
parametrization of the EoS [36] and investigate the sensitivity
of the results to the stiffness of the EoS. This is meant as
a baseline for further calculations employing more sophisti-
cated mean-field implementations such as the one in Ref. [37].
The main emphasis in this work is on exploring different treat-
ments for light nuclei production, which constitutes one of
the major uncertainties. We concentrate on the most abundant
and lightest nucleus, namely, the deuteron, and compare two
different ways of taking the light nuclei formation into ac-
count. Coalescence of nucleons in the final state as described
in Ref. [29] is contrasted to the dynamical treatment by pro-
ducing and propagating deuterons throughout the evolution of
a heavy-ion collision, as described in Ref. [38].

The paper is structured as follows: First the SMASH trans-
port with the current state of nuclear potentials present in
the calculation and the different ways of treating light nuclei
formation is described in Sec. II. Then, the effects of different
Skyrme parameters and light nuclei treatments on the directed
flow in Sec. III and of elliptic flow in Sec. IV of nucleons
and deuterons are evaluated. Afterward, the evolution over
time of the directed and elliptic flow is studied in Sec. V.
Finally, we present some higher flow coefficients and show
v3 computed with the scalar product method and the ratio of
v4/v

2
2 in Sec. VI. Finally, we conclude and present an outlook

in Sec. VII.

II. SMASH WITH POTENTIALS AND LIGHT NUCLEI
PRODUCTION

A. Hadronic transport with mean field

In this work, we apply the transport approach SMASH

[32,33] to calculate flow observables. The approach is based
on the Boltzmann equation with hadronic degrees of freedom.
Starting with nuclei sampled from a Woods-Saxon distribu-
tion, hadrons are explicitly propagated between interactions.
At low collision energies most inelastic collisions form res-
onances with properties adopted from Ref. [39]. For the
resonances, the spectral functions are described by relativistic
Breit-Wigner distributions without medium modification. The
mass dependence of the decay width is included according to
Ref. [40].

For the propagation between the interactions nuclear po-
tentials are optionally taken into account. Let us note here
that, for the current work, we stick with the simple Skyrme po-
tential without momentum dependence, since this is the same
setup that has been used in other recent works in comparable
approaches [14] and the default parameters have been deter-
mined in a comparison between multiple different transport
codes [36].

At this point the Skyrme and symmetry potential are
present in the calculation

U = USk + USym. (1)

The contributions to the potential energy is given in terms of
the density as

USk = A

(
ρB

ρ0

)
+ B

(
ρB

ρ0

)τ

, (2)

where ρB is the net-baryon density, ρ0 = 0.168 fm−3 is the
nuclear ground-state density, and A, B, and τ are parameters.
Furthermore,

USym = ±2Spot
ρI3

ρ0
, (3)

where ρI3 is the density of the relative isospin projection
I3/I , the sign is positive for positive isospin and negative for
negative isospin of the particle of interest.

Since the potentials are not written in a covariant form,
they have to be evaluated in the local rest frame for a Lorentz-
invariant treatment. In practice, the calculation is performed
in an arbitrary calculation frame such as the fixed-target or
center-of-mass frame. Therefore, a boost needs to be intro-
duced which results in the following form for the force acting
on a particle in the calculation frame:

�F = ∂USk

∂ρB
[−( �∇ρB + ∂t �jB) + �̇x × ( �∇ × �jB)]

+ ∂USym

∂ρI3

[− ( �∇ρI3 + ∂t �jI3

) + �̇x × ( �∇ × �jI3

)]
. (4)

�jB and �jI3 are the net-baryon current and the I3 current, respec-
tively, and �̇x is the velocity of the particle of interest. Given the
force in the calculation frame, the spatial components pi of the
particle momentum are updated at each time step

pi → pi + Fi�t . (5)

The calculation therefore relies on small time steps.
Since the potentials and the equations of motion depend

on the densities and their spatial derivatives, a high reso-
lution in the density is necessary. In the calculations with
potentials within this work, each particle is represented by
20 test particles for a more precise estimate of the densities
and their derivatives. The four-current is calculated with the
test-particle ansatz

jμ(r) =
∫

pμ

p0
f (�r, �p )d3 p,

f (�r, �p ) =
∑
part

δ3( �p − �ppart )δ
3(�r − �rpart ), (6)

where the index part always refers to the test particle under
consideration. For numerical calculations, the delta distribu-
tion in coordinate space δ3(�r − �rpart ) is replaced by a Gaussian
smearing Kernel K (�r − �rpart ) in a covariant form as described
in Ref. [41] to obtain a smooth density profile

K (�r) = (2πσ 2)−3/2γ exp

(
−�r 2 + (�r · �u)2

2σ 2

)
. (7)

Here, �u refers to the spatial part of the four-velocity of the test
particle. The application of additional smearing kernels for the
test particles is not unique to SMASH but has been applied
widely in other Boltzmann-Uehling-Uhlenbeck approaches,
as summarized in Table 2 of Ref. [36]. The smearing kernel
introduces the smearing width σ as an additional parameter
of the model. For all presented calculations the value is set to
σ = 1.0 fm and, in Appendix C, the results are compared with
a calculation with a smaller smearing width where a weak
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TABLE I. Parameter sets for Skyrme potential with correspond-
ing compressibilities K .

Soft Default Hard

A −356 MeV −209.2 MeV −124 MeV
B 303 MeV 156.4 MeV 71 MeV
τ 1.17 1.35 2.0
K 200 MeV 240 MeV 375 MeV

dependence on σ is observed. For the straight line propagation
according to the Hamilton’s equation of motion all particles
are considered to be pointlike. Due to the smearing of the test
particles, our approach constitutes an approximate solution to
the Boltzmann equation.

Different sets for the parameters of the Skyrme potential
are described in Ref. [42]. They are labeled soft and hard
corresponding to their stiffness. In addition, we include the
default parameter set in SMASH [36], which lies between the
soft and hard one in terms of stiffness. The parameter sets are
explicitly given in Table I.

In the future one should aim for a more continuous
variation of parameters to find the best values based on ex-
perimental data within a Bayesian multiparameter analysis.
The momentum dependence will need to be added and the
implementation of relativistic mean fields based on density-
functional theory is work in progress [37]. In the current work,
we do not aim yet at a quantitative extraction of the nuclear
equation of state, but would like to provide a baseline for
further studies and investigate the influence of light cluster
formation.

B. Clustering and light nuclei

At low beam energies, many protons are bound into light
nuclei [22]. Therefore, light nuclei formation needs to be
taken into account from the theory side to be comparable with
experiments. We assume here that deuterons can be produced
if two test particles scatter or by coalescence between two
test particles. One option to do so is to employ a coalescence
model. Here one can calculate the spectrum of nuclei given
the proton spectra. A similar approach is to perform clustering
on a microscopic basis in each event separately also using
the distance in phase space as a criterion for coalescence
(see Refs. [29,43]). Finally, one can explicitly form nuclei
through production cross sections from hadrons and treat the
nuclei dynamically as active degrees of freedom as described
in Sec. II C.

In the default SMASH setup, light nuclei are not treated
explicitly as degrees of freedom. Instead they are made up
of individual nucleons that interact via nuclear potentials.
Despite the potentials, nucleons do not form stable bound
states in the final state of a heavy-ion collision since the
test particles carry only a fraction of the of the charge of
a nucleon and interact through a mean field. We therefore
follow the method of identifying light nuclei as described in
Refs. [29,43], where the condition for two particles to form
a cluster is a small distance in both momentum and coordi-
nate space in the center-of-mass frame of the two particles

at the time where the last interaction occurs in which one
of the two particles took part. Compared with the simple
clustering algorithm used in Ref. [32], the main difference is
the time at which the coordinate space distance of particles
is evaluated. The threshold for the momentum and position
distances cannot be adopted from Ref. [15], where the same
method was used for a similar study, since the particles are
not represented by multiple test particles in that work and the
average distance in phase space is therefore not comparable.
Instead, new thresholds r0 and p0 in coordinate and momen-
tum space are found based on the proton rapidity spectrum
at 1.23A GeV using Bayesian parameter estimation where the
values r0 = 0.87+0.03

−0.03 fm and p0 = 0.43+0.03
−0.02 GeV are found.

We note that the value for r0 is considerably smaller than the
size of a deuteron. Since all cross sections are scaled down
by the number of test particles, a smaller clustering radius is
reasonable.

C. Deuterons in SMASH

A second option to consider the formation of light nu-
clei was introduced in Ref. [38] and successfully applied to
describe the centrality dependence of deuteron formation at
LHC energies [44] as well as the energy dependence [45].
The idea is to explicitly implement cross sections for nuclei
production and treat the nuclei as active degrees of freedom
as previously done in Refs. [30,46]. The relevant processes
for deuteron formation including protons p, neutrons n, pions
π , and generic nucleons N are

pnN ↔ dN, (8)

pnN̄ ↔ dN̄, (9)

pnπ ↔ dπ, (10)

NN ↔ dπ. (11)

The first two are 3 ↔ 2 processes that are in practice realized
with 2 ↔ 1 and 2 ↔ 2 processes since multiparticle interac-
tions are not yet present in SMASH. For the intermediate step, a
fictional dibaryon resonance d ′ ↔ pn is used that can react in
2 ↔ 2 processes to a deuteron like Nd ′ ↔ Nd or πd ′ ↔ πd .
Note that the implementation of the backward reactions means
that deuterons are continuously formed and destroyed.

To investigate the relevant processes for deuteron forma-
tion, Fig. 1 shows the relative number of reaction partners of
the d ′ resonance in percent in gold-gold collisions at Ekin =
1.23A GeV. The numbers do not sum up to 100% because,
in many cases, the d ′ decays without a collision partner.
The nucleons clearly dominate the reaction partners, so the
pnN ↔ dN process is, as expected, the most important at this
energy [46].

At higher energies, the most important process is the one
involving a pion [38]. This difference is caused by the fact
that, at higher energies, more pions are produced, while at low
energies a dense medium of nuclear matter is produced.

In this work, we compare the simple coalescence ap-
proach with the explicit deuteron formation to investigate
which description is favored by the experimental data on

034906-3



J. MOHS, M. EGE, H. ELFNER, AND M. MAYER PHYSICAL REVIEW C 105, 034906 (2022)

FIG. 1. Relative number of reaction partners of the fictional d ′

resonance in gold-gold collisions at Ekin = 1.23A GeV. d ′ often de-
cays into pn without a collision partner, therefore the numbers do not
sum to 100%.

flow measurements. The two approaches differ in the sense
that the coalescence takes the formation of arbitrary clusters
into account while at this point the explicit formation of
only deuterons is implemented. It is possible to extend the
model also to larger nuclei but the complexity of the prob-
lem increases with mass number. Recently, a different way
of dynamically forming light nuclei was presented, where a
clustering algorithm is applied at each time step of a QMD
calculation to identify nuclei instead of producing nuclei in
scatterings [31,47]. An advantage of this model is that the
formation of larger clusters can be described.

In Fig. 2 a comparison of the two methods in terms of the
pT spectra of nucleons is shown. The curve labeled “no clus-
tering” refers to a calculation without dynamic deuterons and

FIG. 2. Transverse momentum spectra of nucleons (full lines)
and deuterons (dashed lines) at midrapidity in 20%–30% central
gold-gold collisions at Ekin = 1.23A GeV. For all calculations the
hard equation of state is used.

without clustering. Naturally, the number of nucleons is the
largest in this case. The clustering result has the lowest num-
ber of nucleons because the formation of different light nuclei
can be taken into account as compared with the dynamic
deuteron calculation. The clustering mainly affects the low-
momentum part of the spectrum, where the density in phase
space is large. Comparing the dynamic treatment of deuterons
to the other curves, one can see that the deuteron production
influences the dynamics of nucleons significantly as nucle-
ons are shifted to larger pT . This is related to interactions
with deuterons that also have large transverse momentum on
average.

D. Flow calculations

In the following we present results for the flow coefficients
of protons and deuterons and compare with experimental data
[34,35]. To be consistent with the measurement, the flow coef-
ficients are evaluated with respect to the reaction plane, which
is fixed to the x-z plane in the calculation setup. Hence, using
the angle φ = arctan(py/px ), the nth order flow coefficient
can be evaluated as an average over particles

vn = 〈cos (nφ)〉. (12)

The centrality of the events is selected by constraining the
impact parameter to a specific range. We focus on the 20%
to 30% most central gold-gold collisions, which correspond
to the impact-parameter range 6.6 fm < b < 8.1 fm [48].

III. DIRECTED FLOW OF PROTONS AND DEUTERONS

We begin with the first-order flow coefficient of protons
and deuterons in gold-gold collisions at Ekin = 1.23A GeV.
The selection of rapidity and transverse momentum bins is
chosen to cover a wide region in phase space. Since flow
coefficients in general are sensitive to the strength of the po-
tentials, results from calculations using different equations of
state as introduced in Sec. II A are compared. Figure 3 shows
the v1 of nucleons as a function of rapidity for different bins in
transverse momentum. The shape reproduces the experimen-
tal measurements very well but only the calculation with the
hard equation of state gives the correct magnitude. Two cal-
culations consider the formation of light nuclei by clustering
in the final state as described in Sec. II B. In addition to the
two equations of state, a third calculation is shown, where no
clustering is performed but the deuterons are explicitly propa-
gated as degrees of freedom in the calculation as described in
Sec. II C. For that calculation, also the hard equation of state
is used.

Figure 4 shows the directed flow as a function of transverse
momentum for different rapidity bins. Also as a function of
pT , the hard equation of state describes the experimental data
best. The difference between the two options to account for
nuclei formation is clearly visible at low transverse momen-
tum but vanishes at larger pT . The importance of clustering
in the low-momentum region can be explained by the large
phase-space density that makes the formation of nuclei more
likely. Compared with the data, clustering gives the best
description and produces a small kink in the low-pT region,
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FIG. 3. Directed flow of protons as a function of rapidity in 20%–
30% central gold-gold collisions at Ekin = 1.23A GeV for different
pT bins compared with experimental data points [34]. The full lines
are obtained with a hard equation of state while, for the dashed lines,
the default equation of state is used.

FIG. 4. Directed flow of protons as a function of transverse
momentum in 20%–30% central gold-gold collisions at Ekin =
1.23A GeV for different rapidity bins compared with experimental
data points [34]. The full lines are obtained with a hard equation of
state while, for the dashed lines, the default equation of state is used.
The curve labeled “No clustering” takes the formation of light nuclei
into account by explicitly producing deuterons during the collision,
as described in Sec. II C.

FIG. 5. Directed flow of deuterons as a function of transverse
momentum in 20%–30% central gold-gold collisions at Ekin =
1.23A GeV for different rapidity bins compared with experimental
data points [34]. A hard equation of state was employed here and
deuterons were dynamically treated as particles in this calculation.

while the explicit deuterons give a reasonable description of
the data and the curve is more smooth but does not follow
the data as closely. The dotted lines are the same as the full
lines with the hard equation of state and clustering except all
spectators, defined by the criterion that they have not collided,
are excluded from the analysis. We observe almost no differ-
ence because the spectators are expected to be located more
forward in rapidity.

From the calculation where deuterons are explicitly propa-
gated, the directed flow of deuterons themselves is extracted.
The results shown in Fig. 5 compare the deuteron flow with
the hard and the default equations of state. Considering that
the model was originally designed for high-energy collisions
where the composition of the system is very different and
nuclear potentials are negligible, it is not obvious that the
directed flow of deuterons can be described. A reasonable
agreement with the experimental data is observed.

To conclude, the findings from the comparison to the mea-
sured v1, the hard equation of state is clearly favored in this
setup. Overall, a good agreement with the data is observed,
where the clustering setup follows a bit closer the transverse
momentum dependent v1 of nucleons, and the deuteron flow
is matched reasonably well in the calculation with explicit
deuteron formation.

IV. ELLIPTIC FLOW OF PROTONS AND DEUTERONS

Continuing with the second-order flow harmonic, Fig. 6
shows the v2 as a function of rapidity in semicentral gold-gold
collisions. Again, two calculations with clustering and differ-
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FIG. 6. Elliptic flow of protons as a function of rapidity in 20%–
30% central gold-gold collisions at Ekin = 1.23A GeV for different
pT bins compared with experimental data points [34]. The full lines
are obtained with a hard equation of state while, for the dashed lines,
the default equation of state is used.

ent equations of state and a calculation with explicit deuterons
employing a hard equation of state are compared. Naturally,
the second-order flow coefficient is more difficult to describe
than the first-order one. In general, the magnitude of v2 is too
small at large transverse momenta. However, the flow in the
intermediate pT region, where most nucleons are located, is
comparable to the experimental data. Same as for v1, the hard
equation of state produces a stronger flow signal and is there-
fore preferred by the data. In addition to that, the magnitude
of v2 is larger when the deuterons are treated explicitly in the
calculation. That calculation agrees best with the data. Similar
to the observation for v1, in the low-pT region (here the
0.4 GeV < pT < 0.45 GeV bin) the results are very sensitive
to how the formation of light nuclei is taken into account.

The elliptic flow of nucleons as a function of the transverse
momentum is shown in Fig. 7. Here it is again rather obvious
that the elliptic flow is not well described, especially in the
high-pT region. In the low-pT region, the clustering performs
better, while the calculation with explicit deuteron production
works better at intermediate transverse momentum. The dif-
ficulties in describing v2 at high pT possibly comes from the
lack of momentum dependence of the potentials [49].

Figure 8 shows the elliptic flow of deuterons for the cal-
culation, where they are treated as active degrees of freedom.
For the hard equation of state, the flow signal is overestimated
while the default equation of state is in agreement with the
data. Also looking at the pT differential elliptic flow of
deuterons in Fig. 9, the agreement with the data is good only
for the default equation of state. Possibly all flow data can be
described consistently with more sophisticated potentials.

FIG. 7. Elliptic flow of protons as a function of transverse
momentum in 20%–30% central gold-gold collisions at Ekin =
1.23A GeV for different rapidity bins compared with experimental
data points [34]. The full lines are obtained with a hard equation of
state while, for the dashed lines, the default equation of state is used.

FIG. 8. Elliptic flow of deuterons as a function of rapidity in
20%–30% central gold-gold collisions at Ekin = 1.23A GeV for
different transverse momentum bins compared with experimental
data points [34]. A hard equation of state was employed here and
deuterons were dynamically treated as particles in this calculation.
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FIG. 9. Elliptic flow of deuterons as a function of transverse
momentum in 20%–30% central gold-gold collisions at Ekin =
1.23A GeV for different rapidity bins compared with experimental
data points [34]. A hard equation of state was employed here and
deuterons were dynamically treated as particles in this calculation.

To conclude this section, the elliptic flow is observed to be
very sensitive on how the light nuclei formation is taken into
account, which leads to some uncertainty for the extraction
of the EoS. The elliptic flow of nucleons at large transverse
momenta is underestimated in the SMASH calculations but the
best agreement is found with the hard equation of state and
treating the deuterons as active degrees of freedom. The fact
that the deuteron flow can in this model not be described
with the same equation of state hints towards the necessity
of improved nuclear potentials.

V. EVOLUTION OF FLOW COEFFICIENTS

In this section we focus on the evolution of flow with
time to see when the anisotropy is developed and what the
most important stages are. We concentrate on the setting that
worked best in comparison to experimental data, namely, the
calculation with explicit deuteron formation and a hard equa-
tion of state.

The first two panels of Fig. 10 show the multiplicity of
nucleons and deuterons respectively as a function of time.
The initially present nucleons from the two gold nuclei start
interacting, forming resonances and deuterons, so that their
number decreases. If no deuterons are present in the calcu-
lation, the number of nucleons increases again towards the
end of the calculation when all resonances decay. The number
of deuterons rises throughout the evolution of the heavy-ion
collision. In the third panel one can see the slope of the
directed flow at midrapidity as a proxy for the magnitude of v1

of nucleons and deuterons. To evaluate the slope, at each point

FIG. 10. Nucleon and deuteron multiplicities, slope of the first-
order flow coefficient at midrapidity, and v2 of nucleons and
deuterons as a function of time in 20%–30% central gold-gold col-
lisions at Ekin = 1.23A GeV. The flow coefficients are evaluated for
particles that satisfy 0.75 GeV < pT < 0.8 GeV while the number
of particles refers to the total multiplicity.

in time the v1(y) is fit with a function v1(y) = ay + by3 where
the cubic term is added to take the curvature observed in Fig. 3
into account. The fitting is performed by using Bayesian pa-
rameter estimation with Markov chain Monte Carlo sampling.
The inner band gives a 68% and the outer band a 95% credible
interval. At early times the uncertainty is very large since
not enough particles have interacted yet and are not located
in the relevant phase-space region, and deuterons are not yet
produced. Afterward, the flow starts building up from zero to a
maximum after ≈15 fm. This is the time the nuclei take to pass
through each other. Afterward, one observes for both nucleons
and deuterons that the flow signal slightly weakens before the
deuteron flow increases again and reaches a higher plateau.

The final panel of Fig. 10 compares the elliptic flow at
midrapidity between nucleons and deuterons. Once enough
particles are produced and located in the investigated kine-
matic region, the elliptic flows of nucleons and deuterons
look almost exactly the same except that the deuteron flow
increases further at later times. This is not intuitively clear
since no mass number scaling is applied here. Looking at
the evolution of v2 in more detail one can see that, at first, a
positive elliptic flow signal starts to build up but soon v2 drops
below zero where it stays until the end of the evolution. Posi-
tive elliptic flow is typically associated with pressure gradients
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in the initial state. At low collision energies a competing effect
is the squeeze out that results in a negative v2 signal when the
slow spectator nuclei are blocking the path and push particles
out of the reaction plane [50]. Both effects contribute to the
observed elliptic flow.

It is interesting to note that, especially for nucleons, v2

shows a very different behavior as a function of time than
v1. The difficulties in describing the elliptic flow and directed
flow with the same parameter set might arise from the two
being sensitive to different stages of the evolution.

VI. HIGHER FLOW COEFFICIENTS

A. Scalar product v3

In this section we would like to quantify the triangularity
of heavy-ion collisions to extend the excitation function from
that of Ref. [51] down to 1.23A GeV. Unlike for the first and
second harmonic, the v3 signal does not simply emerge from
the geometry of the colliding nuclei but rather by fluctuations
in the overlap region. To really quantify the triangularity of
an event it is therefore not sufficient to calculate the flow
coefficient with respect to the reaction plane. Hence, for eval-
uating the triangular flow in this section, the scalar product
method [52] is employed because, even though the HADES
Collaboration only measures v3 with respect to the reaction
plane, we would like to explore if there is a finite triangular
flow in our calculations at low beam energies (see Appendix A
for higher-order flow coefficients with respect to the reaction
plane).

In the scalar product method the nth flow coefficient is
calculated as follows:

vn =
〈
�u · �Qn

N

〉
√〈 �QA

n
NA

· �QB
n

NB

〉
E

, (13)

where �u is the momentum unit vector of a particle in the
transverse plane, 〈. . .〉 denotes the average over all parti-
cles of interest while 〈. . .〉E is an average over events. N is
the total number of particles and NA and NB are the num-
ber of particles in the subevents A and B, respectively. The
same labeling applies for the flow vectors �QA

n , �QB
n , and �Qn

defined as

�Qn =
(∑

i wi cos (nφi )∑
i wi sin (nφi )

)
, (14)

where φi is the azimuthal angle of particle i, wi is the weight
for the v3 calculation p3

T . The sum runs over the particles in
the (sub-)event but, for the scalar product in the numerator of
Eq. (13), the particle of interest needs to be excluded from the
flow vector calculation to avoid autocorrelations. Each event
is divided into subevents according to the pseudorapidity η of
the particles. One subevent contains all particles with η > 0.1
while the other one has particles that satisfy η < −0.1.

Applying the scalar product method to extract the tri-
angular flow of nucleons one obtains the results shown in
Fig. 11. Looking at the scale of the axis the triangular flow
signal in collisions at low energies almost vanishes. That
agrees with the findings from Ref. [51] where the trian-
gular flow signal vanishes at low collision energies. With

FIG. 11. Triangular flow of nucleons as a function of rapidity
in 20%–30% central gold-gold collisions. The flow coefficient is
obtained using the scalar product method.

the same cuts (0.2 GeV < pT < 2.0 GeV and |η| < 1) ap-
plied as in Ref. [51] we obtain for nucleons and deuterons
v3 = 0.000 81 ± 0.000 06 and v3 = −0.0014 ± 0.0002, re-
spectively.

B. Quadrangular flow

In this section we show the fourth-order flow coefficient
of nucleons divided by the squared elliptic flow because this
quantity is suggested to be a probe of ideal hydrodynamic
behavior of the system if v4/v

2
2 ≈ 0.5 [53]. v4/v

2
2 is calculated

at midrapidity as a function of pT and the result is shown
in Fig. 12. One can see that v4/v

2
2 is close to 0.5 in the pT

region above 0.75 GeV. In general, the shape of the curve
is similar to the ideal three-dimensional hydro prediction at
RHIC energies from Ref. [53] so the pure transport calculation
as presented in this work shows in terms of this observable a

FIG. 12. Quadrangular flow of nucleons divided by the squared
elliptic flow at midrapidity as a function of transverse momentum in
20%–30% central gold-gold collisions at Ekin = 1.23A GeV.
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close to hydrodynamic behavior. This is a sign that, in low-
energy collisions, the response to the initial geometry within
a transport approach is translated as efficiently to final-state
observables as expected from a hydrodynamic picture.

VII. CONCLUSIONS AND OUTLOOK

In this paper we compared the double-differential directed
and elliptic flow of protons and deuterons to experimental flow
measurements in Au + Au collisions at Elab = 1.23A GeV as
provided by the HADES Collaboration. Different parameter
sets for the Skyrme potential, which each correspond to a
different equation of state, are employed. In our calculation
for the flow of both nucleons and deuterons a hard equation of
state is preferred by the data. With the currently implemented
potentials, the elliptic flow of nucleons and deuterons is not
consistently described. Therefore, more sophisticated poten-
tials, including a momentum dependence, will be necessary to
extract the equation of state from flow measurements.

The main focus of the current work is the formation of
light nuclei in low-energy heavy-ion collisions that cannot
be neglected even considering just the flow of nucleons. Two
different ways of taking the formation of deuterons into ac-
count are implemented. Within this model we observe that
dynamically forming deuterons and propagating them as par-
ticles throughout the calculation performs better with respect
to the HADES data than forming deuterons via coalescence
in the final state of a heavy-ion collision. In the setup with the
dynamic treatment of deuterons the evolution of the multiplic-
ity and flow of nucleons and deuterons over time is studied.
Here one can see that the flow of nucleons and deuterons
show a very similar time dependence, while the directed and
elliptic flow coefficients are sensitive to different stages in the
evolution.

Finally, we show that the scalar product triangular flow
of nucleons almost vanishes in collisions at low energy and
confirm that v4/v

2
2 ≈ 0.5 outside the low-pT region within the

SMASH transport approach.
In the future, a more advanced description of the nuclear

potentials [37] will allow for a more detailed comparison to a
much broader set of experimental measurements. That com-
parison can be performed more systematically using Bayesian
methods to put reliable constraints on the equation of state.
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APPENDIX A: REACTION PLANE v3 AND v4

For completeness we provide the triangular and quadran-
gular flow with respect to the reaction plane in the same pT bin
as shown in Ref. [35]. The hard equation of state is employed
for all calculations in this Appendix. Figure 13 shows the first
four flow coefficients of nucleons as a function of rapidity.
Compared is a calculation with explicit deuteron formation as
described in Sec. II C with final-state clustering of nucleons
(Sec. II B).

We also provide the four-lowest-order flow coefficients cal-
culation for deuterons in Fig. 14. The deuterons are explicitly
produced and propagated throughout the calculation.

APPENDIX B: DEPENDENCE ON TEST
PARTICLE NUMBER

This work focuses on the equation of state which is related
to the calculation by the nuclear potentials. As mentioned in
Sec. II A, the mean fields are expressed in terms of densities
and their derivatives and hence rely on the density to be
smooth and statistical fluctuations to be under control.

In the following we investigate the dependence on the
number of test particles, Ntest used in the calculation to repre-
sent a physical particle by repeating the previous calculations
for directed and elliptic flow. The result for the directed and
elliptic flow of nucleons in the calculation, where deuterons
are explicitly propagated, is shown in Figs. 15 and 16, respec-
tively. The results for one and five test particles are basically
identical. However, upon increasing the number of test par-
ticles to twenty, a significant difference can be observed for
both v1 and v2. Compared with the calculation with twenty test
particles, doubling the number of test particles does not lead
to a difference in the flow coefficients. For completeness, the

FIG. 13. v1 to v4 of nucleons as a function of rapidity in 20%–
30% central gold-gold collisions at Ekin = 1.23A GeV for 1.0 GeV <

pT < 1.5 GeV. All lines are obtained with a hard equation of state.
Compared is a calculation with explicit deuteron formation and
clustering.
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FIG. 14. v1 to v4 of deuterons as a function of rapidity in 20%–
30% central gold-gold collisions at Ekin = 1.23A GeV for 1.0 GeV <

pT < 1.5 GeV. All lines are obtained with a hard equation of state.

same consistency check has been performed for the directed
and elliptic flow of deuterons, where the same dependence on
the number of test particles was found so the plots are omitted

FIG. 15. Directed flow of nucleons as a function of transverse
momentum in 20%–30% central gold-gold collisions at Ekin =
1.23A GeV for different rapidity bins compared with experimental
data points [34]. Compared are calculations where each particle is
represented by a different number of test particles, Ntest .

FIG. 16. Elliptic flow of nucleons as a function of transverse
momentum in 20%–30% central gold-gold collisions at Ekin =
1.23A GeV for different rapidity bins compared with experimental
data points [34]. Compared are calculations where each particle is
represented by a different number of test particles, Ntest .

here. We conclude that representing each particle by twenty
test particles is sufficient for a stable calculation of the density
and the derivatives of it.

FIG. 17. Directed flow of nucleons as a function of transverse
momentum in 20%–30% central gold-gold collisions at Ekin =
1.23A GeV for different rapidity bins. Three calculations with dif-
ferent smearing widths are compared.
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FIG. 18. Elliptic flow of nucleons as a function of transverse
momentum in 20%–30% central gold-gold collisions at Ekin =
1.23A GeV for different rapidity bins. Three calculations with dif-
ferent smearing widths are compared.

The reason for the relatively low number of required test
particles to obtain a reliable mean-field calculation is that

each particle is smeared in coordinate space as described in
Ref. [41].

APPENDIX C: DEPENDENCE ON SMEARING WIDTH

For the results presented in this work, a smearing kernel
is applied to each test particle for calculating the densities re-
quired for the evaluation of the potentials. The specific form of
the covariant Gaussian smearing that was used is introduced
in Ref. [41]. By applying the Gaussian smearing one can ef-
ficiently calculate the density with a moderate number of test
particles, as described in the previous section. However, the
smearing introduces a free parameter to the model that is the
smearing width σ of the Gaussian. The smearing parameter
is set to σ = 1.0 fm for all results presented in this and all
previous papers involving SMASH calculations. This number
is chosen to be similar to the size of a proton which is the
main contribution to the baryon density. In Figs. 17 and 18 the
results for v1 and v2 for nucleons obtained with σ = 1.0 fm
are compared with σ = 0.75 fm and σ = 0.25 fm. One can
see a significant dependence on the smearing width. However,
the difference between σ = 1.0 fm and σ = 0.75 fm is small
enough so that the conclusions from this work would still hold
for σ = 0.75 fm. For σ = 0.25 fm the difference is large. The
reason for this difference is that the width is in this case too
small and no smooth density profile can be obtained with only
20 test particles. For a more clear comparison the number of
test particles is kept equal throughout this plot but a better
agreement between the calculations is expected with a larger
number of test particles.
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